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ABSTRACT: Studies are described toward the synthesis of an
oxazole-based analog of (−)-zampanolide (2). Construction of
(−)-dactylolide analog 22 was achieved via alcohol 5 and acid 4
through esterification and Horner−Wadsworth−Emmons (HWE)-
based macrocyclization; however, attempts to attach (Z,E)-
sorbamide to 22 proved unsuccessful. The C(8)−C(9) double
bond of the macrocycle was prone to migration into conjugation with the oxazole ring, which may generally limit the usefulness of
zampanolide analogs with aromatic moieties as tetrahydropyran replacements.

(−)-Zampanolide (1) (Figure 1) is a marine macrolide with
potent in vitro antitumor activity that was first isolated in 1996

from the marine sponge Fasciospongia rimosa by Tanaka and
Higa.1 In 2009, 1 was reisolated from Cacospongia mycof ijensis
by Northcote and co-workers, who also established that the
compound was a microtubule-stabilizing agent (MSA).2 The
inhibition of cancer cell proliferation by (−)-zampanolide (1)
is thus based on the same mechanism of action as for the
anticancer drugs paclitaxel, taxotere, cabazitaxel, and ixabepi-
lone.3 However, 1 is the only MSA that interacts with tubulin
by covalent bond formation, which entails 1,4-addition of
His229 in the β-tubulin subunit to the enone moiety in the
macrocycle.4

The structure of (−)-zampanolide (1) is composed of a
macrobicyclic core comprising a 20-membered macrolactone
ring and an embedded 2,6-syn-disubstituted tetrahydropyran
(THP) moiety, as well as a (Z,E)-sorbamide-derived side chain
that is connected to C(19) of the macrolactone ring via a
hemiaminal group.
Several total syntheses of (−)-zampanolide (1) have been

reported5−9 since the pioneering work of Smith and co-
workers on (+)-zampanolide,10,11 which had established the
absolute configuration of natural zampanolide as 11S, 15S, 19S,
20S. Part of the chemistry developed in the context of these
total syntheses has also served as a basis for the preparation of

analogs for SAR studies.12−18 While these studies have shown
that mono(macro)cyclic analogs lacking the C3 bridge between
C(11) and C(15) can retain sub-μM antiproliferative activity,
they are still substantially less potent than the natural
product.9,13−15 At the same time, recent work from our own
group has demonstrated that the removal of the C(13)
methylene group17 (see also ref 16) or the complete
replacement of the tetrahydropyran ring by a suitably
substituted morpholine moiety18 is well tolerated, with the
corresponding analogs still exhibiting nanomolar IC50 values
for the inhibition of cancer cell growth in vitro.
When inspecting the tubulin-bound structure of (−)-zam-

panolide (1),4 it is immediately obvious that C(10), C(11),
O(11′), C(15), and C(16) are all in the same plane (as for all
2,6-syn-disubstituted tetrahydropyran-based systems with the 2
and 6 substituents in an equatorial orientation). This situation
is recapitulated in meta-substituted 5- or 6-membered aromatic
rings, except that bond angles are slightly different from those
in THP-based systems, which leads to not exactly super-
imposable positions of the atoms attached to the ring. We were
nevertheless intrigued by the question if aromatic heterocycles
could serve as THP bioisosteres in zampanolide and perhaps
also in other bioactive natural products incorporating a 2,6-syn-
disubstituted THP motif as part of a bicyclic scaffold.19,20 In a
proof-of-concept study we thus embarked on the synthesis of
oxazole-based zampanolide analog 2 (Figure 1), where the
oxygen in the aromatic ring mimics the natural THP oxygen.
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Figure 1. Structure of (−)-zampanolide (1) and oxazole-based
zampanolide analog 2.
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Preliminary modeling studies have indicated that the
replacement of the THP ring in 1 by the oxazole ring in 2
can be accommodated in the structure of the tubulin−
zampanolide (1) complex without major distortions in the
conformation of the macrolactone ring; in addition, no
unfavorable steric interactions of the oxazole ring with the
protein are obvious (Figure 2).

