> Carbene Complexes. Part 9.1 Electron-rich Olefin-derived Carbenemolybdenum(o) and Amidinium Molybdate(o) Complexes, and the Crystal and Molecular structure of cis-Tetracarbonylbis(1,3-dimethylimidazolidin-2-ylidene)molybdenum(0), cis-[Mo(CO)₄{CN(Me)CH₂CH₂NMe}₂] †

> By Michael F. Lappert and Peter L. Pye, School of Molecular Sciences, University of Sussex, Brighton **BN1 9QJ**

George M. McLaughlin, Research School of Chemistry, The Australian National University, Canberra, A.C.T. 2600

Carbene-Mo^o complexes are obtained by the thermal reaction of an electron-rich olefin ∉ CN(R)CH₂CH₂NR]₂, L^{R}_{2} , with (a) [Mo(CO)₆] {yielding [Mo(CO)₅L^R] or cis-[Mo(CO)₄(L^R)₂] (R = Me, Et, or PhCH₂) (the tricarbene complex is unstable), and (b) [Mo(CO) $_3$ (C $_5$ H $_5$ - η)MO] (yielding [Mo(CO)(C $_5$ H $_5$ - η)(L^R)NO] (R = Me or ρ -tol). By contrast, with [Mo(CO) $_3$ (C $_5$ H $_5$ - η)H] or [{Mo(CO) $_3$ (C $_5$ H $_5$ - η)} $_2$], the olefin reacts as a reducing agent, yielding the amidinium molybdate(o) complexes [HL^R]+[Mo(CO) $_3$ (C $_5$ H $_5$ - η)] $_2$ or [L^R $_2$] $_2$ +[Mo(CO) $_3$ (C $_5$ H $_5$ - η)] $_2$

(R = Me). The six-membered chelate olefin $\{E \in C\dot{N}(Me)(CH_2)_3\dot{N}Me\}_2$, E'^{Me}_2 , behaves qualitatively in a similar fashion, but is less reactive, dicarbene-Moo complexes not being accessible. The cis-dicarbene-Moo complexes are isomerised photochemically to the trans-complexes, but the former are thermodynamically the more stable. Reaction of $[Mo(CO)_5L^{Et}]$ with L^{Me}_2 yields cis- $[Mo(CO)_4(L^{Et})(L^{Me})]$, whereas $[Mo(CO)_5L^{Me}]$ with L^{Et}_2 affords also cis- $[Mo(CO)_4(L^{Me})_2]$ and cis- $[Mo(CO)_4(L^{Et})_2]$. The redistribution reaction cis- $[Mo(CO)_4(L^{Re})_2]$ and cis- $[Mo(CO)_4(L^{Et})_2]$. The redistribution reaction cis- $[Mo(CO)_4(L^{Re})_2]$ + $[Mo(CO)_6] \rightleftharpoons 2[Mo(CO)_5L^{Re}]$ (R = Me or Et) is reversible. Other reactions of monocarbene complexes give cis- $[Mo(CO)_4(L^{Re})_2]$ [Q = $\{P(OMe)_3\}_2$ or diphos], or cis- $[Mo(CO)_4\{C(OMe)Me\}L^{Re}]$. $v(CN_2)$ is at 1 510—1 480 cm⁻¹ for the carbene–Mo^o complexes, but at 1 700—1 640 cm⁻¹ for the amidinium carbon, and v(CO) values are very low; ${}^{1}H$ n.m.r. spectra provide ${}^{1}H$ n.m.r. spectra provide information on conformational aspects; ΔG^{\ddagger} for Mo-C_{carb} rotation in cis-[Mo(CO)₄(L^R)₂] is ca. 10 kcal mol⁻¹. ¹³C Chemical shifts for C_{carb} and CO are comparable (but are distinguished by ¹H decoupling and ¹H off-resonance studies). Both are in the range 230—210 p.p.m. upfield from SiMe₄, whereas for [HLMe]+ or [LMe₂]²⁺ there is a further 50—60 p.p.m. upfield shift for $\delta[C_{carbonlum\ ion}]$. A single-crystal X-ray analysis of (4) cis-[Mo(CO)₄-(L^{Me}), shows octahedral Mo, with Mo-CO mutually-trans bond lengths longer by 0.048(2) Å than Mo-CO trans to carbene [2.024(3) and 2.032(3) Å]; Mo-C_{carb} [2.293(3) Å] is appropriate for single bonds. The dihedral angles between the carbene ligand planes and the co-ordination planes in which they are involved are ca. 45°, which is sterically the preferred conformation. It is concluded that the carbene ligand is a strong σ-donor but a poor π -acceptor.

Earlier parts 1 of this series have shown the electronrich olefins $\{CN(R)CH_2CH_2NR\}_2$, L^R_2 (R = alkyl or aryl) to be convenient organic precursors to carbenetransition-metal complexes, especially with the platinumgroup metals; 2,3 the N-alkyl olefins (R = Me or Et) have been found to be very much more reactive than the aryl (Ph or p-tolyl) analogues in this respect.⁴ The carbene ligand CN(R)CH2CH2NR, (LR), has been incorporated via neutral or anionic ligand displacement or halide-bridge cleavage reactions, and both the synthetic procedures and the general stability of the carbene-

Accordingly, we have investigated the reactions of L^R₂ with the Group 6 metal hexacarbonyls, known precursors to stable mono-,5 bis-,6 and tris-PPh3derivatives,7 and here we describe the ready synthesis and spectroscopic properties of non-labile mono- and bis-carbenemolybdenum(0) complexes, their reactions with neutral ligands, and the accurate crystal structure

of cis-[Mo(CO)₄ (CN(Me)CH₂CH₂NMe)₂], abbreviated as cis-[Mo(CO)₄(LMe)₂]. The new complexes are included in Table 1.

metal complexes resemble those of their triphenylphosphine (PPh₃) analogues.^{1,3}

[†] No reprints available.

¹ Part 8, B. Çetinkaya, P. Dixneuf, and M. F. Lappert,

J.C.S. Dalton, 1974, 1827.

² D. J. Cardin, B. Çetinkaya, E. Çetinkaya, and M. F. Lappert, I.C.S. Dalton, 1973, 514.

M. F. Lappert, J. Organometallic Chem., 1975, 100, 139 and refs. therein.

⁴ P. L. Pye, unpublished observations and D.Phil. Thesis, University of Sussex, 1976.

T. A. Magee, C. N. Matthews, T. S. Wang, and J. H. Wotiz,

J. Amer. Chem. Soc., 1961, 83, 3200.
 W. Hieber and J. Peterhans, Z. Naturforsch., 1959, 14b, 462.

⁷ E. W. Abel, M. A. Bennett, and G. Wilkinson, J. Chem. Soc., 1959, 2323.

type carbene ligand [e.g. C(OMe)Ph or C(NMe2)Me], are using an excess of the olefin. (The ease of synthesis

Generally $[Mo(CO)_5L]$ complexes, where L=a Fischerplexes (4) and (5) are formed similarly (Scheme 1), but

$$\begin{bmatrix} \mathsf{Mo}(\mathsf{CO})_3(\mathsf{C}_5\mathsf{H}_5-\eta) \end{bmatrix}^- \\ (19) \ \mathsf{R} = \mathsf{Me} \\ \\ [\mathsf{Mo}(\mathsf{CO})_3(\mathsf{C}_5\mathsf{H}_5-\eta)\mathsf{H}] \\ \\ (1) \ \mathsf{R} = \mathsf{Me} \\ \\ (2) \ \mathsf{R} = \mathsf{Et} \\ \\ (3) \ \mathsf{R} = \mathsf{PhCH}_2 \\ \\ \\ \mathsf{b} \ \mathsf{LR}_2 \\ \\ \mathsf{cis} - \big[\mathsf{Mo}(\mathsf{CO})_4(\mathsf{LR})_2 \big] \\ \\ \\ \mathsf{cis} - \big[\mathsf{Mo}(\mathsf{CO})_4(\mathsf{LR})_2 \big] \\ \\ \\ \mathsf{cis} - \big[\mathsf{Mo}(\mathsf{CO})_4(\mathsf{LR})_2 \big] \\ \\ \\ \mathsf{cis} - \mathsf{Mo}(\mathsf{CO})_4(\mathsf{LR})_2 \big] \\ \\ \mathsf{cis} - \mathsf{Mo}(\mathsf{CO})_4(\mathsf{LR})_2 \big] \\ \\ \\ \mathsf{cis} - \mathsf{Mo}(\mathsf{CO})_4(\mathsf{LR})_2$$

SCHEME 1 Molybdenum(0) complexes derived from ${\rm \colored{torus}\colored{conj}\color$

labile, whereas $[Mo(CO)_5L^R]$ (R = Me, Et, or PhCH₂), (1)—(3) (Table 1), are oxygen- and thermally-stable crystalline solids, being formed in good yield simply by

clearly makes this a much more versatile route than those involving dihydrogen or salt elimination 9,10 with, or without, accompanying thermolysis.¹¹) Substitution

TABLE 1 Electron-rich olefin-derived carbenemolybdenum(0) and amidinium molybdate(0) complexes and their characterisation a

