MONOOXYGEN TRANSFER POTENTIAL OF THE TRANSANNULAR OZONIDE OF 9-TERT-BUTYL-10-METHYLANTHRACENE

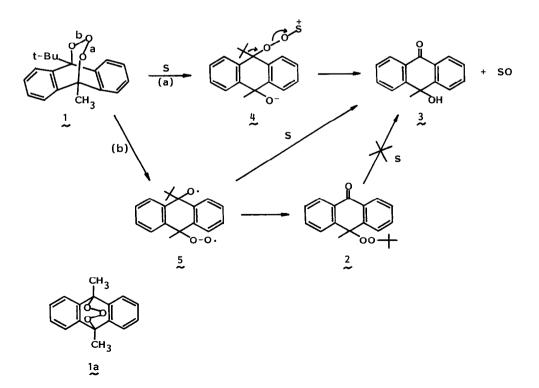
Yoshikatsu Ito, Akira Matsuura, and Teruo Matsuura*

Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606, Japan

Summary: The efficiency of oxygen transfer from the transannular ozonide 1 to several organic substrates was investigated. The efficiency was estimated to be as high as 90% in the case of Ph_3P as the substrate.

A number of examples for oxygen transfer reactions between peroxides and organic substrates have so far been reported.¹ Little study, however, was done concerning the oxidative ability of the transannular ozonides of anthracenes.² For example, Murray studied only briefly a decomposition of the unstable trioxide la in the presence of tetracyclone and 1,3-diphenylisobenzofuran.^{2b} Now we have found for the first time that monooxygen transfer ability of the transannular ozonide of 9-tert-butyl-10-methylanthracene <u>1</u>, an unusually stable 1,2,3-trioxide recently communicated by us,³ is high.

The decomposition under a nitrogen atmosphere of the trioxide <u>l</u> in the presence of various substrates S (triphenylphosphine, diphenyl sulfide, norbornene, mesitylene, and transand cis-stilbenes) gave 10-methyl-10-(tert-butyldioxy)-9-anthrone (<u>2</u>), 10-methyloxanthrone (<u>3</u>) and the corresponding substrate oxidation products SO (Table, entries 1 - 6). Except the case of Ph_3P , the yields of the oxidation products SO are low probably because of the competitive decomposition of the trioxide <u>l</u> to the peroxide <u>2</u> and unknown products. The thermal rearrangement of <u>l</u> into <u>2</u> at elevated temperatures was already reported.³ The epoxidation of cis- and trans-stilbene proceeded stereoselectively to produce trans-stilbene oxide from either isomer. The same stereoselectivity was observed in the α -diketone- or α -acyloin-sensitized photoepoxidation.⁴


The peroxide 2 was found to be stable in the presence of each substrate under the reaction conditions shown in Table. Thus the observed values for the SO/3 ratio (0.6 - 0.9; Table, entries 1 - 6) may be considered to indicate high efficiency for monooxygen transfer

1491

from 1 to S. Note, however, that the total yield of 2 and 3 is not good for entries 3 - 6. In these cases the SO/3 ratio should be taken as a maximum oxygen transfer efficiency.

Since the trioxide 1 is stable at room temperature,³ its decomposition is greatly promoted by the presence of Ph_3P , as seen from Table (entry 1). It appears that the main mechanism for oxygen trasnfer from Ph_3P involves the direct reaction with 1 to produce an ionic intermediate such as 4.⁵ The X-ray structural analysis of 1³ revealed that the lengths of two 0-0 bonds (a and b) are different: 1.428 Å and 1.361 Å, respectively. As a result, the sequence 1 + 4 + 3 involves an initial cleavage of the longer(weaker) 0-0 bond, i.e., bond a. On the other hand, as is already reported,³ the thermal decomposition of 1 into 2 can be most reasonably rationalized by an initial cleavage of the shorter(stronger) 0-0 bond in a sequence 1 + 5 + 2. We are yet unable to explain this difference.

