SUMMARY

Vitamin A_2 acid (m.p. 176–178°) has been prepared by the WITTIG reaction of (dehydro- β -ionylidene-ethyl)-triphenylphosphonium bromide and *n*-butyl β -formyl-crotonate. Reduction of this acid with lithium-aluminium hydride gave a mixture of all-trans- and 13-cis-vitamin A_2 , which could be separated by chromatography. The same mixture has been obtained from vitamin A acid according to the first vitamin A_2 synthesis by Farrar, Hamlet, Henbest & Jones.

Chemische Forschungsabteilung der F. HOFFMANN-LA ROCHE & Co. A.G., Basel

65. Synthesen in der Vitamin-A2-Reihe

4. Mitteilung¹)

Physikalische Eigenschaften von isomeren Vitamin-Aund Vitamin-A₂-Verbindungen

von C. v. Planta, U. Schwieter, L. Chopard-dit-Jean, R. Rüegg, M. Kofler und O. Isler

(12. 1. 62)

Die drei vorangehenden Mitteilungen¹) hatten die Synthese von 6 Reihen isomerer Vitamin-A₂-Verbindungen zum Inhalt. In dieser Arbeit werden die physikalischen Eigenschaften dieser Vitamin-A₂-Verbindungen beschrieben und mit denjenigen der entsprechenden Vitamin-A-Verbindungen verglichen.

 $R = CH_2OH$, CHO, COOH, COOCH₃

Untersucht wurden ausser den in den Formeln dargestellten ungehinderten alltrans-Verbindungen 3 weitere ungehinderte Isomere (9-cis, 13-cis, 9,13-di-cis) sowie 2 Isomere mit sterischer Hinderung (11-cis, 11,13-di-cis).

1. Ultraviolett-Absorptionsspektren²). – In den Tabellen 1 und 2 sind die Extinktionskoeffizienten (E) und Wellenlängen maximaler Absorption (λ_{max}) der isomeren Vitamin-A₂- und Vitamin-A-Verbindungen sowie je zweier Dehydro-Reihen im ultravioletten Spektralbereich zusammengestellt. Entsprechend der längeren konjugierten Kette sind die Absorptionsmaxima der Elektronenspektren der Vitamin-A₂-Isomeren um ca. 25 m μ langwelliger als diejenigen der entsprechenden Vitamin-A-Verbindungen.

^{1) 1.} Mitt.: Helv. 45, 517 (1962); 2. Mitt.: Helv. 45, 528 (1962); 3. Mitt.: Helv. 45, 541 (1962).

²⁾ Die Ultraviolettspektren wurden mit einem Cary Typ 14 Spektrophotometer aufgenommen.

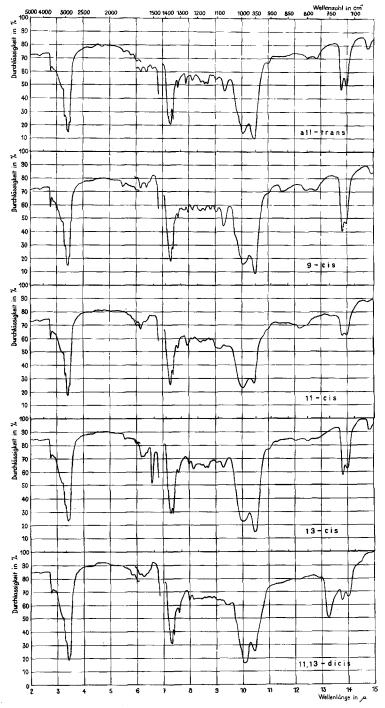


Fig. 1. Infrarot-Absorptionsspektren der isomeren Vitamin-A2-alkohole

Tabelle 1. Absorptionsmaxima (in Feinsprit) and Schmelzpunkte von Vitamin-As-Verbindungen

