Controlling Stereoselection in Aza-Cope-Mannich Reactions

LARRY E. OVERMAN* AND WILLIAM C. TRENKLE

Department of Chemistry, 516 Physical Sciences 1, University of California, Irvine, California 92697-2025, USA

(Received 12 January 1997)

Abstract. The synthesis of 2-substituted cis-octahydroindolones from the reaction of cis-2-amino-1-alkenylcyclopentanols with aldehydes was studied to examine whether stereoselection in the aza-Cope-Mannich reaction could be controlled by the nature of the nitrogen substituent. 2-Alkylamino-1-(1- phenylethenyl)cyclopentanols 7 and 8, which contain nitrogen substituents of widely differing size (Me and CHPh,), were condensed with four aldehydes to give oxazolidines 9a-d and 10a-c. Rearrangement of these intermediates at 23-60 °C, in the presence of 0.9 equiv of (±)-10-camphorsulfonic acid in acetonitrile, gave cis-octahydroindolones 11a-d and 12a-c in yields of 77-95%. Using a combination of single-crystal X-ray crystallography, ¹H nOe measurements, and comparisons with known materials it was established that the N-methyl oxazolidines 9a-d provided exclusively cisoctahydroindolones having the 2-substituent trans to the angular substituents, while N-benzhydryl analogs 10a-c provided exclusively the all-cis products 12a-c. These results are interpreted to mean: (1) When the nitrogen substituent is small (Me), the stereochemistry-determining [3,3]-sigmatropic rearrangement occurs preferentially through a transition-state topography having the R² substituent oriented quasiequatorially $(14 \rightarrow 15 \rightarrow 16)$; (2) When this substituent is large (CHPh₂), destabilizing steric interactions between the vicinal R^1 and R^2 substituents causes the rearrangement to occur preferentially through the alternate iminium ion stereoisomer $(17 \rightarrow 18 \rightarrow 19).$

INTRODUCTION

The aza-Cope-Mannich reaction is a powerful reaction for assembling nitrogen heterocycles.¹ Key features of this transformation can be illustrated by the reactions depicted in Fig. 1. Acid-promoted condensation of an acyclic homoallylic amine containing an allylic hydroxyl (or alkoxyl) group with an aldehyde or ketone forms a 3-acylpyrrolidine (e.g., $1 \rightarrow 2$).² When the amine and alcohol substituents are vicinally positioned on a ring, the aza-Cope-Mannich reaction affords a product in which pyrrolidine annulation is coupled with a one-carbon ring-expansion (e.g., $3 \rightarrow 4$).³ The mild conditions of the aza-Cope-Mannich transformation have allowed this reaction to be extended to more functionalized substrates, as illustrated in the conversion of bicyclononylamine 5 to 6, which was the penultimate step in a short synthesis of the Aspidosperma alkaloid (±)-16-methoxytabersonine.⁴ The constructions of *cis*-octahydroindolone 4 and pentacycle 6 also illustrate the high stereoselectivity that is typically realized in the synthesis of nitrogen heterocycles by the aza-Cope–Mannich reaction. We have employed this versatile reaction as the central strategic element in total syntheses of more than 15 alkaloids, most recently (–)-strychnine.⁵

The stereochemical outcome of aza-Cope–Mannich reactions typically can be rationalized, and more importantly, readily predicted from the preference for the sigmatropic reorganization to occur through a chair topography, and, in the case of aldehyde-derived iminium ions, from preferential rearrangement of E iminium ion stereoisomers.^{1,3} These features are illustrated in Fig. 2 for the formation of *cis*-octahydroindolone **4** from aminocyclopentanol **3**.

During the recent development of our asymmetric synthesis of opium alkaloids,⁶ we demonstrated that the stereochemical outcome of iminium ion--vinylsilane cyclizations could be controlled by the size of the nitrogen substituent.⁷ If similar control could be realized in aza-Cope-Mannich reactions, the scope of this latter reaction would be expanded. The synthesis of 2-substituted *Author to whom correspondence should be addressed.

Israel Journal of Chemistry Vol. 37 199

1997 pp. 23–30

Fig. 1. Representative aza-Cope-Mannich reactions.

Fig. 2. Stereochemical analysis of the formation of 4.

cis-octahydroindolones from condensation of *cis*-2amino-1-alkenylcyclopentanols with aldehydes was chosen as an appropriate arena for examining this possibility. We report herein that either stereoisomer of a 2substituted *cis*-octahydroindolone can be obtained depending on the size of the nitrogen substituent (eq 1).

RESULTS

Aza-Cope–Mannich Rearrangement of Oxazolidines **9** and **10** in Acetonitrile

2-Alkylamino-1-(1-phenylethenyl)cyclopentanols 7 and 8, which contain nitrogen substituents of widely differing size, were prepared from cyclopentene using a slight modification of our previously reported procedures.3 These intermediates were condensed with four representative aldehydes (acetaldehyde, isobutyraldehyde, cyclohexanecarboxaldehyde, and benzaldehyde) at 60-80 °C in the presence of Na₂SO₄ to form the corresponding oxazolidines 9 or 10 (Scheme 1). Yields were excellent with all four aldehydes when the amino alcohol component was 7 (Table 1). An acid scavenger (K_2CO_3) was employed in the preparation of 9a, since in its absence aza-Cope-Mannich rearrangement of this oxazolidine occurred at a rate competitive with its formation. In contrast, oxazolidines derived from amino alcohol 8 containing the bulky benzhydryl nitrogen protecting group were much more difficult to form. Cyclohexanecarboxaldehyde and isobutyraldehyde re-