The overall strategy for the synthesis of 2 was conceived in
analogy to our approach toward the synthesis of 19 and
different zampanolide analogs (Scheme 1).9,17,18 Thus, macro-

cyclization was to rely on an intramolecular Horner−
Wadsworth−Emmons (HWE) reaction, while the elaboration
of the (Z,E)-sorbamide-derived side chain was to be based on
an aza-aldol reaction, for which we have recently also
developed a stereoselective variant.17

The precursor for the HWE macrocyclization would be
obtained by the esterification of acid 49 and alcohol 5. The
latter was envisioned to be accessible from vinyl iodide 7 via
iodine/lithium exchange and subsequent epoxide opening in
PMB-protected R-glycidol (6). Oxazole 7 was planned to be
assembled from aldehyde 9 and p-toluenesulfonylmethyl
isocyanide (TosMIC, 8) in a van Leusen oxazole synthesis,21

followed by formylation and elaboration of the ensuing
aldehyde into vinyl iodide 7 by Corey−Fuchs alkynylation22
and stannylcupration/iodination.
As depicted in Scheme 2, the synthesis of vinyl iodide 7

departed from 1,3-propanediol (10), which was converted into
aldehyde 9 by mono-TBDPS protection and subsequent Swern
oxidation in 85% yield. Employing a modified, two-step van
Leusen procedure that involves treatment of the 4-methoxy-

oxazoline formed in the initial reaction between 9 and 8 with a
strong base,23 oxazole 11 could be obtained in 48% overall
yield from 9. Formylation of 11 (n-BuLi, DMF)24 followed by
a Corey−Fuchs reaction22 furnished alkyne 13 in 40% yield
over 3 steps; the latter was then converted into vinyl iodide 7
by stannylcupration/iodination with Bu3Sn(Bu)CuCNLi2

25,26

and N-iodosuccinimide (82%).
In accordance with our original synthetic plan, initial

attempts toward the elaboration of vinyl iodide 7 into alcohol
5 involved iodine−lithium exchange on 7, followed by reaction
of the ensuing vinyllithium species with PMB-protected R-
glycidol (6) in the presence of BF3·Et2O. Unfortunately, none
of the desired alcohol 5 was obtained when using either n-BuLi
or t-BuLi to effect iodine/lithium exchange. With n-BuLi, only
the product of protodehalogenation could be isolated (29%
yield), while t-BuLi gave the product of protodehalogenation
together with the elimination product 13. This stands in
marked contrast to the successful opening of the epoxide ring
in 6 with a variety of vinyllithiums generated from vinyl iodides
related to 7 in the synthesis of 19 or of zampanolide
analogs.12,17,18

Ghosh et al., as part of their total synthesis of 1, have
described the construction of the C(16)−C(17) double bond
by cross-metathesis.7,8 Thus, 5 was attempted to be accessed
from olefins 14 (obtained from 12 by Wittig reaction (Scheme
3); see the Supporting Information (SI)) and 157 or 167,

respectively, by Grubbs II mediated cross-metathesis in
CH2Cl2 or toluene. Unfortunately, again none of the desired
product 5 or 17, respectively, could be obtained; instead both
starting olefins were reisolated.
Hoarau and co-workers have reported the palladium-

catalyzed C(2)-selective coupling of an unfunctionalized
oxazole with a vinyl iodide (Pd(OAc)2, CyJohnPhos,
Cs2CO3, 1,4-dioxane, 110 °C).

27 Applying Hoarau’s conditions
to 11 and vinyl iodide 1828,29 (see Scheme 4 for the structure
of 18) or the corresponding TBS-ether, however, solely led to
decomposition of the latter and reisolation of oxazole 11.

Figure 2. (A) Superimposition of energy-minimized structures of 1
(green) and 2 (magenta) starting from the structure of 1 bound to
tubulin (PDB ID code: 4I4T). (B) Superimposition of 2 (magenta)
on 1 (green) in the X-ray structure of the 1·tubulin complex.