Tabelle 1. Assorptionsmaxima (in Fernsprii) una Schweizpunnee von Finamin- 12^{-1} Fromweingen	4 osorpu	onsmu.	nunx	in reinspr	mun (11	Schrift	na don	2100 211	1	017-011	2	9,,,,,				
	Alkc	hol (F	را = را	Alkohol (R = CH ₂ OH)	β-J azo	ρ -Phenylazobenzoat	l- at	Al (R =	$\begin{array}{c} \text{Aldehyd} \\ \text{(R} = \text{CHO)} \end{array}$. 6	(R =	Säure (R = COOH)	(H)	Säuremethylester $(R = COOCH_9)$	$\ddot{\mathbf{R}} = \mathrm{COOCH_3}$	ester (H ₃)
Vitamin-A ₂ - Verbindungen	Smp.	λ_{max} (m μ)	$E_{ m 1cm}^{1\%}$		Smp.	λ.max (mμ)	$E_{ m 1cm}^{1\%}$	Smp.	λ_{max} (m μ)	E 1%	Smp.	$\lambda_{max} \ (\mathbf{m}\mu)$	$E_{1\mathrm{cm}}^{1\%}$	Smp. λ_{max} E_{1cm} (°C) $(m\mu)$	λ _{max} (mμ)	E1%
A all-trans	63–65 350 17-19 286 276	350 286 276	1455 715 555	ca. 40% ^a) ^b)	96–98 339 74–76 288 278S	339 1 288 278S	339 1280 288 585 278S 426	78–79 401 1470 314S 395	401 1470 314S 395	1470 395	183-	370 1395 305S 443	1395	44-	376 1340 307S 416	1340
13-cis (neo a) R	73–74	352 288 277	1375 649 493	ca. 26% b)	86-96	339 290 280S	1230 572 414	į	395 1180 314S 412	412	154	372 1300 305S 438	1300	Öl	377 1190 307S 392	392
11-cis (neo b) R	Ü	344 286 278 S	990 566 493	1	326 J 38-40 289S	326 1058 289S 508	1058 508	Ö	393 321S 252	882 512 452	ı	ı	1	.	1	ı
9-cis (iso a) R	348 77-79 287 277		1143 919 767	ı	83–85	338 1150 289 726 280S 603	1150 726 603	54-56	391 315	1208 672	159– 161	369	1240 562	Ö	374	527

! !	120–366 1107 68– 371 993 122 302 528 70 306 479		
386 963 269 392 — 261 388 sehrinstabil	122	1	374 703 249 431 —
Öl	1100 665 — 514	20 –	Į.
325 1024 82-84280 S 412	337 1100 81–83290 665 280 S 514	336 1155 64-66289 S 520	27–30 –
l	(4 %8 >	1	
905 462 470	1030 761 636	1100	882
337 290 S 277	T/O	342	342
337 905 91–93290 S 462 277 470	unter- 350 halb 288 - 30 280	Ö	Ö
R 11,13-di-cis (neo c)	9,13-di-cis (iso b)	R 11-Dehydro	11-Dehydro-13-cis

Tabelle 2. Absorptionsmaxima (in Feinsprit) und Schmelzpunkte von Vitamin-A-Verbindungen