Table 1. Formation of	oxazolidines	9a-d	and	10a-	·C
-----------------------	--------------	------	-----	------	----

Amino alcohol	R ² CHO	Rxn. conds.	Oxazolidine	Yield	
	MeCHO	60 °C, 30 min ^a	9a	94%	
7	i-PrCHO	80 °C, 36 h ^b	9b	92%	
7	C ₄ H ₁₁ CHO	80 °C, 5 d ^c	9c	87%	
7	PhCHO	80 °C, 48 h ^c	9d	95%	
8	MeCHO	80 °C, 24 h ^b	$10a^d$	92%	
8	i-PrCHO	80 °C, 9 d ^b	10b	83%	
8	C ₆ H ₁₁ CHO	80 °C, 10 d ^c	10c	23% ^e	
8	PhCHO	no reaction ^f			

^aNa₂SO₄ (1.5 equiv), K₂CO₃ (0.02 equiv), MeCHO (100 equiv). ^bNa₂SO₄ (1.5 equiv), RCHO (100 equiv). ^cNa₂SO₄ (1.5 equiv), PhMe (0.1M), RCHO (5 equiv). ^dIsolated as an inseparable mixture of diastereomers. ^c51% based on consumed **8**. No reaction with benzaldehyde, benzaldehyde dimethyl acetal, or *N*-benzylidenemethylamine.

Israel Journal of Chemistry 37 1997

a $R^2 = Me$, **b** $R^2 = iPr$, **c** $R^2 = C_6H_{11}$ (cyclohexyl), **d** $R^2 = Ph$

Scheme 1

acted only sluggishly with **8**, while benzaldehyde failed to condense with this amino alcohol under any of the conditions examined.

Oxazolidines 9 and 10 were produced as largely one stereoisomer (>90% by ¹H NMR analysis). In the case of 10a, where the reaction of 8 and acetaldehyde occurred readily, both stereoisomeric oxazolidines could be detected. When the condensation of 8 with acetaldehyde was terminated after 15 min at 90 °C, stereoisomers α -10a and β -10a were produced in a ratio of 1:8 α : β (eq 2). Allowing this reaction to take place for 24 h at 80 °C provided α -10a as the predominant stereoisomer (3:1 α : β). That the α stereoisomer was the thermodynamic product was confirmed by the nearly complete isomerization of β -10a $\rightarrow \alpha$ -10a when β -10a was exposed to a catalytic amount of trifluoroacetic acid at room temperature.8 The stereochemical assignments for α -10a and β -10a followed from ¹H nOe measurements, which are summarized in Fig. 3. Other oxazolidines for which only a single stereoisomer was detected at long reaction times are accordingly assigned the α stereochemistry.

Aza-Cope-Mannich rearrangements of oxazolidines **9a-d** and **10a-c** were carried out under identical conditions in the presence of 0.9 equiv of (\pm) -10camphorsulfonic acid (CSA) in acetonitrile (Scheme 1). After purification on silica gel, *cis*-octahydroindolones **11a-d** and **12a-c** were isolated in yields of 77-95% (Table 2). In each case, only a single stereoisomeric product could be detected by 500 MHz ¹H NMR analysis of the crude cyclization reaction mixture. We were able to establish by HPLC analysis that stereoselection in the formation of **12a** from benzhydryl precursor **10a** was extremely high (104:1), since the methyl epimer of this product was also available (*vide infra*). Aza-Cope-Mannich rearrangements of **10b** and **10c** were best conducted at room temperature since products **12b** and **12c**

Fig. 3. Representative ¹H nOe enhancements.

Amino alcohol	R ²	Rxn. Conds. ^a	Octahydroindolone	Yield	
9a	Me	60 °C, 24 h	11a	92%	
9b	<i>i-</i> Pr	60 °C, 24 h	11b	91%	
9c	C ₆ H ₁₁	60 °C, 36 h	11c	91%	
9đ	Ph	60 °C, 40 h	11d	95%	
10a	Me	60 °C, 40 h	12a	92%	
10b	<i>i-</i> Pr	23 °C, 3 d	12b	77 <i>%</i> *	
10c	C ₆ H ₁₁	23 °C, 12 d	12c	87%	

Table 2. Formation of cis-octahydroindolones 11a-d and 12a-c

^aMeCN (0.035 M), CSA (0.9 equiv). ^b97% based on consumed 10b.

Overman and Trenkle / Stereoselection in Aza-Cope-Mannich Reactions

Table 3. Diagnostic ¹H NMR data for *cis*-octahydroindolone products^a

compd	\mathbf{R}^{1}	R ²	Hª	H ^b	Hc	H ^d	R ¹
11a	Me	Me	b	2.77 (dd; 5.4, 12.8)	<i>b</i>	3.18 (s)	2.20(s)
11b	Me	<i>i</i> -Pr	2.20 (m)	2.95 (dd; 6.7, 13.3)	1.45 (dd; 10.1, 13.3)	3.14 (s)	2.15(s)
11c	Me	$C_{6}H_{11}$	2.35 (m)	2.99 (dd; 6.6, 13.2)	1.46 (dd; 10.4, 13.2)	3.12 (s)	2.15(s)
11d	Me	Ph	3.28 (dd; 6.4, 10.3)	3.13 (dd; 6.4, 13.2)	1.99 (dd; 10.4, 13.1)	3.33 (m)	2.08(s)
12a	$CHPh_2$	Me	3.36 (m)	3.05 (dd; 8.1, 13.0)	1.54 (dd; 6.0, 13.0)	4.13 (dd; 3.4, 6.6)	5.05 (s)
12b	$CHPh_2$	<i>i-</i> Pr	3.16 (ddd; 3.3, 6.9, 9.0)	2.74 (dd; 9.0, 13.3)	1.70 (dd; 6.9, 13.3)	4.28 (dd; 2.7, 7.4)	5.13 (s)
12c	CHPh ₂	$C_{6}H_{11}$	3.07 (m)	2.71 (dd; 9.4, 13.4)	ь	4.22 (m)	5.06 (s)
13	CHPh ₂	Me	2.93 (m)	2.65 (dd; 4.7, 12.8)	1.76 (dd; 9.9, 12.8)	3.77 (m)	5.13 (s)