It is confirmed by independent experiments that Ph_2S , when used as a solvent, almost doubles the decomposition rate of 1 as compared with that in $CDCl_3$, while trans-stilbene does not affect the rate. Thus, the predominant mechanism for oxygen transfer to trans-stilbene appears to involve the radical intermediate 5, while that to Ph_2S both 4 and 5. As seen from comparison of the SO/3 values listed in Table (entries 1, 2, 5 and 7 - 9), the effect of an

entry	substrate S (M)	reaction conditions			conversion	isolated yields of products, % ^b			S0/3
		solvent	temp, °C	time, h	of 1, %	2	3	S0	~~~
1	Ph ₃ P (0.34)	^{CH} 2 ^{C1} 2	room temperature	38	59	19	78	70 ^C	0.90
2	Ph ₂ S (6.00)	Ph ₂ S	60	12	100	37	41	26 ^d	0.63
3	norbornene (0.30)	CDC13	45	20	63	45	23	15 ^e	0.65
4	mesitylene (0.72)	сн ₂ с1 ₂	40	15	52	41	19	12 ^f	0.63
5	trans-stilbene (0.25)	CH2C12	40	38	75	39	29	20 ^g	0.69
6	cis-stilbene (0.44)	сн ₂ с1 ₂	40	40	81	40	21	16 ^g	0.76
7	Ph ₃ P ^h (0.34)	^{CH} 2 ^{C1} 2	room temperatur	40 e	69	13	70	58 ^C	0.83
8	Ph2sh (0.44)	^{CH} 2 ^{C1} 2	40	44	82	35	17	7 ^d	0.41
9	trans-stilbene ^h (0.22)	сн ₂ с1 ₂	40	38	60	16	14	4 ^g	0.29

Table. Reaction of the transannular ozonide 1 with organic substrates S.^a

^aUnder nitrogen, $_{0}5 \ge 10^{-2}$ M of 1 was allowed to react with the substrate. The products were separated by preparative TLC on silica gel. ^bCalculated on the basis of 1 consumed. ^cTriphenylphosphine oxide. ^dDiphenyl sulfoxide. ^eExo-2,3-epoxynorbornane. ^f2,4,6-Trimethylphenol. ^gTrans-stilbene oxide. ^h $_{0}3 \ge 10^{-2}$ M of 2,6-di-tert-butyl-4-methylphenol is present as an additive.

radical inhibitor, 2,6-di-tert-butyl-4-methylphenol, on the oxygen transfer reactions increased in the order $Ph_3P < Ph_2S < trans-stilbene$. This trend supports the aforementioned oxygen transfer mechanism for Ph_3P , Ph_2S and trans-stilbene.

Acknowledgment: We are indebted to the Ministry of Education, Science and Culture of Japan for a financial aid under the special research project on environmental science.

References and Notes

- (1) H. Mimoun, Angew. Chem. Int. Ed. Engl. 21, 734 (1982).
- (2) (a) P. S. Bailey, "Ozonation in Organic Chemistry", Academic Press, New York; Vol. 2, p. 86 (1982).
 (b) R. W. Murray in "Singlet Oxygen", H. H. Wasserman and R. W. Murray (Eds), Academic Press, New York; p. 106 (1979).
- (3) Y. Ito, A. Matsuura, R. Otani, T. Matsuura, K. Fukuyama, and Y. Katsube, J. Am. Chem. Soc., <u>105</u>, 5699 (1983).
- (4) (a) N. Shimizu and P. D. Bartlett, J. Am. Chem. Soc., <u>98</u>, 4193 (1976).
 (b) Y. Sawaki and Y. Ogata, ibid., 103, 2049 (1981).
- (5) Since the endoperoxide, prepared from the reaction of 9-tert-butyl-10-methylanthracene with singlet oxygen, was found to be entirely inert toward Ph_3P at room temperature, its presence in the course of the reaction $1 \rightarrow 3$ is unlikely.

(Received in Japan 15 December 1983)