		,			, 									Ì			
	Alkol	hol (R	Alkohol (R = CH ₂ OH)	(он)	p-I	au-Phenylazobenzat	l- at	Alde) páq	Aldehyd ($R=CHO$)	но)	(R =	$\begin{array}{l} S\"{a}ure \\ (R = COOH) \end{array}$)Н)	Säurcmethylester (R = $COOCH_9$)	thyle OOC	ster H ₃)
Vitamin-A-Verbindungen	Smp.	λ_{max} (m μ)	$E_{1\mathrm{cm}}^{1\%}$	Vit.*) A-Akt.	Smp. λ_{max} E_{1cm} Vit.*) Smp. λ_{max} E_{1cm} E_{1cm} A-Akt. (°C) (m μ)	$\begin{vmatrix} max \\ m\mu \end{vmatrix} $	31% 13	Smp.	λ_{max} (m μ)	Smp. λ_{max} = $L_{1cm}^{1.0}$ Vit.†) Smp. λ_{max} = $L_{1cm}^{1.0}$ Vit.†) Smp. λ_{max} = L_{1cm} L_{1cm} A-Akt. (°C) (m μ)	Vit.†) A-Akt.	Smp.	$\lambda_{max} \Big _{l}$	E 1%	Smp. (C°)	λ_{max} (m μ)	$\frac{\lambda_{max}}{(m\mu)}E_{1cm}^{1\%}$
R 62-64 325 1832 ^b) 100% 79-80325- 1650	62–64	325	1832 ^b)	100%	79–80 325–	125- 1		578)	381	15308) 91%	%16	179-	350	1510	350 1510 56–56,5¢) 354 1415	354	1415
all-trans					<u>'</u>	070						201			, , ,		
13-cis (neo a) R	58–60	328	328 1686°)	75% 94–96			1	778)	375]	1250g) 336	93%	174– 175 ^c)	354	1325 c)	354 1325 66-67e) 359 1220 c) 48-49e) e)	359	1220 c)
	Öld)	319	319 1220e) 233 370	23%	67 ^d)		1	53,5-	376,5 290 254	(63,5-376,5 878e) (64,4²) 290 412 254 614	48%	94- 96i)	342	94- 342 9264) 964) 243 426	1		1
11-cis (neo b) R																Ì	
	81,5- 82,5°)	323 258	1477°) 382i)	22%	22% 79–80		1	648)	373	12708) 19%		189_ 191°)	345	1230	345 1230 36–38°)	438	438 1130 e)
9-cis (iso a) R						—							-				

	6)	1	1	
	352 1080 °)	1		
I	ŐI ^e)	1	1	
1	135– 346, 1150 136°) °)	1112	1	
1	346	341	I	
1		-76 (i66	I	· (2)
31%	17%	1	1	5 (1958
700h)	368 11408) 17%		I .	. 27, 37,
373	368	1	ı	.1955).
Ö	49g) 85g)	ı	I	4134 (
1050 h)	I	113,5-321,5 780×d) 115 256 1215 xd) (Cyclo- hexan)	321 734xd) 256 1210 (Cyclo- hexan)	ос. 77,
317,5	. 1	321,5 256 (C.	L	ES, A
99- 100h)	91,5- 92,5°)	113,5- 115 xd)	111- 112 xd)	er. cbe R. Am 56).
15%†	91,5-		ı	J. Am 55); S. (1955). 865 (199 (1954). (1955).
311 1024) 1.5%† 100h)317,5 1050	324 1379°) 263 330 ¹)	317 1215 ^d)	317 1128 ^d)	36 (195) 36 (195) 7, 4111 (1956) 8 222, 8 (20, 219 7, 4120 1, 438 (
311	324 263	317	317	2. AME 77, 41 77, 41 77, 41 Soc. 7; 2651 ; 2651 semistr ience 7 Soc. 7; 350 4
86–88 J)	58-59	Öld)	Öld)	ite, S. I. teester. m. Soc. (1947). 7, 598 (1947). Soc. 78 (2001). Soc. 78 (2001). Soc. 78 (2001). Liste.
R 8 11,13-di-cis (neo c)	9,13-di-cis by	R 11-Dehydro	11-Dehydro-13-cis	*) Vitamin-A-Aktivität der Acetate, S. R. Ames et al., J. Amer. chem. Soc. 77, 4134 (1955). x) = \(\beta\)-Anthrachinon-carbons\) arrester. †) S. R. Ames et al., J. Amer. chem. Soc. 77, 4136 (1955); S. R. Ames, Annu. Rev. Biochem. 27, 375 (1958). a) O. Isler et al., Helv. 30, 1911 (1947). b) J. Bolding et al., Helv. 30, 1911 (1947). c) C. D. Robeson et al., J. Amer. chem. Soc. 77, 4111 (1955). d) W. Oroshnik, J. Amer. chem. Soc. 78, 2651 (1956). e) D. K. Brown & G. Wald. J. biol. Chemistry 222, 865 (1956). f) J. M. Dieterle & C. D. Robeson, Science 120, 219 (1954). g) C. D. Robeson et al., J. Amer. chem. Soc. 77, 4120 (1955). h) G. Wald et al., Proc. nat. Acad. Sci. USA 41, 438 (1955). h) Univeröffentlichte eigene Resultate.