		Yield			Found	l (Required)	(%)
Compound	No.	(%)	M.p. $(\theta_c/^{\circ}C)$	Colour	\overline{c}	H	N
[Mo(CO) ₅ LMe]	(1)	70	108109	White	35.9 (36.0)	3.3 (3.0)	8.4 (8.4)
[Mo(CO) ₅ LEt]	$(\mathbf{\bar{2}})$	75	93	White	39.2 (39.8)	3.9 (3.9)	7.7 (7.7)
[Mo(CO) ₅ L ^{CH} ₂ Ph]	(3)	65	150	White	54.1 (54.3)	3.6 (3.7)	5.8 (5.8)
cis-[Mo(CO) ₄ (LMe) ₂]	(4)	100	274	Pale yellow	41.4 (41.6)	5.2 (5.0)	13.8 (13.8)
723	()		(decomp.)	J	()	()	
$cis-[Mo(CO)_4(L^{Et})_2]$	(5)	100	186 - 187	Pale yellow	46.7 (46.9)	6.4(6.1)	12.2 (12.2)
cis -[Mo(CO) $_{4}$ (LCH $_{2}^{\mathbf{Ph}}$) ₂]	` '	70	$\boldsymbol{224}$	Pale yellow	64.1 (64.4)	5.3 (5.1)	8.0 (7.9)
$trans-[Mo(CO)_4(L^{Me})_2]$	(6)	60	b	Orange	41.6 (41.6)	$5.2\ (5.0)$	13.8 (13.8)
$trans-[Mo(CO)_4(L^{Et})_2]$	(7)	50	b	Orange-red	46.9(46.9)	6.3(6.1)	$12.0\ (12.2)$
$[Mo(CO)_5L'^{Me}]$	(8)	15	101	Cream	37.3 (37.9)	3.6 (3.5)	8.1 (8.1)
cis-[Mo(ČO) ₄ (C(OMe)Me)L ^{Me}]	(13)	50	90 - 91	Scarlet	39.4 (39.5)	4.8 (4.4)	7.7 (7.7)
cis-[Mo(CO) ₄ (LMe)(PPh ₃)]	(14)	70	196	Pale yellow	57.5 (57.2)	4.6 (4.4)	5.1(4.9)
$cis-[Mo(CO)_4(LEt)\{P(C_6H_{11})_3\}]$	(15)	80	190 - 195	Cream	56.5 (56.6)	7.5 (7.7)	4.5(4.6)
. , , , , , , , , , , , , , , , , , , ,	` .		(decomp.)		•	` '	, ,
cis-[Mo(CO) ₄ (LMe)(C ₅ H ₅ N)]	(16)	60	145	Bright yellow	43.9 (43.7)	4.0(3.9)	11.1 (10.9)
. , , , , , , , , , , , , , , , , , , ,	, ,		(decomp.)	•	, ,	, ,	` '
$fac-[Mo(CO)_3(L^{Et})(diphos)]$	(17)	80	238 - 240	Pale yellow	61.4 (61.3)	5.5(5.4)	4.0 (4.0)
$fac-[Mo(CO)_3(L^{Et})\{P(OMe)_3\}_2]$	(18)	90	173	White	35.0 (34.7)	$6.1\ (5.8)$	5.2(5.1)
$[Mo(CO)(C_5H_5-\eta)(L^{Me})(NO)]$	(9)	95	163	Crimson-red	41.8 (41.7)	4.9(4.8)	13.3 (13.2)
cis-[Mo(CO) ₄ (LEt)(LMe)]	(12)	60	163	Pale yellow	44.5 (44.5)	5.6 (5.6)	12.9 (12.9)
$[Mo(CO)(C_5H_5-\eta)(L^{p-tolyl})(NO)]$	(10)	80	134 - 140	Brick-red	58.8 (58.8)	5.1(4.9)	8.9 (8.9)
			(decomp.)				
$[Mo(CO)(C_5H_5-\eta)(L'^{Me})(NO)]$	(11)	75	120	Crimson	43.2(43.5)	5.2 (5.2)	12.4 (12.7)
			(decomp.)				
$[HL^{Me}]^{+}[Mo(CO)_{3}(C_{5}H_{5}-\eta)]^{-}$	(19)	90	145 - 146	Yellow	45.3 (45.3)	4.7 (4.7)	8.1 (8.1)
$[{ m L^{Me}}_2]^{2+}[{ m Mo(CO)}_3({ m C}_5{ m H}_5$ - $\eta)]^{-}_2$	(20)	65	198204	Red-brown	45.2 (45.5)	4.5 (4.4)	8.2 (8.2)
			(decomp.)				
$[\mathrm{HL'^{Me}}]^+[\mathrm{Mo(CO)_3(C_5H_5-\eta)}]^-$	(21)	90	112	Yellow	46.9 (46.9)	5.0 (5.0)	7.8 (7.8)
			(decomp.)		-		
$[L'^{Me}_{2}]^{2+}[Mo(CO)_{3}(C_{5}H_{5}-\eta)]^{-}_{2}$	(22)	80	176	Yellow-orange	46.8 (47.0)	4.7 (4.8)	7.8 (7.8)
			$({ m decomp.})$				

 $^aL^R = :CN(R)CH_2CH_2NR$ (R = Me, Et, PhCH₂, or p-tolyl), $L'^{Me} = :CN(Me)(CH_2)_2NMe$. b Isomerises to the cis-isomer, 140— 160 °C.

refluxing a small excess of [Mo(CO)₆] with L^R₂ (R = alkyl) in C₆H₁₁Me (Scheme 1). The cis-dicarbene com-

results.

of CO was found to be a far better route than replacement of norbornadiene (nbdn) or acetonitrile from $[Mo(CO)_4(nbdn)]$ or $cis-[Mo(CO)_4(MeCN)_2]$ respectively.

E. O. Fischer and A. Maasböl, Chem. Ber., 1967, 100, 2445.
 K. Öfele and M. Herberhold, Z. Naturforsch., 1973, 28, 306.
 A. J. Hartshorn, M. F. Lappert, and K. Turner, unpublished

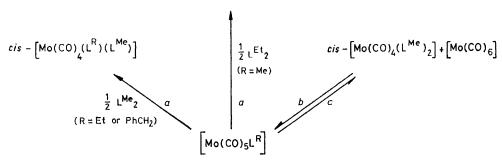
¹¹ C. G. Kreiter, K. Öfele, and G. W. Wieser, Chem. Ber., 1976, 109, 1749.

Use of these precursors only afforded relatively low yields of product and the reactions were not clean. Attempts to synthesise a tricarbene complex via direct reaction of L^{Me}_{2} with $[Mo(CO)_{6}]$ thermally $(t > 150 \, ^{\circ}C)_{7}$ photochemically, or via displacement of cycloheptatriene

N-substituents from alkyl to aryl, or (ii) its conformation. Thus, (i), L_{2}^{R} when R = aryl has proved totallyunreactive towards both [Mo(CO)₆] and [Mo(CO)₄(nbdn)];

and (ii) the related olefins $\{CN(Me)CH_2CH_2CH_2NMe\}_2$

$$\begin{bmatrix} M_{0}(CO)_{5}L^{\prime}^{Me} \\ (8) \end{bmatrix}^{+} \begin{bmatrix} M_{0}(CO)_{3}(C_{5}H_{5}-\hbar) \end{bmatrix}^{-} \\ (8) \end{bmatrix}^{-} \begin{bmatrix} M_{0}(CO)_{3}(C_{5}H_{5}-\hbar) \end{bmatrix}^{-} \\ M_{0}(CO)_{3}(C_{5}H_{5}-\hbar) \end{bmatrix}^{-} \\ M_{0}(CO)_{2}(C_{5}H_{5}-\hbar)(NO) \end{bmatrix}^{-} \\ M_{0}(CO)_{2}(C_{5}H_{5}-\hbar)(NO)(L^{\prime}^{Me}) \end{bmatrix}^{-} \\ M_{0}(CO)_{2}(C_{5}H_{5}-\hbar)(NO)(L^{\prime}^{Me}) \end{bmatrix}^{-} \\ M_{0}(CO)_{2}(C_{5}H_{5}-\hbar)(NO)(L^{\prime}^{Me}) \end{bmatrix}^{-} \\ M_{0}(CO)_{3}(C_{5}H_{5}-\hbar) \\ M$$


Scheme 2 Molybdenum(0) complexes derived from $\frac{1}{4}$ CN(Me)CH₂CH₂CH₂NMe]₂ (L'Me₂) ^a Decalin, 140—160 °C. ^b Xylene, 120 °C. ^c Acetone, 25 °C. ^d Hexane, 25 °C

(cht) from [Mo(CO)₃(cht)], were unsuccessful, only (4) being identified. There was i.r. evidence [v(CO)] for its formation from $[Mo(CO)_3(mesitylene-\eta)]$ in the absence of solvent at 40 °C, though a pure sample was not isolated. In solution, ready decomposition to (4) occurred; corresponding complexes $[Mo(CO)_3Q_3]$ (Q = PPh₃ ¹² or MeCN ¹³) are somewhat more stable, but also decompose in solution.

The trans-dicarbene complexes (6) and (7) have been

 L'^{Me}_{2} and $\{C(NMe_{2})_{2}\}_{2}$ (tdae) are far less reactive: L'^{Me}_{2} affords the monocarbene complex (8) (Scheme 2) only under forcing conditions, but no carbene metal complexes derived from tdae have been observed.4 Nevertheless L^{Me}₂, L'Me₂, and tdae (but not L^{aryl}₂) all form Mo⁰ heteroatom donor complexes. ¹⁴ The complex $[Mo(CO)_2(C_5H_{5}-\eta)(NO)]$ proved reactive to L^R_2 (both for R = Me and most surprisingly R = p-tolyl) and L'Me₂ (Scheme 1) affording moderately stable

$$cis - \left[Mo(CO)_4(L^{Et})_2\right] + cis - \left[Mo(CO)_4(L^{Et})(L^{Me})\right] + cis - \left[Mo(CO)_4(L^{Me})_2\right]$$

Scheme 3 Some reactions of [Mo(CO)₅L^R] (R = Me, Et, or PhCH₂) with and without the electron-rich olefins L^R₂ (R = Me or Et) ^a C₆H₁₁Me, 85—90 °C. ^b C₆H₁₁Me, 100 °C. ^c Decalin, 160—180 °C.

prepared photochemically from the cis-isomers (4) and (5) in acetone, but readily and quantitatively reverted to (4) or (5) in solution. (In CHCl₃ at 30 °C, 100% conversion was achieved in 1 h, whereas in the solid state, heating to ca. 140—160 °C was required.)

It is interesting to note the remarkable difference in reactivity of the electron-rich olefin by changing (i) its

¹⁴ B. Çetinkaya, P. B. Hitchcock, M. F. Lappert, and P. L.

Pye, J.C.S. Chem. Comm., 1975, 683.

15 H. Brunner, J. Organometallic Chem., 1969, 16, 119.

crystalline monocarbene compounds (9)—(11). However, even with L^{Me}₂ only one carbonyl ligand could be displaced thermally, a further similarity to PPh₃ chemistry.¹⁵ A Fischer-type carbene analogue has been mentioned 16 and has been used as a 'carbene transfer' reagent.17,18 We have not investigated this type of reaction with our complexes since L_{2}^{R} (R = alkyl) has proved 4 a satisfactory precursor to carbene complexes

<sup>J. Lewis and R. Whyman, J. Chem. Soc. (A), 1967, 77.
J. M. Graham and M. Kilner, J. Organometallic Chem., 1974,</sup> 77, 247.

¹⁶ H. J. Beck, Dissertation, Technische Hochschule, München,

<sup>1970.

17</sup> E. O. Fischer and H. J. Beck, Angew. Chem. Internat. Edn., 1970, 9, 72.