^aHydrogen assignments are shown in Fig. 3; data are presented in the following format: δ ppm (multiplicity; J values in Hz). ^bSignals for these hydrogens were obscured by other signals.

suffered partial loss of the benzhydryl group when these reactions were carried out at 60 °C.

It was readily established that rearrangement of *N*methyl oxazolidines **9a–d** provided *cis*-octahydroindolones **11a–d** having the 2-substituent trans to the angular substituents, while *N*-benzhydryl analogs **10a–c** provided the all-cis products **12a–c**. Octahydroindolone **11a** had been prepared before and shown to have a trans relationship of the methyl and angular substituents.³ Single crystal X-ray analysis confirmed the all-cis stereochemistry of octahydroindolone **12b**. The stereostructure of the remaining *cis*-octahydroindolones was established by ¹H nOe measurements, after ¹H-¹H COSY experiments were employed to fully assign the ¹H NMR spectra.⁹ Representative nOe data are presented in Fig. 3, while ¹H NMR assignments are summarized in Table 3.

Independent Rearrangement of Oxazolidines α -10a and β -10a

Since oxazolidine 10a could be obtained enriched in either methyl epimer, we had the opportunity to explore whether or not oxazolidine stereochemistry influences the stereochemical outcome of the aza-Cope-Mannich rearrangement. When acetonitrile was employed as solvent, samples of **10a** enriched in either the α (3:1 α : β) or β epimer (1:8 α : β) provided exclusively (>100:1) cisoctahydroindolone 12a (Scheme 2). That this outcome arose from the α and β oxazolidine epimers interconverting more rapidly than they rearranged to 12a was suggested when the rearrangement of β -10a (1:3.6 α : β) was terminated after 2 h to give 50% of 12a and 46% of α -10a (>19:1 α : β). In contrast, when aza-Cope-Mannich rearrangements of 10a were carried out at 60 °C in trifluoroethanol, β -10a (1:3.5 α : β) provided 12a and its methyl epimer 13 in a 1.5:1 ratio, while α -**10a** (10:1 α : β) provided **12a** exclusively. Analysis of these results, and results of rearrangements of three additional epimeric mixtures (see Experimental Section), suggests that: (a) aza-Cope-Mannich rear-

Israel Journal of Chemistry 37 1997

Scheme 2

rangements of α -10a and β -10a in trifluoroethanol at 60 °C occur faster than oxazolidine equilibration, (b) epimer β -10a rearranges to 12a at twice the rate it is converted to 13, and (c) epimer α -10a rearranges to 12a exclusively.

DISCUSSION

This study demonstrates that the stereochemical outcome of aza-Cope–Mannich rearrangements of aldehyde-derived iminium ions can be controlled by the size of the substituent on nitrogen. As summarized in Scheme 3, when the nitrogen substituent is small (Me), the stereochemistry-determining [3,3]-sigmatropic rearrangement occurs preferentially through a transitionstate topography having the R² substituent oriented quasi-equatorially.³ However, when this substituent is large (CHPh₂), destabilizing steric interactions between the vicinal R¹ and R² substituents are sufficient to raise the energy of the $14 \rightarrow 15$ transition state such that rearrangement occurs preferentially through the alternate iminium ion stereoisomer: $17 \rightarrow 18 \rightarrow 19$.¹⁰

The disparate stereochemical outcome observed in aza-Cope-Mannich rearrangements of the epimers of

oxazolidine 10a in trifluoroethanol requires brief comment. Apparently in this non-nucleophilic protic solvent, [3,3]-sigmatropic rearrangement occurs at a rate comparable to the rate of interconversion of iminium ion stereoisomers. This being the case, a stereoelectronic preference for forming a specific iminium stereoisomer from an oxazolidine precursor would affect the stereochemical outcome of the aza-Cope-Mannich process. Fragmentation of an oxazolidine to an iminium cation requires an antiperiplanar orientation of the nitrogen non-bonded electron pair and the C–O σ -bond.¹⁰ We evaluated the relative energies of conformers of α and β -10a that would have the proper orientation for fragmentation by molecular mechanics calculations using the MM2* force field and fixing the dihedral angle between the nitrogen non-bonded electron pair and the C–O σ bond at 180 ± 5°.^{11,12} These calculations reveal that for oxazolidine α -10a, conformer A depicted in Fig. 4 (which would fragment to iminium ion 17, R^1 = CHPh₂, $R^2 = Me$) is favored by 6 kcal/mol over the lowest energy conformers having the correct orientation for fragmentation to the alternate iminium ion stereoisomer.¹³ Thus, rearrangement of this oxazolidine stereoisomer proceeds directly as observed along the $17 \rightarrow 18$ $\rightarrow 19$ pathway. On the other hand, the minimum energy conformations of oxazolidine β -10a that would lead to stereoisomeric iminium ions (Fig. 4, B and C) are close in energy. We propose that this oxazolidine epimer fragments to form both iminium ion stereoisomers, and in trifluoroethanol the rate of [3,3]-sigmatropic rearrangement is competitive with iminium ion interconversion, which results in the formation of both 12a and 13.