2. Infrarot-Absorptionsspektren. – Fig. 1 zeigt die Infrarot-Absorptionsspektren der isomeren Vitamin-A₂-alkohole³). Der Vergleich der Spektren ergibt, dass die Intensität der trans-CH=CH-«wagging»-Schwingungsbande bei 960 cm⁻¹ bei den gehinderten (11-cis) Isomeren kleiner ist als bei den ungehinderten. Dies war zu erwarten, da die ungehinderten Isomeren eine zweifach substituierte trans-Doppelbindung mehr haben als die gehinderten.

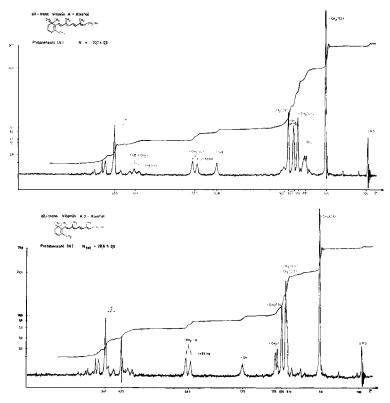


Fig 2a. Protonenresonanzspektren von Vitamin-A- und Vitamin-A2-alkohol und -aldehyd

3. Protonenresonanzspektren. – a) Isomere Vitamin- A_2 - und Vitamin-A-Verbindungen. Im Protonenresonanzspektrum⁴) von Vitamin A und Vitamin A_2 ist es möglich, die Methylresonanzen den verschiedenen Methylgruppen in der Molekel zuzuordnen. Fig. 2 a u. b zeigten die Protonenresonanzspektren von all-trans-Vitamin- A_2 -alkohol und -aldehyd je im Vergleich zu den entsprechenden Vitamin-A-Verbindungen. Die elektronische Integration (s. Fig. 2) gibt etwas zu hohe Werte für die totale Protonenzahl (N_{tol}) der Molekel, da die Seitenbänder der Resonanzlinien nicht ganz unterdrückt werden konnten und einen Beitrag zum Integral geben.

 $^{^3}$) Aufgenommen in 0,1m Lösung in CS_2 und CHCl_3 mit einem Perkin-Elmer 21 Infrarot-Spektrophotometer.

⁴) Die Protonenresonanzspektren wurden in 10-proz. Lösung in CS₂ mit einem HR 60 Kernresonanz-Spektrometer (Varian) einer Senderfrequenz von 56,4 MHz aufgenommen.

Die am stärksten magnetisch abgeschirmte Methylgruppe im all-trans-Vitamin-A-alkohol ist diejenige am ringseitigen Ende der konjugierten Kette⁵), also diejenige an C-5. Im all-trans-Vitamin-A₂-alkohol ist diese Methylgruppe nicht mehr am Ende der konjugierten Kette und ihre Resonanz überlappt daher mit der Methylgruppe an C-13. Dass es sich bei der Resonanz mit dem τ-Wert 8,19 resp. 8,24 um die Methylgruppe am C-Atom 13 handelt, geht aus dem Vergleich mit den Spektren der Alde-