¹⁸ E. O. Fischer, Rev. Pure Appl. Chem., 1970, 24, 407

of metals not directly available via the original Fischer technique 19 (e.g. Fe 0 or Ni 0). Reaction of [Mo(CO)₅L^{Et}], (2), with L^{Me}₂ at 80 °C in C₆H₁₁Me afforded mainly the mixed dicarbene complex (12), but under more vigorous conditions scrambling was found to occur. Likewise, the related equilibrium between [Mo(CO)₆] and cis-[Mo(CO)₄(L^{Me})₂], (4), gave a low yield of [Mo(CO)₅L^{Me}], (1), although at a lower temperature the equilibrium was almost entirely in favour of the reactants, probably because of the almost total insolubility of (4) under

displacement of L^R, is reflected in the range of reactions of [Mo(CO)₅L^R], (1) or (2) (Scheme 4); thus the stable mixed cis-dicarbene complex (13) containing the [:C(OMe)Me] ligand may be prepared via the basic Fischer synthesis upon (1) (but utilising MeOSO₂F as the alkylating reagent 21), whereas the reverse procedure, $[Mo(CO)_5\{C(OMe)Me\}] + L^{Me}_2$, causes displacement of the ethylidene moiety. Pyridine, tertiary phosphites, or mono- or bi-dentate tertiary phosphine ligands may also be introduced thermally or photochemically with-

$$fac - \left[M_{O}(CO)_{3}(L^{R})P_{2}\right] \xrightarrow{P} \left[M_{O}(CO)_{5}L^{R}\right] \xrightarrow{(d) \text{ or } (e)} cis - \left[M_{O}(CO)_{4}(L^{R})Q\right]$$

$$(18) R = Et, P_{2} = diphos^{b}$$

$$(14) R = Me, Q = PPh_{3}^{c, d}$$

$$(15) R = Et, P = P(OMe)_{3}^{d}$$

$$(16) R = Me, Q = C_{5}H_{5}N^{c, d}$$

$$(15) R = Et, Q = P(C_{6}H_{11})_{3}^{a, d}$$

$$(13) R = Me, Q = C(OMe) Me^{e}$$

Scheme 4 Some reactions of $[Mo(CO)_5L^R]$ [R = Me or Et]

h, hexane, 25°C. h, toluene, 25°C. C₈H₁₁Me, 100°C. d Addition of Q. (i) LiMe in Et₂O, 0°C; (ii) MeOSO₂F in Et₂O-H₂O, 0—10 °C.

these conditions (Scheme 3). {Similar disproportionation, or cis-trans isomerisation reactions, have been reported by Öfele, Herberhold, Kreiter, and Wieser 9,11,20 on some closely related carbene-Group 6 metal com- $[Mo(CO)_5L] \longrightarrow cis-[Mo(CO)_4L_2] \Longrightarrow trans$ plexes,

 $[Mo(CO)_4L_2]$; $L = \dot{C}N(Me)CH=CH\dot{N}Me.$ The involvement of a free carbene or its dimer, the electron-rich olefin, in these reactions has not yet been established, but investigation of the presently unknown [Mo(CO)₅- $\{C(NMe_2)_2\}$ may resolve the problem. The Cr analogue

$$\begin{bmatrix} Me & Me & Me \\ N & N & N \end{bmatrix}^{2+} \qquad \begin{bmatrix} Me & Me & N & N \\ N & N & N & N \end{bmatrix}^{2+}$$

$$(23) , \begin{bmatrix} L^{Me} \\ 2 \end{bmatrix}^{2+} \qquad (24) , \begin{bmatrix} L^{\prime Me} \\ 2 \end{bmatrix}^{2+}$$

$$\begin{bmatrix} Me_2N & NMe_2 \\ NMe_2N & NMe_2 \end{bmatrix}^{2+}$$

$$(25) [tdae]^{2+}$$

is known 10 and its properties are almost identical to those of $[Cr(CO)_{5}\{\dot{C}N(Me)CH_{2}CH_{2}\dot{N}Me\}]$, but the corresponding olefin $\{C(NMe_2)_2\}_2$, tdae, is not a carbenemetal complex precursor; thus if the thermolysis experiment should afford the dicarbene species, tdae itself is most unlikely to have been involved.

The strength of the Mo-C_{carb.} bond, or the resistance to

N. Farrell, D.Phil. Thesis, University of Sussex, 1974.

out displacement of L^R from the co-ordination sphere. With PPh₃ or $P(C_6H_{11})_3$, only one CO ligand is displaced, but with the stronger π -acceptor P(OMe)₃, ready elimination of two CO groups occurs, as is also observed with the chelating diphos ligand.

Pyridine, which readily displaces [:C(OMe)Me] from [Cr(CO)₅{C(OMe)Me}],²² effects CO displacement from [Mo(CO)₅L^{Me}], (1). The reactions of the monocarbenemolybdenum complexes (1) and (2) therefore resemble

$$\begin{bmatrix} \bigwedge_{N}^{Me} \\ \bigoplus_{He}^{N} \end{bmatrix}^{+} \begin{bmatrix} HL^{Me} \end{bmatrix}^{+} \begin{bmatrix} \bigoplus_{N}^{Me} \\ Me \end{bmatrix}^{+} \begin{bmatrix} HL'^{Me} \end{bmatrix}^{+}$$
(26)
(27)

their tertiary phosphine, rather than their Fischercarbene analogues, although the latter can also afford mixed carbene-phosphine complexes under mild conditions.23

Although their availability as carbenemetal complex precursors is very different, LMe2, L'Me2, and tdae behave similarly in their reducing capacity,24 showing the highest occupied molecular orbital at the remarkably low, first vertical-ionisation potential of ca. 6 eV, 25 and readily form the stable dications (23)—(25). Some reactions of tdae have been described by King,26 but that involving $[\{Mo(CO)_3(C_5H_5-\eta)\}_2]$ {forming the anion $[Mo(CO)_3(C_5H_5-\eta)]^-$ did not yield an analytically pure product. Similar redox reactions occur with LMe, and L'^{Me}_{2} , and analytically pure materials were isolated. The hydride $[Mo(CO)_{3}(C_{5}H_{5}-\eta)H]$ is also reduced, the counter cation being (25) or (27) [see complexes (19) and

¹⁹ E. O. Fischer and A. Maasböl, Angew. Chem. Internat. Edn.,

<sup>1964, 3, 580.
20</sup> K. Öfele and M. Herberhold, Angew. Chem. Internat. Edn., 1970, 9, 739.

²² E. O. Fischer, B. Heckl, and H. Werner, J. Organometallic Chem., 1971, 28, 359.

²³ H. Werner and H. Rascher, Helv. Chim. Acta, 1968, 51, 1765.

Weiner and H. Rassier, Hew. Chem. Acta, 1908, 31, 1703.
 Cf. N. Wiberg, Angew. Chem. Internat. Edn., 1968, 7, 766.
 B. Çetinkaya, G. H. King, S. S. Krishnamurthy, M. F. Lappert, and J. B. Pedley, Chem. Comm., 1971, 1370.
 R. B. King, Inorg. Chem., 1965, 4, 1518. R. B. King, Inorg. Chem., 1965, 4, 1518.

(21)]; whereas treatment of the hydride with a tertiary phosphine leads to CO substitution.²⁷

Spectroscopic Properties.—The values of v(CO) (Table 2) are amongst the lowest observed for each class of compound.²⁸ This coupled with (i) the long Mo-C_{carb}.

TABLE 2

Selected i.r. data on electron-rich olefin derived carbenemolybdenum(0) and amidinium molybdate(0) complexes

		$\nu(\mathrm{CN}_2)^{a}$
Compound	$\nu({\rm CO})~({\rm cm}^{-1})$	(cm^{-1})
(1)	2 064m, 1 931vs ^b	1 49 6m
(2)	2 060m, 1 928vs ^b	1 485m
(3)	2 065m, 1 933vs ^b	1 482m
(4)	1 994m, 1 868s, 1 863s, 1 838s°	1498m
(5)	1 993m, 1 870s, 1 862s, 1 839s c	1 485m
(6)	1 847 ^d	1 49 5m
(7)	1 844 ^d	1 480m
(8)	2 059m, 1 921vs ^b	1 508m
(13)	2 014m, 1 919s, 1 900s, 1 894s ^b	1 506m
(14)	2 008s, 1 889s, 1 885s, 1 854s e	1 505m
(15)	2 003s, 1 883s, 1 875s, 1 835s ^e	1 49 0m
(16)	1 996s, 1 899s, 1 861s, 1 818s ^a	1 505m
(17)	1 920s, 1 828s, 1 805s ^a	1492m
(18)	1 951s, 1 862s, 1 850s ^f	1 490 m
(9)	1 876, ^e 1 581 ^{e, g}	l 5 17 m
(12)	1 993m, 1 873s, 1 864s, 1 839s ^c	1 49 7m,
		1 483 m
(10)	1 880 ° 1 590 °, g	1 519m
(11)	1 861 ° 1 580 °, g	1 527m
(19)	1 890s, 1 760s, 1 740s "	$1~665 s,^{h}$
		1.538 w i
(20)	1 888s, 1 765s, 1 740s ^a	1 655s, ^h
		$1.540 \mathrm{w}^{\ i}$
(21)	1 892s, 1 762s, 1 743s "	$1.702s,^{h}$
		$1~520\mathrm{w}^{-i}$
(22)	1 890s, 1 758s, 1 742s ^a	$1.675s,^{h}$
		1 515w ⁱ

^a Dilute Nujol mull. ^b Hexane solution. ^c thf solution. ^d Toluene solution. e CH₂Cl₂ solution. f C₆H₁₁Me solution. g ν (NO) cm⁻¹. h ν (CN₂)_{asym}. f ν (CN₂)_{sym}.

bond length {vide infra for cis-[Mo(CO)₄(L^{Me})₂]} appropriate for a metal-carbon single rather than double bond, (ii) the difficulty of displacement of the carbene ligand from the co-ordination sphere of the metal, and (iii) the low stability of electron-rich oligocarbenemetal

complexes, cf. [Mo(CO)₃(LR)₃], is consistent with the proposition that the carbene ligand is a good σ-donor but poor π -acceptor.

v(CN₂) has diagnostic value; in compounds containing carbene ligands a medium band at ca. 1 510-1 480 cm⁻¹ is observed, whereas the electron-rich cations show a strong absorption in the region 1 700—1 640 cm⁻¹.

¹H N.m.r. spectroscopy shows (Table 3) the expected

²⁷ P. Kalek and R. Poilblanc, J. Organometallic Chem., 1969, 19, 115; A. Bainbridge, P. J. Craig, and M. Green, J. Chem. Soc. (A), 1968, 2715.

28 See, for example, D. M. Adams, 'Metal-Ligand and Related Vibrations,' Arnold, London, 1967.

simple spectra at ambient temperatures except in the complexes $[Mo(CO)(C_5H_5-\eta)(L^R)(NO)], (9)$ —(11), in which the ring methylene signals are complex, due to the chiral Mo centre.