Scheme 1. Retrosynthesis of Oxazole-Zampanolide Analog 2

Scheme 2. Synthesis of Vinyl Iodide 7

Scheme 3. Unsuccessful Attempt towards 5 by Cross-
Metathesis
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Gratifyingly, the coupling of 11 and 18 could be achieved by
Negishi cross-coupling,30 which furnished the desired homo-
allylic alcohol 5 in 80% yield (Scheme 4).
Subsequent Yamaguchi esterification31 of 5 with acid 4

followed by global desilylation afforded diol 19 in 55% yield
over 2 steps. Oxidation of 19 with DMP32 gave a keto aldehyde
that underwent smooth Ba(OH)2-mediated HWE olefination,9

to furnish the macrolactone 20 as a crude product. While 1H
NMR analysis indicated a yield of approximately 84%, all
attempts to purify the material were unsuccessful. Upon
standard silica gel chromatography, partial migration of the
C(8)−C(9) double bond into conjugation with the oxazole
ring occurred. Addition of triethylamine to the eluent only
aggravated the problem and resulted in complete conversion of
20 into this undesired regioisomer. Therefore, the crude
macrolactone was directly submitted to oxidative PMB-
cleavage with DDQ. After extensive screening of different
purification methods, the free alcohol 21 could be purified by
flash column chromatography with acidic silica gel (SiO2·
HCl)33 and was finally obtained in 36% yield over 3 steps from
19. DMP oxidation32 of alcohol 21 gave the crude aldehyde
22, which is an analog of the non-natural enantiomer of the
marine macrolide (+)-dactylolide.34 Given the susceptibility of
the macrocycle to double bond migration upon exposure to
silica gel and an anticipated lability of the C(19) stereocenter
under acidic conditions (SiO2·HCl), crude 22 was directly
used in the following aza-aldol reaction. However, none of the
desired hemiaminal 2 could be isolated upon mixing 22 with a
solution of (Z,E)-sorbamide (3) that had been pretreated with
DIBAL-H for 50 min, conditions that had been successfully
employed in the total synthesis of 1.5,9 While the mass of 2
could be detected in the HRMS spectrum of the crude material
obtained after extractive workup, the 1H NMR spectrum was
completely uninformative. The only interpretable signals were
those of 3 (of which a 10-fold excess was used) and a signal at
9.2 ppm, corresponding to unreacted aldehyde 22 (ca. 27%).
In order to gain some preliminary understanding of the

biological consequences of the replacement of the 2,6-syn-
disubstituted tetrahydropyran moiety in the zampanolide
macrocycle by a planar aromatic ring, the antiproliferative

activity of alcohol 21 was assessed against A549 human lung
carcinoma cells. The IC50 of 21 was 12.4 μM, compared to 127
nM for the corresponding analog incorporating the natural 4-
methylene THP moiety.9 While this seems to indicate that the
oxazole moiety is not a suitable bioisostere for the THP ring in
zampanolide-derived structures, the results have to be
interpreted with some care. It is well conceivable that
isomerization of the C(8)−C(9) double bond occurs under
the conditions of the cellular experiments, thus destroying the
enone system that is critical for the covalent interaction of 1
with tubulin.4

In summary, we have established an efficient route for the
synthesis of an oxazole-derived analog of the non-natural
enantiomer of the (−)-dactylolide alcohol 21, but the desired
conversion into the corresponding analog of (−)-zampanolide
(1) could not be accomplished. We have found the modified
zampanolide macrocycle to be highly susceptible to the
migration of the C(8)−C(9) double bond, which makes it
doubtful if the replacement of the THP ring in 1 by any
aromatic moiety would yield useful analogs. Analogs of other
THP-containing natural products will have to be investigated
to assess the potential of such an approach for the optimization
of natural product leads in drug discovery.19
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