EXPERIMENTAL

rel-(2R,3aR,6aR)-Hexahydro-2,3-dimethyl-6a-(1-phenylethenyl)-2H-cyclopentoxazole (9a)

A mixture of acetaldehyde (7.8 mL, 140 mmol), 7 (302 mg, 1.39 mmol), Na₂SO₄ (300 mg, 2.1 mmol), and K₂CO₃ (38 mg, 0.28 mmol) was placed in a sealed tube and heated to 60 °C for 30 min. Upon cooling to rt, the mixture was filtered, the filtrate was concentrated, and the residue was purified by silica gel chromatography (sgc, 5% MeOH–CH₂Cl₂) to yield 317 mg (94%) of **9a** as a light yellow oil: ¹H (300 MHz, CDCl₃) δ 7.35–7.25 (m, 5 H), 5.43 (d, *J* = 1.3 Hz, 1 H), 5.09 (d, *J* = 1.3

Fig. 4. Conformations for iminium ion formation.

Overman and Trenkle / Stereoselection in Aza-Cope-Mannich Reactions

Hz, 1 H), 3.91 (q, J = 5.1 Hz, 1 H), 3.15 (d, J = 5.6 Hz, 1 H), 2.30 (s, 3 H), 2.00–1.80 (m, 2 H), 1.80–1.50 (m, 3 H), 1.45– 1.25 (m, 1 H), 1.2 (d, J = 5.1 Hz, 3 H); ¹³C (75 MHz, CDCl₃) δ 152.2, 141.4, 128.5, 127.8, 127.0, 113.3, 92.7, 91.6, 74.1, 39.9, 37.6, 33.3, 24.0, 18.7; IR (film) 1626 cm⁻¹; HRMS (CI, isobutane) m/z 244.1708 (244.1701 calcd for C₁₆H₂₂NO, MH).

rel-(2R,3aR,6aR)-Hexahydro-2-isopropyl-3-methyl-6a-(1phenylethenyl)-2H-cyclopentoxazole (9b).

General Procedure A

A mixture of amine **7** (75 mg, 0.35 mmol), isobutyraldehyde (2.0 mL, 22 mmol) and Na₂SO₄ (75 mg, 0.53 mmol) was maintained at 80 °C for 36 h in a sealed tube. The resulting mixture was cooled to rt, filtered through a cotton plug, and the filtrate was concentrated. Purification of the residue by sgc (9:1:0.1 hexane–EtOAc–Et₃N) gave 87 mg (92%) of **9b** as a light yellow oil: ¹H (300 MHz, CDCl₃) δ 7.35–7.20 (m, 5 H), 5.41 (d, *J* = 1.7 Hz, 1 H), 5.05 (d, *J* = 1.7 Hz, 1 H), 3.67 (d, *J* = 2.1 Hz, 1 H), 3.12 (d, *J* = 5.5 Hz, 1 H), 2.23 (s, 3 H), 2.00– 1.20 (m, 7 H), 0.97 (d, *J* = 7.0 Hz, 3 H), 0.94 (d, *J* = 6.8 Hz, 3 H); ¹³C (75 MHz, CDCl₃) δ 152.6, 141.6, 128.7, 127.7, 126.9, 113.0, 99.0, 92.0, 74.2, 39.5, 37.6, 33.5, 29.4, 24.2, 19.0, 14.2; IR (film) 1626 cm⁻¹; HRMS (CI, isobutane) *m*/z 272.2012 (272.2014 calcd for C₁₈H₂₆NO, MH).

rel-(2R, 3aR, 6aR)-Hexahydro-2-cyclohexyl-3-methyl-6a-(1phenylethenyl)-2H-cyclopentoxazole (9c). General Procedure B

A mixture of amine 7 (350 mg, 1.61 mmol), cyclohexanecarboxaldehyde, 980 µL, 8.0 mmol, 5.0 equiv), Na₂SO₄ (350 mg, 2.4 mmol, 1.5 equiv), and PhMe (8 mL) was heated at 80 °C for 5 d. After cooling to rt, the mixture was filtered through a cotton plug and the filtrate was concentrated to yield a light yellow oil. Purification of this residue by sgc (19:1:0.1 hexane–EtOAc–Et₃N) gave 434 mg (87%) of **9c** as a pale yellow oil: 'H (300 MHz, CDCl₃) δ 7.35–7.25 (m, 5 H), 5.40 (d, *J* = 1.7 Hz, 1 H), 5.04 (d, *J* = 1.8 Hz, 1 H), 3.65 (d, *J* = 2.0 Hz, 1 H), 3.11 (d, *J* = 5.5 Hz, 1 H), 2.24 (s, 3 H), 1.95–1.15 (m, 17 H); ¹³C (75 MHz, CDCl₃) δ 152.5, 141.6, 128.7, 127.7, 126.9, 113.0, 98.9, 92.2, 74.1, 39.7, 39.4, 37.9, 33.6, 29.8, 26.9, 26.8, 26.3, 25.0, 24.1; IR (film) 1626 cm⁻¹; HRMS (CI, isobutane) *m/z* 312.2329 (312.2327 calcd for C₂₁H₃₀NO, MH).