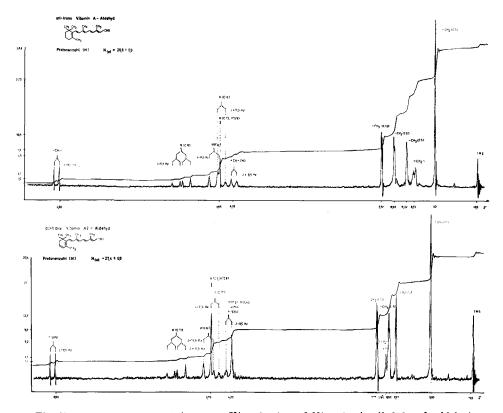


Fig. 2b. Protonenresonanzspektren von Vitamin-A- und Vitamin-A2-alkohol und -aldehyd

hyde (R = CHO) hervor. Das Dipolmoment der Aldehydgruppe bewirkt eine Verkleinerung der Abschirmungskonstanten und damit eine Verschiebung der Resonanz der Methylgruppe an C-13 um 0.48 resp. 0.52 τ -Einheiten nach tieferem Magnetfeld.

Aus den Kernresonanzspektren der entsprechenden Säure-methylester (R=COOCH₃) lässt sich entnehmen, dass diesen Verbindungen *trans*-Konfiguration an der 13,14-Doppelbindung zukommt. Die daraus gewonnen Alkohole sind mit den aus *cis*-Penteninol synthetisierten identisch (vgl. 3c). Die Tabelle 3 vergleicht die τ -Werte der Methylgruppe an C-13 der 13-*cis*- und all-*trans*-Vitamin-A- und Vitamin-A₂-säure-methylester.

Wegen der verschiedenen Entfernung der Methylgruppe an C-13 vom Säure-Dipol ergeben sich unterschiedliche τ -Werte für die beiden Isomeren, deren Differenz

⁵) M. S. Barber, J. B. Davis, L. M. Jackman & B. C. L. Weedon, J. chem. Soc. 1960, 2870.

(Δτ) mit den von Jackman⁶) an α, β-ungesättigten β-methyl-substituierten Estern gemessenen Werten übereinstimmt.

Die Untersuchung der isomeren Vitamin-A- und -A₂-alkohole ergab, dass die magnetische Abschirmungskonstante der Methylgruppe am C-Atom 13 in charakteristischer Weise von der Geometrie der Seitenkette beeinflusst wird, wie die Tabelle 4 zeigt. Das Verhalten der Vitamin-A- und Vitamin-A₂-Isomeren-Reihe ist analog.

Tabelle 3. τ -Werte der Protonenresonanz der Methylgruppe am C-Atom 13 von 13-cis-und all-trans-Vitamin-A- und - A_2 -säure-methylester

	$ au(\mathrm{CH_3[C-13]})$	Δτ
13-cis-Vitamin-A-säure-methylester all-trans-Vitamin-A-säure-methylester 13 -cis-Vitamin-A ₂ -säure-methylester all-trans-Vitamin-A ₂ -säure-methylester	8,12 7,84 7,86 7,58	0,28

Tabelle 4. τ-Werte der C-13-Methylresonanzen der isomeren Vitamin-A- und Vitamin-A₂-alkohole

Isomeres	au(A)	$ au(A_2)$	$\Delta \tau(A)$	$\Delta \tau(A_2)$
all-trans	8,24	8,19	0	0
	8,12	8,05	0,12	0,14
	8,16	8,14	0,08	0,05
	8,30	8,24	-0,06	-0,05
	8,17	8,14	0,07	0,05
	8,17	8,12	0,07	0,07

- $\tau(A) = \tau\text{-Wert}$ der $\text{CH}_3(\text{C-}13)\text{-Resonanz}$ von Vitamin-Aalkohol.
- $\tau({\rm A_2}) = \tau\text{-Wert}$ der ${\rm CH_3(C\text{-}13)\text{-}Resonanz}$ von Vitamin-A₂-alkohol.
- $\Delta \tau(A) = \text{relative Verschiebung der CH}_3(C-13)$ -Resonanz eines Vitamin-A-alkohol-Isomeren bezogen auf das alltrans-Isomere.
- $\varDelta \tau(A_2)=$ relative Verschiebung der $\mathrm{CH_3(C\text{-}13)}$ -Resonanz eines Vitamin- A_2 -alkohol-Isomeren bezogen auf das alltrans-Isomere.

b) Messungen am 11,13-di-cis-Vitamin-A-alkohol bei tiefen Temperaturen⁷). Durch Abkühlen der Probe mit einem durch flüssigen Stickstoff gekühlten Luftstrahl im Messkopf für variable Temperatur gelingt es, Spektren bis zu -75° in CS_2 aufzunehmen. Bei tieferen Temperaturen wird die Löslichkeit der Substanz in CS_2 zu klein.