A variable-temperature study of (13) shows that at

TABLE 3

Selected ¹H n.m.r. spectroscopic data ^a on electron-rich olefin-derived carbenemolybdenum(0) and amidinium molybdate(0) complexes a

) (0)	I	-			
Com-		Ring			N-CH ₂ -	
pound	Solvent	CH_2	$N-CH_3$	N-CH ₂	CH_3	Others
(1)	CDCl ₃	6.40	6.65			
(2)	CDCl ₃	6.45		6.15q	8.75t	
(3)	CDCl ₃	6.67		4.92^{-}		
(4)	CDCl ₃	6.52	6.75			
(5)	CDCl ₃	6.50		6.18q	8.85t	
(6)	CDCl ₃	6.47	6.60			
(7)	CDCl ₃	6.40		5.85q	8.75t	
(8)	CDCl ₃		6.40	6.8t		
(13)	C_6H_6	7.48	7.10			
(14)	CDCl ₃	6.75	7.00			
(15)	C_6H_6	7.20		6.20q	8.90t	
(16)	CH_2Cl_2	6.60	6.87			
(17)	CDCl ₃	6.40		6.2	8.85t	
, ,				6.6m		
(18)	C_6H_6	7.15		6.05q	8.90t	
(9)	CDCl ₃	6.4m	6.87			4.65^{b}
(12)	CDCl ₃	6.52	6.78	6.20q	8.85t	
(10)	CDCl ₃	5.90m		_	7.60	$5.08^{\ b}$
(11)	CDCl ₃		6.70	6.8m		4.63 b
(19)	$(CD_3)_2SO$	6.26	7.03			1.6,0
` ,						5.10^{b}
(20)	$(CD_3)_2SO$	5.94	6.91			5.10 b
(21)	$(CD_3)_2SO$		6.53	6.35t		1.77,¢
` '						5.10 6
(22)	$(CD_3)_2SO$		6.67	6.25t		5.10 b
` '						

^a All values quoted in τ , relative to SiMe₄ = 10; all resonances singlets unless otherwise stated in parentheses. ${}^{b}C_{5}H_{5}$ - η . c C-H.

least over the range -90 to +30 °C in [${}^{2}H_{6}$] acetone, there is a preferred conformer, most likely of the syn structure (13a), because there are only three distinct Me signals (C-, O-, and N-Me). Similar complexes, such as

TABLE 4 Variable-temperature ¹H n.m.r. spectroscopic data ^a on cis-dicarbene-Moo complexes

	¹ H observed		$\Delta G^{\ddagger c,d}$
Compound	signal	$\theta_{c}/^{\circ}C$ b	kcal mol ⁻¹
cis-[Mo(CO) ₄ (LMe) ₂]	$N-CH_3$	-70	10.1
cis-[Mo(CO)4(LEt)2]	$N-CH_{2}CH_{3}$	76	9.5
cis-[Mo(CO)4(LCH2Ph)9]	$N-CH_2Ph$	-72	9.6

 a All samples run as saturated solutions in $[^2H_6]acetone$ at 100 MHz, internal SiMe_4 lock signal. b Temperature calibrated via ethylene glycol. $^c\pm0.5$ kcal mol^1. d cf. Prothe centure of R. Cramer and J. J. Mrowca, Inorg. Chim. Acta, 1971, 5, 528; J. Ashley-Smith, I. Douek, B. F. G. Johnson, and J. Lewis, J.C.S. Dalton, 1972, 1776.

cis-[Cr(CO)₄{C(OMe)Me}PR₃] (R = cyclohexyl or Ph) exist preferentially in this form, 29 presumably for steric reasons, though the anti-conformation is adopted in the parent carbenepentacarbonyl complex.30 The cis-dicarbene complexes (4) or (5) exhibit temperaturedependent spectra (Table 4) similar to those reported by

²⁹ C. G. Kreiter and K. Öfele, cited by C. G. Kreiter and E. O.

Fischer, Pure Appl. Chem. Suppl., 1971, 6, 151.

30 C. G. Kreiter and E. O. Fischer, Angew. Chem. Internat. Edn., 1969, 8, 761.

Kreiter, Öfele, and Wieser 11 on some related Group 6 metal zerovalent carbene complexes. Our results show slightly larger values of ΔG^{\ddagger} than found for cis-

 $[Mo(CO)_4(\dot{C}N(Me)CH:CH\dot{N}Me)_2]$. This may be a consequence of the change in hybridisation of the ring carbons from sp^2 to sp^3 , affording a sterically more demanding ligand (our values for the Cr and W analogues are also consistently higher 4). We agree with the explanation of the high barrier to rotation of the cyclic carbene ligands around the Mo-C_{carb}. bonds as due to steric interactions between the N-alkyl groups when in a mutually cis-configuration. Furthermore, neither [Mo- $(CO)_5L^{Me}$, (1), nor trans- $[Mo(CO)_4(L^{Et})_2]$, (7), show a similar temperature dependence down to at least by a through-bond interaction with both N-alkyl and ring CH₂ protons even though the distance dependence of ${}^{13}\text{C}^{-1}\text{H}$ dipole-dipole relaxation is ca. $1/r^6$ (r = internuclear distance) 31 and has been discounted in T_1 measurements of Fischer-type carbenechromium(0) complexes.32

It has been argued that the H atoms of the carbene N-alkyl substituent may interact within the van der Waals radius of the CO groups cis to the carbene ligand (as demonstrated when the cis-ligand is another carbene by ¹H n.m.r. spectroscopy ¹¹) and it seems possible that it is this same interaction which may affect the relaxation time and increase the intensity of the *cis*-CO ligands. The actual values of chemical shift, for carbene carbons, are considerably upfield and in the range 230-210

TABLE 5 Selected ¹³C n.m.r. spectroscopic data on electron-rich olefin-derived carbenemolybdenum(0) and amidinium molybdate(0) complexes a

				Mutually			
Compound	Solvent	$C_{carb.}$	Mutually cis-CO	trans-CŌ	Ring CH_2	$N-CH_2-$	$N-CH_3$
(1)	C_6D_6	215.1	212.5	207.4	51.2		38.8
(1) (2) (3) (4) (5) (6) (7) (8)	C_6D_6	213.3	212.5	207.1	47.1	46.5	
(3)	C_6D_6	216.6	211.8	206.8	47.9	56.2	
(4)	CDCl ₃	222.9	219.4	211.4	51.7		38.8
(5)	CD_2Cl_2	220.2	219.7	211.3	47.8	46.3	
(6)	$\mathrm{CD_2Cl_2}$	225.3	$217.5^{\ b}$		52.0		39.7
(7)	CD_2Cl_2	223.7	218.1 ^b		48.0	46.8	
	C_6D_6	213.1	213.7	207.5		49.9	46.6
(13)	C_6D_6	219.5	(222.7, 218.5)	211.7	51.2		38.6
		(350.5°)					
(14)	CD_2Cl_2	221.4^{d}	$(218.3, ^{e}217.5^{f})$	211.8 9	51.9		39.6
(18)	CDCl ₃	221.1 h	(219.4, i 218.2)		47.6	46.8	
$(9)^{k}$	CDCl ₃	223.0	250.9		51.7		38.4
$(10)^{l}$	CDCl ₃	229.1	248.5		54.6		21.1 m
(19)	$(CD_3)_2SO$	185.4^{n}	235.3 °		50.4		34.3
(20)	$(CD_3)_2SO$	$148.8 \ ^{n}$	235.4 °		52.2		34.4

^a Values quoted in p.p.m. relative to SiMe₄ = 0. ^b Four equivalent CO's. ^cδ-C(OMe)Me. ^{d 2} $f^{(13}$ C-³¹P) = 9.1 Hz. ^{e 2} $f^{(13}$ C-³¹P) < 1.5 Hz. ^{f 2} $f^{(13}$ C-³¹P) = 16.8 Hz. ^{g 2} $f^{(13}$ C-³¹P) = 7.6 Hz. ^{b 2} $f^{(13}$ C-³¹P) = 13.0 Hz. ^{c 2} $f^{(13}$ C-³¹P) = 12.2 Hz. ^{j 2} $f^{(13}$ C-³¹P) = 17.5 Hz. ^kδ-C(C₅H₅) = 92.8. ^{c 2} $f^{(13}$ C-³¹P) = 93.4. ^m Aryl-CH₃. ⁿδ-C(carbonium ion). ^{c 3} Three equivalent CO's.

-85 °C. The absence of different N-C H_3 resonances for the L^{Me} fragment in cis-[Mo(CO)₄{C(OMe)Me}L^{Me}], (13), also suggests only one form; the barrier to Mo-C rotation of Mo-LMe is expected to be lower when the cis-ligand, [C(OMe)Me], is in the syn-configuration.

¹³C N.m.r. spectral data for several of the new complexes are given in Table 5. Although the chemical shift of C_{carb.} in these compounds was comparable to that of the carbonyl carbon atoms, positive identification of the C_{earb}, signal proved possible by two observations: (i) the signal intensity in the ¹H decoupled mode was enhanced to that of a comparable non-protonated carbon (CO trans to C_{carb.}), and (ii) ¹H off-resonance studies caused some broadening and reduction in peak height relative to CO trans to C_{carb.}. A third, possibly related, observation was that concerning the intensity of the CO cis to C_{carb.} signal, which decreased (without broadening) during the ¹H off-resonance studies. Therefore there may be a small degree of relaxation of C_{earb}.

p.p.m., but at lower field than that found for Pt^{II} (ref. 33) or Rh^I (ref. 4) electron-rich olefin-derived carbenemetal complexes (in the region 215—175 p.p.m.). The high field shift relative to Fischer-type carbene carbons 34 is due mainly to the presence of two N-heteroatoms directly bonded to C_{carb.}, thereby increasing the local electron density and causing, at least to a significant extent, the observed upfield shifts. 33,35,36 However, the ¹³C n.m.r. spectra of the related compound cis-[Mo(CO)₄-

{CN(Me)CH:CHNMe}₂] shows ¹¹ C_{earb} to be at 196 p.p.m., ca. 30 p.p.m. to high field of (4), and this relatively large shift in $\delta(C_{carb.})$ for such apparently similar ligands provides a measure of the extra stabilisation afforded by the aromatic nature of the ring.

Two general trends are noticeable in the values of $C_{carb.}$: (i) $L^{Et} < L^{Me}$, and (ii) mono- < di-carbene complexes. The latter may be explained by the greater -Ieffect of the [Mo(CO)₅] compared to a [Mo(CO)₄L^R]

³¹ G. Clery and G. L. Nelson, '13C NMR for Organic Chemists,'

Wiley-Interscience, New York, 1972.