Other oxazolidines were prepared by either procedure A or B using reaction conditions described in Table 1.

rel-(2R, 3aR, 6aR)-Hexahydro-3-methyl-2-phenyl-6a-(1-phenylethenyl)-2H-cyclopentoxazole (9d)

95% (procedure A), a light yellow oil: ¹H (300 MHz, CDCl₃) δ 7.60–7.20 (m, 10 H), 5.5 (d, J = 1.3 Hz, 1 H), 5.14 (d, J = 1.2 Hz, 1 H), 4.64 (s, 1 H), 3.29 (d, J = 5.1 Hz, 1 H), 2.2–2.0 (m, 2 H), 2.19 (s, 3 H), 1.85–1.6 (m, 3 H), 1.5–1.3 (m, 1 H); ¹³C (75 MHz, CDCl₃) δ 151.8, 141.2, 138.4, 129.0, 128.5, 128.1, 127.9, 127.6, 126.9, 113.4, 96.7, 93.5, 73.3, 39.6, 36.6, 33.2, 24.2; IR (film) 1626 cm⁻¹; HRMS (CI, isobutane) m/z 306.1861 (306.1858 calcd for C₂₁H₂₄NO, MH). Anal. Calcd for C₂₁H₂₃NO: C, 82.58; H, 7.59; N, 4.59. Found: C, 82.35; H, 7.67; N, 4.56.

rel-(2R, 3aR, 6aR)-Hexahydro-3-diphenylmethyl-2-isopropyl-6a-(1-phenylethenyl)-2H-cyclopentoxazole (10b)

83% (procedure A, unconsumed **8** was recovered in 10%), a colorless oil: ¹H (300 MHz, CDCl₃) δ 7.40–7.10 (m, 15 H), 5.38 (s, 1 H), 5.15 (s, 1 H), 4.87 (s, 1 H), 4.30 (d, J = 1.4 Hz, 1 H), 3.65 (dd, J = 3.1, 8.0 Hz, 1 H), 2.10–0.85 (m, 7 H), 0.95 (d, J = 5.9 Hz, 3 H), 0.69 (d, J = 6.3 Hz, 3H); ¹³C (75 MHz, CDCl₃) δ 152.2, 143.8, 143.1, 141.3, 128.7, 128.6, 128.5, 128.3, 128.0, 127.7, 127.1, 126.9, 126.8, 113.8, 99.9, 92.8, 73.0, 69.7, 39.4, 35.1, 31.1, 24.1, 19.1, 14.5; IR (film) 1599 cm⁻¹; HRMS (CI, isobutane) *m/z* 424.2622 (424.2640 calcd for C₃₀H₃₄NO, MH).

rel-(2R, 3aR, 6aR)-Hexahydro-2-cyclohexyl-3-diphenyl-methyl-6a-(1-phenylethenyl)-2H-cyclopentoxazole (10c)

23% (procedure B, unconsumed **8** was recovered in 55%); colorless crystals (an analytical sample was obtained by recrystalization from hexanes–EtOAc, mp 108–110 °C): ¹H (300 MHz, CDCl₃) δ 7.50–7.00 (m, 15 H), 5.35 (d, *J* = 1.5 Hz, 1 H), 5.14 (d, *J* = 1.5 Hz, 1 H), 4.84 (s, 1 H), 4.26 (d, *J* = 3.0 Hz, 1 H), 3.63 (dd, *J* = 3.5, 8.1 Hz, 1 H), 3.30–0.50 (m, 17 H); ¹³C (75 MHz, CDCl₃) δ 152.2, 143.8, 143.2, 141.4, 128.7, 128.5, 128.4, 128.3, 128.0, 127.7, 127.1, 126.9, 126.7, 113.8, 99.6, 92.9, 73.2, 69.5, 41.3, 39.4, 35.1, 29.7, 26.7, 26.3, 25.2, 24.1; IR (film) 1598 cm⁻¹; HRMS (CI, isobutane) *m/z* 464.2955 (464.2953 calcd for C₃₃H₃₈NO, MH). Anal. Calcd for C₃₃H₃₇NO: C, 85.49; H, 8.04; N, 3.02. Found: C, 85.37; H, 8.07; N, 3.00.

rel-(2R, 3aR, 6aR)-Hexahydro-3-diphenylmethyl-2-methyl-6a-(1-phenylethenyl)-2H-cyclopentoxazole (α -10a) and rel-(2S, 3aR, 6aR)-Hexahydro-3-diphenylmethyl-2-methyl-6a-(1phenylethenyl)-2H-cyclopentoxazole (β -10a)

Following procedure A, a mixture of **8** (187 mg, 0.50 mmol), acetaldehyde (1.0 mL, 18 mmol), and Na₂SO₄ (110 mg, 0.75 mmol) was allowed to react at 80 °C for 1 d in a sealed tube to give 182 mg (92%) of a colorless oil, which 'H NMR analysis showed was a 3:1 ratio of the inseparable oxazolidines α -10a and β -10a.

Heating a mixture of 8 (249 mg, 0.670 mmol), acetaldehyde (1.5 mL, 27 mmol) and Na₂SO₄ (150 mg, 1 mmol) at 90 °C for 15 min in a sealed tube gave, after sgc (19:1:0.1 hexane-EtOAc-Et₃N), a light yellow oil that 'H NMR analysis showed to be a 1:8 mixture of oxazolidines α -10a and β -10a. NMR signals for the major isomer β -10a could be readily discerned from this mixture: ¹H (300 MHz, C_6D_6) δ 7.60–7.00 (m, 15 H), 5.69 (d, J = 2.0 Hz, 1 H), 5.17 (d, J = 2.0 Hz, 1 H), 4.69 (q, J = 5.4 Hz, 1 H), 4.55 (s, 1 H), 3.87 (dd, J =4.5, 7.9 Hz, 1 H), 2.10-1.95 (m, 1 H), 1.80-1.70 (m, 1 H), 1.65–1.55 (m, 2 H), 1.20–1.05 (m, 1 H), 1.00–0.90 (m, 1 H), 0.87 (d, J = 5.4 Hz, 3 H); ¹³C (75 MHz, C₆D₆) δ 154.0, 144.4, 144.2, 142.6, 129.2, 129.0, 128.8, 128.6, 128.5, 127.4, 127.2, 127.0, 113.9, 91.9, 91.7, 69.7, 69.2, 39.2, 30.2, 27.1, 24.7, 21.9; IR (film) 1599 cm⁻¹; HRMS (CI, isobutane) m/z 396.2324 (396.2327 calcd for C₂₈H₃₀NO, MH).