Man beobachtet, dass sich die Resonanz der Methylgruppe am C-Atom 13 mit abnehmender Temperatur nach grösseren τ -Werten verschiebt (s. Fig. 3). Da der Effekt relativ gering ist (0,06 τ -Einheiten bei der Abkühlung von Zimmertemperatur auf -75° , wurde durch Verwendung anderer Lösungsmittel ausgeschlossen, dass es

⁶⁾ L. M. JACKMAN, Application of n. m. r. Spectroscopy in Organic Chemistry, Pergamon Press, London 1959.

⁷⁾ Herrn Dr. G. Englert vom Institut für Elektrowerkstoffe, Freiburg i. Br., danken wir für die Aufnahme der Tieftemperaturspektren.

sich um einen Lösungsmitteleffekt handelt. Man kann sich diese Verschiebung quali tativ folgendermassen erklären:

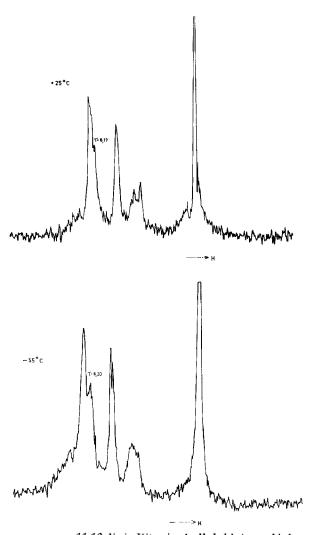


Fig- 3. Methylresonanzen von 11,13-di-cis-Vitamin-A-alkohol bei verschiedenen Temperaturen

Als Folge der sterischen Hinderung zwischen dem Proton an C-10 und der Methylgruppe an C-13 besitzt die Molekel 2 Energiezustände (E_a und E_b), die durch einen Potentialwall getrennt sind. Diesen beiden Energiezuständen entsprechen zwei Stellungen der Methylgruppe. Entsprechend können diesen beiden Energieniveaus 2 Kernresonanzfrequenzen ω_a und ω_b der Methylgruppe an C-13 zugeordnet werden. Erfolgt nun der Austausch zwischen diesen 2 Stellungen rasch, d. h. ist

$$t_a,\,t_b \; \big\langle \; \frac{2\,\pi}{\omega_a - \omega_b} \; (t_a,\,t_b = \, \text{Aufenthaltszeit im Zustand } a \; \text{bzw. } b),$$

dann erhält man für die Methylgruppe ein Kernresonanzsignal ($\langle \omega \rangle$), dessen chemische Verschiebung von den Besetzungszahlen der beiden Niveaus und damit von der Temperatur abhängt:

$$\langle \omega \rangle = \omega_a \cdot \alpha \cdot e^{-E_a/kT} + \omega_b \cdot \beta \cdot e^{-E_b/kT}$$

 $\alpha, \beta =$ dimensionslose Konstanten
 $k =$ Boltzmann'sche Konstante
 $T =$ absolute Temperatur