32 D. J. Ciapenelli, F. A. Cotton, and L. Kruczynski, J. Organometallic Chem., 1973, 50, 171.

33 D. J. Cardin, B. Çetinkaya, E. Çetinkaya, M. F. Lappert,

E. W. Randall, and E. Rosenberg, J.C.S. Dalton, 1973, 1982

³⁴ B. E. Mann, Adv. Organometallic Chem., 1974, 12, 135 and refs. therein.

J. A. Connor, E. M. Jones, E. W. Randall, and E. Rosenberg, J.C.Š. Dalton, 1972, 2419.

³⁶ C. G. Kreiter and V. Formaček, Angew. Chem. Internat. Edn., 1972, 11, 141.

fragment, but that for (i) is not clear, unless LEt is a slightly weaker donor than L^{Me}, in which case a higher electron density at $C_{\text{earb.}}(L^{\text{Et}})$ (and a shift to high field of $C_{\text{carb.}}$) would be expected. This is consistent with i.r. spectral data: v(CN₂) in L^{Et} complexes is consistently ca. 20 cm⁻¹ lower, indicating a slightly smaller interaction of the nitrogen lone pair with the vacant p_z orbital of the carbene carbon. This in turn may be a result of a lowering of the planarity of the ring (and hence the overlap integral) and could be due to a greater steric requirement of an Et compared to a Me group.

The values of $\delta(CO)$ in $[Mo(CO)_5L^R]$, (1)—(3), are similar to those reported for [Mo(CO)₅PPh_á] ³⁷ and in cis-[Mo(CO)₄(L^R)₂], (4) and (5), to those for [Mo(CO)₄-(diphos)]; 37 in both mono- and di-carbene complexes the small low field shifts observed (ca. 1 p.p.m.) are consistent with the greater σ -donor- π -acceptor ratio of the carbene ligand(s). Similarly $\delta(CO)$ in trans-[Mo- $(CO)_4(L^R)_2$, (6) and (7), are 7—8 p.p.m. downfield of the complex trans-[Mo(CO)₄{P(OMe)₃}₂] ³⁷ which contains the relatively good π -acceptor phosphite ligand. Additionally it is noticeable that in (18), which contains only three CO ligands, the values of $\delta(C_{\text{earb.}})$ and $\delta(CO)$ are little different from those in the dicarbenetetracarbonyl complexes (4) and (5).

In the compounds containing P-ligands there seems nothing unusual in the values of ${}^{2}J({}^{13}C-{}^{31}P)$, although trans-couplings are greater than cis (see also refs. 34 and 38).

The 13 C n.m.r. spectrum of $cis-[Mo(CO)_{4}(C(OMe)Me)-$ L^{Me}], (13), is the first reported of a Mo⁰ complex containing a Fischer-type carbene ligand. Direct comparison with C_{earb} of L^{Me} shows a downfield shift of ca. 130 p.p.m. and the chemical shift value of 350.5 p.p.m. is probably very close (± 2 p.p.m.) to that which would be observed in the parent compound $[Mo(CO)_5\{C(OMe)Me\}]$. {In the

$$cis - \left[Mo(CO)_4 - N \underbrace{R}_{CH} NEt)_2 \right]$$
(28)

Cr and W analogues of (13) there is very little difference in the values of $\delta[C(OMe)Me]$ from the pentacarbonyl complexes.} 4

In the electron-rich cations such as $[HL^{Me}]^+$, (26), or $[L^{Me}_{2}]^{2+}$, (23), there is a large (50—60 p.p.m.) upfield shift in the value of C_{carbonium ion}, compared to C_{carb.}, consistent with the noted increase in the value of ν(CN₂) (ca. 150 cm⁻¹), indicating more substantial CN double-bond character and a corresponding increase in electron density at C_{carbonium ion}; and additionally supports the suggestion that the large low-field shift of C_{carb.} arises from a second-order paramagnetic term on the metal atom. 34 It is interesting to note that C in the 2-imidazoline complex (28) 4 is at lower field than C_{carbonium ion} in [L^{Me}₂]²⁺, but similar to that in [HL^{Me}]⁺, suggestive of the positive charge being extensively localised on the N-atoms of these carbonium ions which may more correctly be considered as amidinium cations.

Crystal and Molecular Structure of cis-[Mo(CO)₄- $(L^{Me})_2$, (4).—The bonding environment in monocarbene-transition-metal complexes is now well established,3 although this is the first study either of a

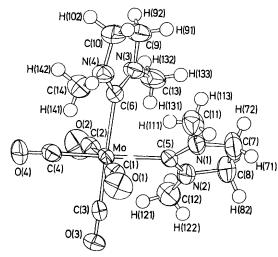


Diagram of the molecule cis-[Mo(CO)₄(LMe)₂] showing the atom numbering system used, and anisotropic thermal motion (ellipsoids are scaled to enclose 50% probability)

carbene complex of Mo⁰ or of a dicarbenemetal species. {Furthermore, the only previous X-ray report of an oligocarbene-metal complex was in a recent preliminary account of trans-[RuCl₂(LEt)₄].39} The relative disposition of the two carbene ligands in (4) is of particular interest. It has been suggested that in a trans-dicarbenemetal complex the C_{carb}.-M-C_{carb}, moiety may be regarded as pseudo-allenic with an expected preference therefore for a mutually perpendicular arrangement of the two carbene ligands; 40 this analysis clearly ignored steric factors which, however, might well favour the same structure.

The excellent agreement of chemically equivalent bond lengths in this present study of a cis-dicarbene complex allows precise comparison to be made of the two independent carbene ligands and shows that the Mo-CO (mutually trans) bond lengths are significantly longer by 0.048(2) Å than the Mo-CO (trans to carbene) distances. Important bond lengths and angles are in Table 6 and the structure is illustrated in the Figure.

The mutually-trans Mo-CO values [2.024(3) and 2.032(3) Å] are within the range [1.95(4)-2.05(2) Å] already reported, 41 as are the Mo-CO (trans to carbene) values [1.979(3) and 1.981(3) Å], but here the two types differ significantly, as indeed they do in cis-bis(phosphine)

³⁷ P. S. Braterman, D. W. Milne, E. W. Randall, and E. Rosen-

berg, J.C.S. Dalton, 1973, 1027.

38 L. J. Todd and J. R. Wilkinson, J. Organometallic Chem., 1974, 77, 1, and refs. therein.

³⁹ P. B. Hitchcock, M. F. Lappert, and P. L. Pye, J.C.S. Chem. Comm., 1976, 644.

 ⁴⁰ R. Hoffmann, Chem. Soc. Centenary Lecture, 1975.
 41 M. H. Linck and L. R. Nassembeni, Inorg. Nuclear Chem. Letters, 1973, 9, 1105; R. St. L. Bruce, M. K. Cooper, H. C. Freeman, and B. G. McGrath, Inorg. Chem., 1974, 13, 1032, and refs. therein.