Treatment of this 1:8 mixture of α -10a and β -10a (950 mg, 2.4 mmol) with a catalytic amount of trifluoroacetic acid (~5 μ L) in CHCl₃ (90 mL) at rt for 24 h yielded 943 mg of a

Israel Journal of Chemistry 37 1997

>19:1 mixture of α -10a and β -10a, respectively, as a colorless oil: ¹H (500 MHz, C₆D₆) δ 7.40–6.90 (m, 15 H), 5.46 (d, J = 2.0 Hz, 1 H), 5.14 (d, J = 1.6 Hz, 1 H), 4.87 (s, 1 H), 4.71 (q, J = 5.2 Hz, 1 H), 3.71 (dd, J = 3.4, 8.2 Hz, 1 H), 2.15–2.05 (m, 1 H), 2.05–1.95 (m, 1 H), 1.85–1.75 (m, 1 H), 1.65–1.55 (m, 1 H), 1.45–1.35 (m, 1 H), 1.35–1.25 (m, 1 H), 1.10 (d, J =5.2 Hz, 3 H) ¹³C (75 MHz, CDCl₃) δ 152.4, 143.8, 143.1, 128.6, 128.5, 128.3, 128.2, 127.8, 127.1, 127.0, 126.8, 113.9, 93.5, 93.0, 72.7, 69.8, 39.1, 35.4, 23.8, 23.1.

rel-(2S,3aS,7aR)-Octahydro-1,2-dimethyl-3a-phenyl-4Hindol-4-one (11a). General Procedure for Aza-Cope-Mannich Rearrangements

A solution of oxazolidine **9a** (63 mg, 0.26 mmol, 1.0 equiv), (\pm)-10-camphorsulphonic acid (CSA, 54 mg, 0.23 mmol, 0.9 equiv), and MeCN (7.4 mL, 0.035M) was maintained at 60 °C for 24 h. After cooling to rt, CH₂Cl₂ and aqueous 1 M NaOH (20 mL each) were added, the layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3×20 mL). The combined organic layers were dried (K₂CO₃), concentrated and the residue was purified by sgc (9:1:0.1, hexane-EtOAc-Et₃N) to give 58 mg (92%) of **11a** as a colorless oil. This sample showed 'H and '³C NMR spectra that were indistinguishable from an authentic sample.⁴

rel-(2S,3aS,7aR)-Octahydro-2-isopropyl-1-methyl-3a-phenyl-4H-indol-4-one (11b)

90% as a colorless oil: ¹H (300 MHz, CDCl₃) δ 7.30–7.18 (m, 5 H), 3.14 (s, 1 H), 2.95 (dd, *J* = 6.7, 13.3 Hz, 2 H), 2.4–1.6 (m, 7 H), 2.15 (s, 3 H), 1.45 (dd, *J* = 10.1, 13.3 Hz, 1 H), 0.85 (d, *J* = 6.9 Hz, 3 H), 0.76 (d, *J* = 6.7 Hz, 3 H); ¹³C (75 MHz, CDCl₃) δ 209.8 141.5, 128.7, 126.5, 70.5, 69.5, 61.0, 40.0, 37.7, 34.9, 28.3, 23.6, 20.9, 19.9, 15.3; IR (film) 1705 cm⁻¹; HRMS (CI, isobutane) *m/z* 272.2018 (272.2014 calcd for C₁₈H₂₆NO, MH).

rel-(2S,3aS,7aR)-Octahydro-2-cyclohexyl-1-methyl-3a-phenyl-4H-indol-4-one (11c)

91% as a colorless oil: ¹H (300 MHz, CDCl₃) δ 7.35–7.15 (m, 5 H), 3.11 (s, 1 H), 2.97 (dd, J = 6.6, 13.2 Hz, 1 H), 2.35 (m, 1 H), 2.25–1.95 (m, 5 H), 2.15 (s, 3 H), 1.80–1.40 (m, 7H), 1.46 (dd, J = 10.4, 13.2 Hz, 1 H), 1.30–0.90 (m, 5 H); ¹³C (75 MHz, CDCl₃) δ 209.9, 141.5, 128.7, 126.5, 70.3, 69.0, 61.2, 40.0, 39.2, 37.8, 36.0, 30.7, 26.9, 26.3, 25.7, 23.5, 21.0; IR (film) 1705 cm⁻¹. Anal. Calcd for C₂₁H₂₉NO: C, 80.98; H, 9.38; N, 4.50. Found: C, 80.73; H, 9.51; N, 4.34.

rel-(2S,3aS,7aR)-Octahydro-1-methyl-2,3a-diphenyl-4Hindol-4-one (11d)