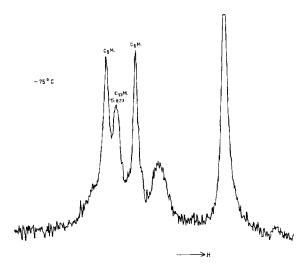


Fig. 3. Methylresonanzen von 11,13-di-cis-Vitamin-A-alkohol bei verschiedenen Temperaturen

c) Zwischenprodukte der Vitamin-A-Synthese. Auf Grund von Kernresonanzmessungen kann, wie dies schon Oroshnik8) mit chemischen Methoden gezeigt hat, dem in der von Isler⁹) beschriebenen Synthese des all-trans-Vitamins A eingesetzten Methylpenteninol cis-Konfiguration zugeordnet werden. In Fig. 4 sind die in Deuterochloroform aufgenommenen Kernresonanzspektren der isomeren Methylpenteninole wiedergegeben. Da die Spin-Kopplungskonstanten klein sind gegenüber dem Unterschied in der chemischen Verschiebung der koppelnden Protonen, kann man die Werte für die Spin-Kopplungskonstanten direkt dem Spektrum entnehmen. Man findet für die Spin-Kopplungskonstanten J der Methylprotonen mit den olefinischen Protonen 1,5 resp. 1,0 Hz, wobei erfahrungsgemäss das grössere J der cis-Verbindung entspricht. Ausserdem sind die Acetylenprotonen der beiden Verbindungen verschieden abgeschirmt ($\tau = 6,70$ resp. $\tau = 7,11$). Die Verbindung mit kleinerem τ entspricht der cis-Verbindung, wie dies durch die Aufnahme der Spektren der entsprechenden isomeren Desmethylalkohole als Modellsubstanzen bestätigt werden konnte. Die Struktur der Desmethylalkohole ist auf Grund der Infrarotspektren gesichert. Die cis-Verbindung ergibt einen \(\tau\)-Wert von 6,90 und die trans-Verbindung einen \(\tau\)-Wert von 7,28 für das Acetylenproton. Die Untersuchung der weiteren Zwischenprodukte

⁸⁾ W. Oroshnik, J. Amer. chem. Soc. 78, 2651 (1956).

⁹⁾ O. Isler, A. Ronco, W. Guex, N. C. Hindley, W. Huber, K. Dialer & M. Kofler, Helv. 32, 489 (1949).

der Vitamin-A-Synthese⁹) mit Hilfe der Protonenresonanz-Spektroskopie deutet darauf hin, dass die Umklappung zur all-trans-Verbindung erst in der letzten Synthesestufe stattfindet, da die chemische Verschiebung der Methylgruppe am C-Atom 13 sich bis zur Wasserabspaltung nicht ändert.

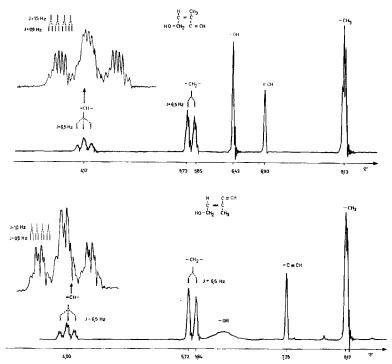


Fig. 4. Protonenresonanzspektren der 2 isomeren Methylpenteninole

4. Dünnschichtchromatographie. – Zur Analytik von Vitamin-A-Isomerengemischen haben wir die Anwendbarkeit der Dünnschichtchromatographie nach Stahl 10) untersucht. Die beste Trennung gelang an Kieselgel G (Merck, für Dünnschichtchromatographie nach Stahl) mit einem Lösungsmittelgemisch Petroläther (40–45°)/ Methylheptenon 11:2. Es wurden jeweils ca. 0,4 μ g auf die Platte aufgetragen; bei einer Laufzeit von 60 Min. wandert die Lösungsmittelfront ca. 10 cm. Fig. 5 zeigt die Trennung der 6 isomeren Vitamin-A-alkohole 11).

Zur Auswertung des Chromatogramms eignet sich vor allem die Betrachtung der Platte im Ultraviolettlicht. Die Vitamin-A-Verbindungen zeigen eine gelblich-grüne Fluoreszenz. Wie aus Fig. 5 hervorgeht, ist die Trennung von all-trans- und 9-cis-Vitamin A sowie von 11-cis- und 13-cis-Vitamin A nur unvollständig.

Die Vitamin- A_2 -Isomeren verhalten sich im Dünnschichtchromatogramm analog (Fig. 6). Sie werden bei Betrachtung im Ultraviolettlicht als braune Flecke sichtbar.