TABLE 6 Molecular geometry

	M	Iolecular geometi	ry	
(a) Bond lengths (Å)				
		Means		
Mo-C(1)	2.032(3)	2.028(2)	Mo-C(2)	2.024(3)
Mo-C(3)	1.979(3)	1.980(2)	Mo-C(4)	1.981(3)
Mo-C(5)	2.293(3)	2.293(3)	Mo-C(6)	2.293(3)
C(1)-O(1) C(3)-O(3)	$1.144(4) \\ 1.156(3)$	$1.145(3) \\ 1.157(2)$	$C(2)-C(2) \ C(4)-C(4)$	$1.146(4) \\ 1.157(3)$
C(5)-C(5) C(5)-N(1)	1.341(3)		$\int C(6) - N(3)$	1.336(3)
C(5)-N(2)	1.342(3)	1.341(2)	C(6)-N(4)	1.344(3)
N(1)-C(7)	1.455(4)	1.459(2)	∫ N (3)−C(9)	1.466(4)
N(2)-C(8)	1.457(4) j	1.400(2)	(N(4)-C(10))	1.459(4)
N(1)-C(11)	1.437(5)	1.440(3)	$\begin{cases} N(3) - C(13) \\ N(4) - C(14) \end{cases}$	1.442(5)
N(2)-C(12) C(7)-C(8)	1.438(4) [[] 1.490(6)	1.490(4)	\langle N(4)-C(14) C(9)-C(10)	$1.442(4) \\ 1.490(5)$
C(7) - H(71)	1.02(5)	1.100(1)	C(9) - H(91)	1.05(4)
C(7)-H(72)	0.90(4)	0.99(2)	J C(9)−H(92)	0.91(4)
C(8)-H(81)	0.96(4)	0.00(2)	C(10)-H(101)	0.96(4)
C(8)—H(82)	1.06(5)		(C(10)-H(102)	1.04(5)
C(11)—H(111) C(11)—H(112)	$0.89(4) \\ 0.94(5)$		$\begin{pmatrix} C(13)-H(131) \\ C(13)-H(132) \end{pmatrix}$	$0.91(3) \\ 0.91(5)$
C(11) - H(113)	0.93(4)	0.04/0)	C(13) - H(133)	1.02(4)
C(12)-H(121)	0.98(4)	0.94(2)	∫C(14)−H(141)	0.91(4)
C(12)-H(122)	0.90(5)		C(14)-H(142)	0.96(5)
C(12)- $H(123)$	0.97(5)J		(C(14)-H(143))	0.91(5)
(b) Bond angles (°)				
C(1)-Mo- $C(2)$	169.82(11)	169.82(11)	0(0) 35 0(1)	00 47 (70)
C(1)-Mo- $C(3)$	82.98(11)	83.20(8)	C(2)—Mo—C(4) C(2)—Mo—C(3)	83.41(13)
C(1)-Mo-C(4) C(1)-Mo-C(5)	$90.34(12) \\ 90.31(11)$	89.56(8) 91.05(8)	C(2)-MO-C(3) C(2)-MO-C(6)	$88.77(12) \\ 91.78(11)$
C(1)-Mo- $C(6)$	96.56(11)	96.35(8)	C(2)-Mo- $C(5)$	96.14(11)
C(3)—Mo—C(6)	178.98(10)	178.74(7)	C(4)—Mo—C(5)	178.50(10)
C(3)-Mo-C(5)	93.44(10)	93.19(7)	C(4)-Mo- $C(6)$	92.94(10)
C(3)-Mo-C(4) C(5)-Mo-C(6)	87.99(11)	$87.99(11) \\ 85.64(10)$		
Mo-C(1)-O(1)	$85.64(10) \\ 172.14(28)$	172.07(20)	Mo-C(2)-O(2)	172.00(27)
Mo-C(3)-C(3)	176.50(23)	176.14(18)	Mo-C(4)-O(4)	175.77(26)
Mo-C(5)-N(1)	127.11(20)	126.77(10)	Mo-C(6)-N(3)	126.39(19)
Mo-C(5)-N(2)	126.42(19)	120.77(10)	$M_0-C(6)-N(4)$	127.05(18)
C(5)-N(1)-C(7) C(5)-N(2)-C(8)	113.57(29)	113.58(14)	$ \begin{cases} C(6)-N(3)-C(9) \\ C(6)-N(4)-C(10) \end{cases} $	$113.57(26) \\ 113.55(25)$
C(5) - N(1) - C(11)	128.25(28)		$\int C(6) - N(3) - C(13)$	127.89(26)
C(5)-N(2)-C(12)	127.27(25)	127.61(13)	(C(6)-N(4)-C(14))	127.03(25)
C(7)-N(1)-C(11)	117.97(31)	118.64(15)	$\{C(9)-N(3)-C(13)\}$	118.31(27)
C(8)-N(2)-C(12)	119.12(29)	110.01(10)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\$	119.17(28)
$N(1)-C(7)-C(8) \ N(2)-C(8)-C(7)$	103.06(29) $102.99(30)$	102.91(15)	N(4)-C(10)-C(9)	$102.59(28) \\ 103.00(28)$
N(1) - C(5) - N(2)	106.45(23)	106.49(16)	N(3)-C(6)-N(4)	106.52(22)
N(1)-C(7)-H(71)	109(3)	,	(N(3)-C(9)-H(91)	108(2)
N(1)-C(7)-H(72)	112(3)	109 (1)	$\int N(3)-C(9)-H(92)$	111(3)
N(2)-C(8)-H(81)	109(2) 108(2)	(-)		$105(2) \\ 112(2)$
N(2)-C(8)-H(82) C(8)-C(7)-H(71)	117(3)		(C(10)-C(9)-H(91))	112(2) $112(2)$
C(8)-C(7)-H(72)	116(3) l	114 (1)	(C10)-C(9)-H(91)	120(3)
C(7)-C(8)-H(81)	110(2)	114 (1)	(10) - C(10) - H(101)	111(2)
C(7)-C(8)-H(82)	115(3)ノ		(C(9)-C(10)-H(102)	112(2)
N(1)-C(11)-H(111)	$\frac{116(2)}{100(2)}$		N(3)-C(13)-H(131) N(3)-C(13)-H(132)	115(2)
N(1)- $C(11)$ - $H(112)N(1)$ - $C(11)$ - $H(113)$	108(3) 109(2)		N(3)-C(13)-H(132) N(3)-C(13)-H(133)	$109(3) \\ 107(2)$
N(2)-C(12)-H(121)	$\{116(2)\}$	111 (1)	N(4)-C(14)-H(141)	115(3)
N(2)-C(12)-H(122)	110(3)		N(4)-C(14)-H(142)	109(3)
N(2)-C(12)-H(123)	112(2)		(N(4)-C(14)-H(143)	108(3)
H(71)-C(7)-H(72) H(81)-C(8)-H(82)	$99(4)$ \\ 111(3) \frac{1}{2}	107 (1)	{H(91)-C(9)-H(92) H(101)-C(10)-H(102)	$103(3) \\ 113(3)$
H(81) - C(8) - H(82) H(111) - C(11) - H(112)	111(3))	- "	(H(131)-C(13)-H(132)	108(3)
H(111)-C(11)-H(113)	106(3)		H(131)-C(13)-H(133)	107(3)
H(112)-C(11)-H(113)	107(4)	108 (1)	J H(132)-C(13)-H(133)	111(3)
H(121)-C(12)-H(122)	111(3)	100 (1)	H(141)-C(14)-H(142)	108(4)
H(121)-C(12)-H(123)	109(4)		H(141)-C(14)-H(143) H(142)-C(14)-H(143)	$112(4) \\ 104(4)$
H(122)-C(12)-H(123)	97(4)		(11(142)-C(14)-H(143)	104(4)

TABLE 6 (Continued)

(c) Intermolecular contacts (Å) within the sum of the contact radii: 2.4 for Mo. 1.7 for O, N, and C, and 1.2 Å for H

$O(1) \cdot \cdot \cdot \cdot O(4^{I})$	3.382(4)	$\mathrm{O}(3)\cdot\cdot\cdot\mathrm{H}(92\mathrm{H})$	2.67(4)
$O(3) \cdot \cdot \cdot C(911)$	3.300(5)	$O(3) \cdot \cdot \cdot \cdot H(92^{\mathbf{v}})$	2.88(4)
$O(4) \cdot \cdot \cdot C(14^{i})$	3.314(5)	$O(3) \cdot \cdot \cdot \cdot H(112^{iv})$	2.81(5)
$O(1) \cdot \cdot \cdot H(81^{HI})$	2.80(4)	$O(3) \cdot \cdot \cdot \cdot H(132^{V})$	2.72(5)
$O(1) \cdot \cdot \cdot \cdot H(123^{\text{III}})$	2.88(5)	$O(4) \cdot \cdot \cdot H(71^{VI})$	2.64(5)
$O(2) \cdot \cdot \cdot \cdot H(91^{\circ})$	2.84(4)	$O(4) \cdot \cdot \cdot H(141^{i})$	2.59(4)

Roman numeral superscripts refer to the following co-ordinate transformations relative to the reference molecule at x, y, z

complexes; for both classes this is associated with the poor π -acceptor character of the carbene or phosphine ligands, in contrast to CO.

The Mo-C_{carb.} lengths are identical [2.293(3) Å] and are comparable with the Mo-CH₃ values [2.27(1)— 2.31(1) Å] in $\text{Li}_4\text{Mo}_2(\text{CH}_3)_8\cdot 4$ thf 42 and with the $\text{Mo-C}_6\text{F}_5$ distance [2.44(9) Å] in [Mo(CO)_2(C_6\text{F}_5)-(C_7\text{H}_7\text{-\$\eta\$})]; \$^{43}\$ they are appreciably longer than the distance [2.03(3) Å] in the Mo^{II} carbene chelate

 $[\dot{M}_{O}(CO)_{2}(C_{5}H_{5}-\eta)\{NN(Me)C(CO_{2}Et)\dot{C}(OH)\}]^{+},^{44,45}$ this may largely be attributed to the difference in Mo⁰ and Mo^{II} radii. There is thus little evidence for Mo- $C_{\rm earb.}$ double-bond character.

The geometry of the carbene ligand is similar to that already determined in both cis-(23) and trans-[PtCl₂- $(L^{Ph})PEt_3$ (24) 46 and in trans- $[Rh\{NC(CF_3)_2\}L^{Me}]$ $(PPh_3)_2$ (25) 47 (see Table 7). These d^8 compounds

TABLE 7 Mean bond lengths (Å) in the carbene ligand

,	ĊN(R)∙[CH	$[2]_2$ NR (LR) (R = Me or H	Ph)
	<i>a</i> (4)	$b \ (25)$	c (23)	d (24)
C_{carb} -N	1.341 (2)	$\frac{(23)}{1.355}$ (18)	1.327 (11)	1.348 (18)
$N-CH_2$	1.459 (2) 1.490 (4)	$egin{array}{ccc} 1.494 & (25) \\ 1.498 & (35) \end{array}$	1.482 (14) 1.47	1.49(2)
CH ₂ -CH ₂ N-R	1.440 (3)	1.435(20)	1.395 (13)	1.403 (83)
	(s ⊅³)	(s p³)	(sp^2)	(sp^2)

 a This work, $\mathit{cis}\text{-}[\text{Mo(CO)}_4(L^{\text{Me}})_2].$ b From ref. 47, $\mathit{trans}\text{-}[\text{Rh}\{N.C(\text{CF}_3)_2\}L^{\text{Me}}(\text{PPh}_3)_2].$ c From ref. 47, $\mathit{cis}\text{-}[\text{PtCl}_2L^{\text{Ph}}(\text{PEt}_3)].$ d Ref. 46, $\mathit{trans}\text{-}[\text{PtCl}_2L^{\text{Ph}}(\text{PEt}_3)].$

are square planar and the plane of the carbene ligand is approximately perpendicular to the co-ordination plane of the metal. In (4), where the metal is octahedrally co-ordinated, the dihedral angles between the carbene ligand planes and the co-ordination planes in which they are involved are ca. 45°, i.e. in all examples the sterically preferred conformer is found.

EXPERIMENTAL

General Procedures.—All reactions were carried out under an atmosphere of dry nitrogen or argon. Hydrocarbon

F. A. Cotton, J. M. Troup, T. R. Webb, D. H. Williamson, and G. Wilkinson, J. Amer. Chem. Soc., 1974, 96, 3824.
 M. R. Churchill and T. A. O'Brien, J. Chem. Soc. (A), 1969,

J. R. Knox and C. K. Prout, Acta Cryst., 1969, B25, 1952.
 C. K. Prout, T. S. Cameron, and A. R. Gent, Acta Cryst., 1972, B28, 32.

46 Lj. Manojlovic-Muir and K. W. Muir, J.C.S. Dalton, 1974,

⁴⁷ M. J. Doyle, M. F. Lappert, G. M. McLaughlin, and J. Mc-Meeking, J.C.S. Dalton, 1974, 1494.

and ether solvents were dried over sodium wire and distilled before use and chlorinated solvents were distilled from phosphorus pentaoxide. Analyses were carried out in our microanalytical laboratory by Mr. and Mrs. A. G. Olney and ¹³C n.m.r. spectra were obtained by Mr. T. M. Siverns on a JEOL PFT-100 Fourier-transform spectrometer. I.r. spectra (4 000-250 cm⁻¹) were examined as Nujol mulls using a Perkin-Elmer 457 grating spectrophotometer and ¹H n.m.r. spectra were recorded on Varian Associates HA100, A60, or T60 spectrometers. M.p.s were determined in evacuated sealed tubes and are uncorrected. The electron-rich olefins were prepared by literature methods 48 from the relevant diamine. Other starting materials were prepared by standard literature procedures 49 and [Mo(CO)₆] was used as purchased from B.D.H. Ltd. Only typical experiments are described; further data are in refs. 4 and 50.