95% as a colorless oil: ¹H (300 MHz, CDCl₃) δ 7.40–7.15 (m, 10 H), 3.33 (s, 1 H), 3.28 (dd, J = 6.4, 10.3 Hz, 1 H), 3.13 (dd, J = 6.4, 13.2 Hz, 1 H), 2.50–2.05 (m, 5 H), 2.08 (s, 3 H), 1.99 (dd, J = 10.4, 13.1 Hz, 1 H), 1.85–1.75 (m, 1 H); ¹³C (75 MHz, CDCl₃) δ 209.8, 143.5, 140.9, 128.8, 128.2, 127.8, 126.9, 126.7, 126.4, 70.0, 69.3, 62.1, 43.1, 39.8, 37.4, 23.5, 21.5; IR (film) 1707 cm⁻¹; HRMS (CI, isobutane) m/z 306.1864 (306.1858 calcd for C₂₁H₂₄NO, MH).

rel-(2R, 3aS, 7aR)-Octahydro-1-diphenylmethyl-2-methyl-3a-phenyl-4H-indol-4-one (12a)

92% as a colorless oil: ¹H (300 MHz, CDCl₃) δ 7.50–7.10 (m, 15 H), 5.05 (s, 1 H), 4.13 (dd, *J* = 3.4, 6.6 Hz, 1 H), 3.36 (m, 1H), 3.05 (dd, *J* = 8.1, 13.0 Hz, 1 H), 2.35–2.20 (m, 2 H), 2.00–1.85 (m, 1 H), 1.80–1.65 (m, 1 H), 1.54 (dd, *J* = 6.0, 13.0 Hz, 1 H), 1.5–1.35 (m, 1 H), 1.25–1.10 (m, 1 H), 0.68 (d, *J* = 6.4 Hz, 3 H); ¹³C (75 MHz, CDCl₃) δ 211.9, 143.3, 142.9, 141.8, 129.3, 128.5, 128.3, 128.0, 127.8, 127.1, 126.8, 126.6, 126.5, 68.0, 66.0, 62.7, 53.9, 43.8, 38.3, 23.6, 21.3, 21.1; IR (film) 1706 cm⁻¹; HRMS (CI, isobutane) *m/z* 395.2251 (395.2249 calcd for C₂₈H₂₉NO, M).

rel-(2R,3aS,7aR)-Octahydro-1-diphenylmethyl-2-isopropyl-3a-phenyl-4H-indol-4-one (12b)

77% as colorless crystals (an analytical sample was obtained by recrystalization from hexanes–EtOAc, mp 147–148 °C) and 30 mg (21%) of recovered **10b**; **12b**: ¹H (300 MHz, CDCl₃) δ 7.50–7.45 (m, 2 H), 7.40–7.15 (m, 13 H), 5.13 (s, 1 H), 4.28 (dd, *J* = 2.7, 7.4 Hz, 1 H), 3.16 (ddd, *J* = 3.3, 6.9, 9.0 Hz, 1 H), 2.74 (dd, *J* = 9.0, 13.3 Hz, 1 H), 2.27 (m, 2 H), 2.00–1.85 (m, 1 H), 1.82–1.70 (m, 1 H), 1.70 (dd, *J* = 6.9, 13.3 Hz, 1 H), 1.40–1.25 (m, 2 H), 0.93–0.80 (m, 1 H), 0.57 (d, *J* = 6.6 Hz, 3 H), 0.52 (d, *J* = 6.9 Hz, 3 H); ¹³C (75 MHz, CDCl₃) δ 212.5, 143.5, 142.8, 141.3, 129.5, 128.5, 128.4, 128.0, 127.8, 127.3, 127.0, 126.7, 126.6, 68.0, 65.8, 63.5, 62.4, 37.7, 35.3, 27.7, 22.4, 20.8, 20.3, 15.5; IR (film) 1706 cm⁻¹; HRMS (CI) *m/z* 424.2645 (424.2640 calcd for C₃₀H₃₄NO, MH). Anal. Calcd for C₃₀H₃₃NO: C, 85.06; H, 7.85; N, 3.31. Found: C, 84.86; H, 7.88; N, 3.25.

rel-(2R, 3aS, 7aR) - Octahydro-2 - cyclohexyl-1 - diphenylmethyl-3a-phenyl-4H-indol-4-one (12c)

56% as a colorless oil: ¹H (300 MHz, CDCl₃) δ 7.50–7.10 (m, 15 H), 5.06 (s, 1 H), 4.22 (m, 1 H), 3.07 (m, 1 H), 2.71 (dd, *J* = 9.4, 13.4 Hz, 1 H), 2.30–2.20 (m, 2 H), 2.00–0.50 (m, 16 H); ¹³C (75 MHz, CDCl₃) δ 212.6, 143.6, 143.1, 141.5, 132.4, 130.1, 129.3, 128.4, 128.3, 128.1, 127.9, 127.2, 127.1, 126.7, 126.6, 68.7, 65.9, 63.7, 62.5, 39.1, 37.4, 36.6, 30.8, 26.8, 26.7, 26.0, 25.8, 21.8, 20.6; IR (film) 1706 cm⁻¹; HRMS (CI, isobutane) *m/z* 464.2972 (464.2953 calcd for C₃₃H₃₈NO, MH).