¹⁰⁾ E. STAHL, Pharm. Rundschau 2, 1 (1959).

¹¹) Die Dünnschichtchromatographie der Vitamin-A-Isomeren wurde von Herrn J. Metzger in unseren Laboratorien ausgearbeitet.

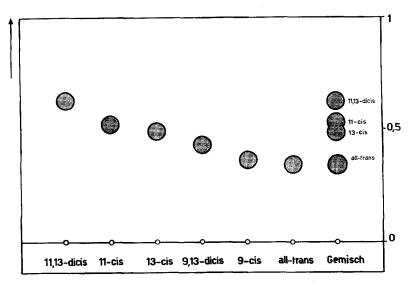


Fig. 5. Dünnschichtchromatographie der isomeren Vitamin-A-alkohole (Laufmittel: Petroläther (40-45°): Methylheptenon 11:2)

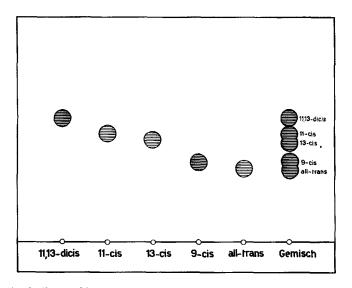


Fig. 6. Dünnschichtchromatographie der isomeren Vitamin- A_2 -alkohole (Laufmittel: Petroläther (40–45°): Methylheptenon 11:3)

Wie beim Vitamin A laufen auch hier die gehinderten Isomeren schneller als die ungehinderten cis-Formen.

Fig. 7 zeigt die Trennung der gehinderten und all-trans-Isomeren der Vitamine A und A_2 . Die isomeren Vitamine A_2 laufen langsamer als die entsprechenden Vitamin-A-Isomeren. Man darf annehmen, dass sich die Dünnschichtchromatographie bei der

Untersuchung natürlicher Vitamin-A- und -A₂-Konzentrate mit Vorteil verwenden lassen wird, so insbesondere bei der weiteren Untersuchung des Sehpurpurs verschiedener Lebewesen.

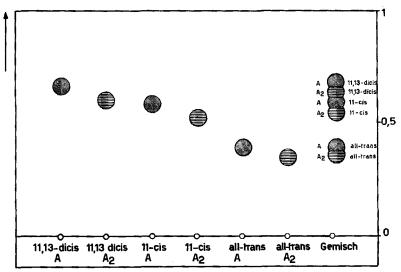


Fig. 7. Dünnschichtchromatographie der gehinderten Vitamin-A- und - A_2 -Verbindungen (Laufmittel: Petroläther (40-45°): Methylheptenon 11:2)

Dem Vorsteher des physikalischen Institutes der Universität Basel, Herrn Prof. P. Huber, möchten wir für die Überlassung der hochauflösenden Kernresonanzapparatur für die Kernresonanzmessungen bestens danken.

SUMMARY

The physical properties of 6 vitamin A_2 isomers are reported and compared with those of the corresponding vitamin A isomers.

Chemische Forschungsabteilung der F. HOFFMANN-LA ROCHE & Co. A.G., Basel

66. Synthese des Bradykininanalogen mit umgekehrter Aminosäuresequenz

von K. Vogler, P. Lanz und W. Lergier

(12. I. 62)

Im folgenden soll über die Synthese eines chemischen Analogons des Bradykinins¹) berichtet werden, in dem die umgekehrte Aminosäuresequenz gegenüber dem Naturprodukt vorliegt. Da in der konventionellen Schreibweise²) die Orientierung der

¹⁾ R. A. Boissonnas, St. Guttmann & P. A. Jaquenoud, Helv. 43, 1349 (1960); D. F. Elliott, G. P. Lewis & E. W. Horton, Biochem. biophys. Res. Commun. 3, 87 (1960).

²⁾ International Union of Pure and Applied Chemistry Appendix B to Information Bulletin Nr. 12.