[Mo(CO)₅L^R] (R = Me, Et, or PhCH₂).—Hexacarbonylmolybdenum(0) (2.64 g, 10 mmol) and bi(1,3-dimethylimidazolidin-2-ylidene) (0.98 g, 5 mmol) in methylcyclohexane (MeC₆H₁₁) (25 cm³) were heated under reflux for 2 h. Carbon monoxide was evolved and a small quantity of yellow precipitate formed. The solution was filtered whilst hot and the solvent removed under reduced pressure at 20 °C. The residue was extracted with cold ether (30 cm³) and filtered. The volume was reduced to 5-10 cm³. Addition of hexane (20 cm³) and cooling (-30 °C, 48 h) afforded white crystals of pentacarbonyl(1,3-dimethylimidazolidin-2-ylidene)molybdenum(0) (2.34 g, 70%).

[Mo(CO)₅L'Me].—Hexacarbonylmolybdenum(0) (0.53 g, 2.0 mmol) and bi(1,3-dimethylperhydropyrimidin-2-ylidene) (0.45 g, 2.0 mmol) in decalin (10 cm³) were heated to 150 °C (20 min). Carbon monoxide was evolved and the solution became yellow and oily. The solvent was removed by distillation under reduced pressure and the residue extracted with ether $(2 \times 5 \text{ cm}^3)$; the extract was cooled to -20 °C and filtered. The volume was reduced to ca. 5 cm³, hexane (10 cm³) was added, and cooling $(-25 \, {}^{\circ}\text{C}, 24 \, \text{h})$ afforded a pale yellow solid which was twice recrystallised (Et₂O-n-C₆ \dot{H}_{14} at -20 °C) to give cream crystals of pentacarbonyl(1,3-dimethylperhydropyrimidin-2ylidene)molybdenum(0) (0.10 g, 15%).

cis-[Mo(CO)₄(L^R)₂] (R = Me or Et).—Hexacarbonylmolybdenum(0) (2.64 g, 10.0 mmol) and a small excess of bi(1,3-dimethylimidazolidin-2-ylidene) (2.94 g, 15.0 mmol) in C₆H₁₁Me (30 cm³) were heated at reflux for 5 h. Ana-

48 H. E. Winberg, J. E. Carnaham, D. D. Coffman, and M. Brown, J. Amer. Chem. Soc., 1965, 87, 2055; H. E. Winberg, Chem. Abs., 1966, 64, 15 854h; H. Wanzlick, Org. Synth., collective Vol 5 (Ed.) H. E. Baumgarten, 1973, p. 115; H. Weingarten and W. A. White, J. Amer. Chem. Soc., 1966, 88, 850; J. Org. Chem., 1966, 31, 3427.
49 R. B. King and A. Fronzaglia, Inorg. Chem., 1966, 5, 1837; R. B. King, 'Organometallic Syntheses,' Vol. 1, Academic Press, 1965.

1965.

50 M. F. Lappert and P. L. Pye, Proc. 2nd Internat. Conf. Molybdenum Chemistry, Oxford, September 1976.

lytically pure yellow microcrystals of cis-tetracarbonyl-bis(1,3-dimethylimidazolidin-2-ylidene)molybdenum(0) (4.04 g, 100%) were precipitated and these were filtered off, washed with ether (3 × 10 cm³), and dried in vacuo. [When decalin was used as solvent the reaction could be carried out at a higher temperature (120—140 °C); this resulted in a quicker (ca. 30 min) reaction time, but it proved difficult to remove all traces of decalin from the product. The reaction can be carried out at 160—200 °C in the absence of solvent, using a small excess of the olefin.]

trans- $[Mo(CO)_4(L^R)_2]$ (R = Me or Et).—cis-Tetracarbonyl-bis(1,3-dimethylimidazolidin-2-ylidene)molybdenum(0) (0.404 g, 1.0 mmol) was dissolved at 40 °C in the minimum quantity of acetone (ca. 5 cm³) and this solution (in Pyrex)

TABLE 8

Atomic positional (fractional) and thermal parameters *

Atomic	positionai (ira	actional) and	tnermai para	ameters *
	x	y	\boldsymbol{z}	$\beta/{\rm \AA}^2$
Mo	0.26784(3)	$0.149\ 03(1)$	$0.216\ 37(1)$	
O(1)	-0.1096(3)	$0.128 \ 0(2)$	0.1536(2)	
O(2)	$0.645\ 3(3)$	0.1116(2)	$0.287 \ 7(2)$	
		$-0.009\ 5(1)$	$0.367 \ 4(2)$	
O(3)	0.309 2(3)			
O(4)	$0.214\ 3(3)$	-0.0106(1)	$0.063\ 3(2)$	
N(1)	$0.221\ 3(3)$	$0.343\ 0(1)$	$0.309\ 3(2)$	
N(2)	$0.445\ 5(3)$	$0.273\ 2(2)$	$0.428\ 2(2)$	
N(3)	$0.332\ 7(3)$	0.3379(1)	$0.126\ 0(2)$	
N(4)	$0.101 \ 8(3)$	$0.275 \ 0(2)$	$0.005 \ 4(2)$	
C(1)	0.023~0(4)	$0.141\ 5(2)$	$0.172\ 1(2)$	
C(2)	$0.512\ 0(4)$	0.1319(2)	$0.264 \ 0(2)$	
C(3)	$0.298\ 1(3)$	$0.050\ 5(2)$	$0.314\ 4(2)$	
C(4)	$0.228\ 2(4)$	$0.049 \ 8(2)$	$0.116\ 7(2)$	
C(5)	$0.315\ 1(3)$	$0.266\ 5(2)$	$0.329\ 3(2)$	
C(6)	$0.231\ 4(3)$	$0.265\ 0(2)$	$0.104\ 2(2)$	
C(7)	$0.295\ 3(7)$	0.409 1(3)	$0.394\ 4(4)$	
C(8)	$0.445\ 3(6)$	$0.358\ 5(3)$	0.4788(3)	
C(9)	0.2659(6)	$0.405\ 7(3)$	0.0416(3)	
C(10)	$0.115\ 4(5)$	$0.357\ 1(3)$	-0.0448(3)	
C(11)	0.069 0(6)	$0.369\ 3(3)$	$0.214\ 1(4)$	
C(12)	0.5798(5)	$0.207\ 4(3)$	0.4856(3)	
C(13)	0.487 2(6)	0.359 9(3)	0.2228(3)	
C(14)	-0.0344(5)	$0.210\ 5(3)$	$-0.055 \ 0(3)$	
$\mathbf{H}(71)$	0.206 (6)	0.428(3)	0.408 (4)	9.5(14)
H(72)	0.316 (6)	0.465 (3)	0.377(3)	8.6(13)
H(81)	0.546 (5)	0.393 (3)	0.501 (3)	7.5(11)
H(82)	0.439 (6)	0.340 (3)	0.501(3) $0.543(4)$	10.3(15)
			0.065 (3)	
H(91)	0.234(5)	0.466 (3)		7.8(11)
H(92)	0.348 (6)	0.426 (3)	0.033(3)	7.9(12)
H(101)	0.014 (4)	0.392 (2)	-0.068(3)	5.6(8)
H(102)	0.131 (5)	0.339(2)	-0.104(3)	7.4(11)
H(111)	0.029(5)	0.328(3)	0.163(3)	5.7(9)
H(112)	-0.013(6)	0.384 (3)	0.228(4)	10.1(15)
H(113)	0.089 (5)	0.423(3)	0.189(3)	6.8(11)
H(121)	0.562(5)	0.146(2)	0.454(3)	6.5(10)
H(122)	0.605(6)	0.203(3)	0.551(4)	8.2(12)
H(123)	0.688(6)	0.231(3)	0.502(4)	9.5(13)
H(131)	0.521(4)	0.316(2)	0.273(2)	4.4(7)
H(132)	0.571(6)	0.368(3)	0.211(4)	8.2(13)
H(133)	0.466(4)	0.419(3)	0.249(3)	6.3(9)
H(141)	-0.027(5)	0.156(3)	-0.023(3)	7.3(11)
H(142)	-0.041(6)	0.197(3)	-0.118(4)	8.9(13)
H(143)	-0.133(6)	0.241(3)	-0.077(4)	9.3(13)
+ 0 37		· · · ·		10=× T 1

* See Notice to Authors No. 7 in J.C.S. Dalton, 1975, Index issue.

was irradiated at 25 °C using a Hanovia lamp. trans-Tetracarbonylbis(1,3-dimethylimidazolidin-2-ylidene)molybdenum(0) (0.24 g, 60%) slowly precipitated as deep orange microcystals; these were periodically filtered off, the solution concentrated, and the irradiation continued until precipitation ceased.

cis-[Mo(CO)₄(L^{Me})(PPh₃)].—Pentacarbonyl-1,3-dimethylimidazolidin-2-ylidenemolybdenum(0) (0.33 g, 1.0 mmol) and triphenylphosphine (0.26 g, 1.0 mmol) in MeC₆H₁₁ (10 cm³) were refluxed (1 h) after which time pale yellow

microcrystals of cis-tetracarbonyl(1,3-dimethylimidazolidin-2-ylidene)triphenylphosphinemolybdenum(0) (0.39 g, 70%) precipitated; these were filtered off, washed with warm hexane ($2 \times 10 \text{ cm}^3$), and dried in vacuo.

cis-[Mo(CO)₄(L^{Me})(C₅H₅N)].— Pentacarbonyl(1,3-dimethylimidazolidin-2-ylidene)molybdenum(0) (0.33 g, 1.0 mmol) and pyridine (0.40 g, 5 mmol) were refluxed together in C₆H₁₁Me (10 cm³) to afford a deep yellow microcrystalline precipitate of cis-tetracarbonyl(1,3-dimethylimidazolidin-2-ylidene)pyridinemolybdenum(0) (0.23 g, 60%) which was filtered off, washed with cold ether (4 × 5 cm³), and dried in vacuo. The compound slowly turned green upon exposure to air.

cis-[Mo(CO)₄(L^{Et}){P(C₆H₁₁)₃}].— Pentacarbonyl(1,3-diethylimidazolidin-2-ylidene)molybdenum(0) (0.72 g, 2.0 mmol) and tricyclohexylphosphine (0.84 g, 3.0 mmol) in hexane (20 cm³) were irradiated (8 h) using a Hanovia lamp. The cream solid was recrystallised (CH₂Cl₂-II-C₆H₁₄) to afford cream crystals of cis-tetracarbonyl(tricyclohexylphosphine)(1,3-diethylimidazolidin-2-ylidene)molybdenum(0) (1.0 g, 80%).

cis-[Mo(CO)₄{C(OMe)Me}L^{Me}].—To pentacarbonyl(1,3-dimethylimidazolidin-2-ylidene)molybdenum (0.66 g, 2.0 mmol) in ether (10 cm³), LiMe (3.2 cm³, 0.7 mol dm⁻³) in ether was added dropwise to form a yellow-orange precipitate. Methyl fluorosulphonate (0.24 g, 2.1 mmol) was added and the mixture stirred (15 °C, 4 h). Degassed H₂O (10 cm³) was added and the stirring was continued (3 h). The ether layer was separated, dried (MgSO₄), and filtered. Ether was removed under reduced pressure; the residue was dissolved in n-C₆H₁₄–Et₂O (1:1, 10 cm³) and filtered. Cooling (—25 °C, 7 days) afforded scarlet crystals of cistetracarbonyl(1,3-dimethylimidazolidin-2-ylidene)(1'-methoxy-ethylidene)molybdenum(0) (0.36 g, 50%).

cis-[Mo(CO)₄(L^{Et})(L^{Me})].—To pentacarbonyl(1,3-diethylimidazolidin-2-ylidene)molybdenum(0) (0.14 g, 0.39 mmol) in C_6H_{11} Me (10 cm³) bi(1,3-dimethylimidazolidin-2-ylidene) (0.04 g, 0.20 mmol) was added and the mixture was heated (80 °C, 1 h). A yellow precipitate formed which was filtered off, washed with ether (3 × 5 cm³), and recrystallised (PhMe-n- C_6H_{14} at -25 °C) to afford pale yellow crystals of cis-tetracarbonyl(1,3-diethylimidazolidin-2-ylidene)-1,3-dimethylimidazolidin-2-ylidenemolybdenum(0) (0.12 g, 70%).