Aza-Cope-Mannich Rearrangement of Mixtures of Oxazolidines α -10a and β -10a in Trifluoroethanol. Isolation of rel-(2**R**,3a**S**,7a**R**)-Octahydro-1-diphenylmethyl-2-methyl-3a-phenyl-4H-indol-4-one (13)

A solution of oxazolidines α -10a and β -10a (1:8 ratio, 49 mg, 0.12 mmol), CSA (26 mg, 0.111 mmol) and trifluoroethanol (1.9 mL, 0.07 M) was maintained at 60 °C for 2 h, cooled to rt, and concentrated. The residue was taken up in CH₂Cl₂ (20 mL), extracted with aqueous 1 M NaOH (20 mL) and the aqueous layer was back-extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were dried (K₂CO₃), concentrated, and the residue was purified by sgc (9:1:0.1 hexane–EtOAc–Et₃N) to give 43 mg (88%) of a 1:2.5 mixture of 12a and 13 as a colorless oil. Isomer 13 could be isolated in pure form by repeated sgc (19:1:0.1,

Overman and Trenkle / Stereoselection in Aza-Cope-Mannich Reactions

hexane–EtOAc–Et₃N): ¹H (300 MHz, CDCl₃) δ 7.50–7.10 (m, 15 H), 5.13 (s, 1 H), 3.77 (m, 1 H), 3.00–2.85 (m, 1H), 2.65 (dd, *J* = 4.7, 12.8 Hz, 1 H), 2.50–2.00 (m, 5 H), 1.76 (dd, *J* = 9.9, 12.8 Hz, 1 H), 1.70–1.60 (m, 1 H), 0.89 (d, *J* = 6.3 Hz, 3 H); ¹³C (75 MHz, CDCl₃) δ 211.4, 142.2, 141.2, 139.0, 129.8, 128.8, 128.7, 128.0, 127.8, 127.1, 126.7, 126.6, 67.5, 66.0, 61.7, 53.1, 42.0, 39.3, 25.2, 22.9, 21.6; HRMS (CI) *m/z* 396.2315 (396.2327 calcd for C₂₈H₁₀NO, MH).

Using identical conditions, a series of mixtures of oxazolidines α -10a and β -10a were submitted to cyclization in trifluoroethanol. It was found that cyclization of 1:3, 1:1, and 3.6:1 ratios of α -10a and β -10a gave 12a and 13 in 3:1, 6:1, and 12.5:1 ratios, respectively.

Hydrogenolysis of 13 (NH₄HCO₂, Pd/C, DMF at 60 °C) gave 4 as a pale yellow oil that showed ¹H spectra indistinguishable from an authentic sample.⁴

CONCLUSION

The stereochemical outcome of aza-Cope–Mannich rearrangements of aldehyde-derived iminium ions can be controlled by the size of the substituent on nitrogen, a demonstration that expands the range of heterocycles that can be prepared in this way. These examples further confirm that the stereochemical outcome of iminium ion transformations can be modulated by proper tuning of the geometry of the iminium ion component.⁷ This strategy should find many other applications in stereocontrolled synthesis of nitrogen heterocycles.

Acknowledgments. This research was supported by National Science Foundation grant CHE-9412266. W.C.T. was supported in part by a GAANN grant from the Department of Education and a predoctoral fellowship from Abbott Laboratories. NMR and mass spectra were determined using instruments acquired with the assistance of Shared Instrumentation grants from NSF and NIH. We thank Dr. John Greaves for assistance with mass spectral analyses and Dr. Joe Ziller for the X-ray analysis of **12b**.

REFERENCES AND NOTES

- For brief reviews, see: (a) Overman, L.E. Acc. Chem. Res. 1992, 25, 352. (b) Overman, L.E. Aldrichem. Acta 1995, 28, 107.
- (2) Overman, L.E.; Kakimoto, M.; Okazaki, M.E.; Meier, G.P. J. Am. Chem. Soc. 1983, 105, 6622.
- (3) Overman, L.E.; Mendelson, L.T.; Jacobsen, E.J. J. Am. Chem. Soc. 1983, 105, 6629.
- (4) Overman, L.E.; Sworin, M.; Burk, R.M. J. Org. Chem. 1983, 48, 2685.
- (5) Knight, S.D.; Overman, L.E.; Pairaudeau, G. J. Am. Chem. Soc. 1993, 115, 9293.
- (6) Hong, C.Y.; Kado, N.; Overman, L.E. J. Am. Chem. Soc. 1993, 115, 11028.
- (7) Heerding, D.A.; Hong, C.Y.; Kado, N.; Look, G.C.; Overman, L.E. J. Org. Chem. 1993, 58, 6947.
- (8) The thermodynamic orientation minimizes steric interactions between the 2-substituent and the angular styrene group (see Fig. 4).
- (9) These data will be included in the forthcoming Ph.D. Dissertation of W.C. Trenkle.
- (10) For a discussion of the interconversion of iminium ion stereoisomers in aza-Cope-Mannich processes, see: Deng, W.; Overman, L.E. J. Am. Chem. Soc. 1994, 116, 11241.
- (11) Calculations employed the Monte Carlo search routine of MacroModel V3.5X¹² with both nitrogen stereoisomers for each diastereomer as inputs.
- (12) (a) Mohamadi, F.; Richards, N.G.J.; Guida, W.C.; Liskamp, R.; Lipton, M.; Caulfield, C.; Chang, G.; Hendrickson, T.; Still, W.C. J. Comput. Chem. 1990, 11, 440.(b) Chang, G.; Guida, W.C.; Still, W.C. J. Am. Chem. Soc. 1989, 111, 4379. (c) Saunders, M.; Houk, K.N.; Wu, Y.-D.; Still, W.C.; Lipton, M.; Chang, G.; Guida, W. C. J. Am. Chem. Soc. 1990, 112, 1419.
- (13) The lowest energy oxazolidine conformers (not shown in Fig. 4) that would fragment to iminium ion stereoisomer 17 have the methyl substituent and the bulky benzhydryl group on the concave face of the bicyclooctane ring system.