 $fac\text{-}[\text{Mo(CO)}_3(\text{L}^{\text{Et}})\{\text{P(OMe)}_3\}_2]$ — Pentacarbonyl(1,3-diethylimidazolidin-2-ylidene)molybdenum(0) (0.72 g, 2.0 mmol) and trimethyl phosphite (1.24 g, 10 mmol) were irradiated using a Hanovia lamp in hexane solution (10 cm³) for 8 h. The cream microcrystalline solid which formed was recrystallised (PhMe-n-C₆H₁₄) to afford white crystals of fac-tricarbonyl(1,3-diethylimidazolidin-2-ylidene)-bis(trimethyl phosphite)molybdenum(0) (1.0 g, 90%).

[Mo(CO)(C₅H₅-η)(L^R)(NO)].—(i) (R = Me). To dicarbonyl(η-cyclopentadienyl)nitrosylmolybdenum(0) (0.25 g, 1.0 mmol) in toluene (10 cm³) bi(1,3-dimethylimidazolidin-2-ylidene) (0.14 g, 0.7 mmol) was added, and the mixture was heated (100 °C, 30 min); the initially pale orange solution became deep red. This solution was cooled (-25 °C, 24 h) to deposit dark red crystals of carbonyl(η-cyclopentadienyl)(1,3-dimethylimidazolidin-2-ylidene)nitrosylmolybdenum(0) (0.29 g, 90%).

(ii) (R = p-tolyl). To dicarbonyl(η -cyclopentadienyl)-nitrosylmolybdenum(0) (0.25 g, 1.0 mmol) in xylene (15 cm³) bi(1,3-di-p-tolylimidazolidin-2-ylidene) (0.25 g, 0.5 mmol) was added and the mixture was refluxed (4—6 h). The solution was cooled to 30 °C and filtered. Addition of

ether (10 cm³) and cooling (-25 °C, 48 h) afforded small red crystals of carbonyl(η -cyclopentadienyl)(1,3-di-p-tolylimidazolidin-2-ylidene)nitrosylmolybdenum(0) (0.37 g, 80%).

 $[Mo(CO)(C_5H_5-\eta)(L'^{Me})(NO)].$ —To dicarbonyl(η-cyclopentadienyl)nitrosylmolybdenum(0) (0.25 g, 1.0 mmol) in xylene (10 cm³) bi(1,3-dimethylperhydropyrimidin-2-ylidene) (0.22 g, 1.0 mmol) was added and the mixture was heated (120 °C, 3 h). The solution was allowed to cool to 0 °C and then filtered. Addition of hexane (10 cm³) and cooling (-25 °C, 72 h) afforded crimson-brown microof $carbonyl(\eta-cyclopentadienyl)(nitrosyl)-1,3-di$ crystals methylperhydropyrimidin-2-ylidenemolybdenum(0) (0.15 g, 45%).

 $ov [L'^{Me}_{2}]^{2+}$ $[L^{Me}_{2}]^{2+}$ $[Mo(CO)_3(C_5H_5-\eta)]^{-2}$.—Bis[tricarbonyl(η-cyclopentadienyl)molybdenum(1)] (0.22 g, 0.45 mmol) was suspended in benzene (10 cm³) and a solution of bi(1,3-dimethylimidazolidin-2-ylidene) (0.09 g, 0.45 mmol) in hexane (5 cm3) was added to form an orange-brown precipitate. This was filtered off. To the residue, toluene (5 cm³) and dimethylformamide (ca. 5 cm³) were added dropwise until the solid just dissolved. After filtration, ether was carefully layered onto the solution which was left undisturbed (20 °C, 5 days) to deposit long red-brown needles of bi(1,3-dimethylimidazolidin-2-ylidinium) bis[tricarbonyl(\eta-cyclopentadienyl)molybdate(0)] (0.20 g, 65%).

 $[HL^{Me}]^+$ or $[HL^{Me'}]^+$ $[Mo(CO)_3(C_5H_5-\eta)]^-$.—To a solution tricarbonyl(n-cyclopentadienyl)hydridomolybdenum(II) (0.24 g, 1.0 mmol) in hexane (10 cm^3) bi(1,3-dimethyl)perhydropyrimidin-2-ylidene) (0.12 g, 0.55 mmol) was added. The pale yellow precipitate was filtered off and recrystallised (Me₂CO-Et₂O at -20 °C, 72 h) to afford needles of 1,3-dimethylperhydropyrimidin-2-ylidinium tri $carbonyl(\eta-cyclopentadienyl)molybdate(0) (0.32 g, 90\%).$

Crystal Structure Analysis of (4), cis-[Mo(CO)₄(L^{Me})₂]

Data are in Tables 6-8 and the Figure.

Crystal Data.— $C_{14}H_{20}MoN_4O_4$, M = 404.28, Monoclinic, $a = 9.490(1), \quad b = 14.404(1), \quad c = 15.470(2)$ Å, $\beta =$ 123.33(1)°, $U=1.766.8~\text{Å}^3$, $D_{\rm m}=1.51~{\rm g~cm}^{-3}$, Z=4, $D_{\rm c}=1.520~{\rm g~cm}^{-3}$, F(000)=824. Space group $P2_1/c~(C_{2h}^5)$. Cu- K_{α} radiation, $\lambda=1.5418~\text{Å}$; $\mu(\text{Cu-}K_{\alpha})=65.92~\text{cm}^{-1}$.

Cell dimensions were obtained by least-squares refinement of the setting angles of twelve carefully centred reflections having 20 values between 90 and 120° on a Picker FACS 1 automatic four-circle diffractometer with graphite-monochromated Cu- $K_{\alpha 1}$ radiation ($\lambda = 1.540 51 \text{ Å}$). The crystal used was a small, well-formed, yellow paralleliped with {110} and {001} faces and dimensions 0.070($||a| \times$ $0.072(\parallel b) \times 0.220(\parallel c)$ mm and was mounted with its c axis approximately coincident with the instrumental ϕ axis.

Intensity data were collected by the θ —2 θ continuous scan technique using a scan speed of 2° min⁻¹ and scan range from $(2\theta - 0.9)^{\circ}$ to $(2\theta + 0.9 + \Delta)^{\circ}$ where Δ is the 20 separation (°) of the $Cu-K_{\alpha 1}$ and $K_{\alpha 2}$ peaks for the reflection concerned. Stationary background counts of 10 s duration were made at each extreme of the scan range. The intensities of three standard reflections monitored during data collection did not vary significantly. Intensities were collected for reflections where $3^{\circ} < 2\theta(\text{Cu-}K_{\alpha}) < 127^{\circ}$. Of the 3 602 reflections measured, 2 954 (82%) for which $I > 3\sigma(I)$ were accepted as being significantly above background and after sorting and averaging only the unique 2 439 were used in subsequent calculations.

A value of 0.03 was used for the experimental uncertainty factor $\rho.^{51}\,$ Intensities were corrected for Lorentz and polarisation effects and later for absorption. Transmission factors for F_0 , calculated by the analytical method of De Meulenauer and Tompa,52 varied from 0.6323 to 0.8464. Extinction corrections did not appear to be significant and were not applied.

Structure Analysis.—The structure was solved by conventional heavy-atom techniques and refined to R 0.023 and R' 0.028 (where $R' = [\Sigma w(|F_0| - |F_c|)^2]/\Sigma w|F_0|$) by full-matrix least-squares. The function minimised was $\sum w(|F_0| - |F_c|)^2$ where $w = 1/\sigma^2(F)$. Atomic scattering factors were taken from ref. 53, those for hydrogen from ref. 54, with corrections for anomalous dispersion (f', f'') for molybdenum from ref. 55. After all non-hydrogen atoms had been included and refined with anisotropic thermal parameters, a resulting difference map clearly indicated all hydrogen atom positions which were subsequently included with isotropic thermal parameters and successfully refined. On the final cycle of refinement, no parameter shifted by $>0.04\sigma$. The adequacy of the weighting scheme was indicated by an analysis of $w(|F_0| - |F_c|)^2 vs. F_0$ and $\sin\theta/\lambda$ which showed no systematic trends. The standard deviation of an observation of unit weight was 1.40. There were no peaks in the final difference map $> 0.2 \text{ eÅ}^{-3}$. Final atom parameters are shown in Table 8, and observed and calculated structure factors, details of least-squares planes, and anisotropic thermal parameters are listed in Supplementary Publication No. SUP 21961 (12 pp., 1 microfiche).*

The ANUCRYS (1975) System of Crystallographic programmes as implemented on the UNIVAC 1108 at A.N.U. by P. O. Whimp and D. Taylor was used throughout the structure solution.

We thank the S.R.C. for the award of a scholarship (to P. L. P.).

[6/1580 Received, 12th August, 1976]

^{*} See Notice to Authors No. 7 in J.C.S. Dalton, 1976, Index issue.

⁵¹ W. R. Busing and H. A. Levy, J. Chem. Phys., 1957, 26, 563; P. W. R. Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 1967, 6, 197.

⁵² J. De Meulenauer and H. Tompa, Acta Cryst., 1965, 19, 1014.

D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
 R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.

55 D. T. Cromer, Acta Cryst., 1965, 18, 17.