DOI: 10.1002/anie.200504468

Rhenium Trichloride Dioxide, ReO₂Cl₃**

Joanna Supeł and Konrad Seppelt*

Rhenium(VII) is widespread, for example, in ReO_4^- and ReF_7 . Of the binary rhenium chlorides, the highest is ReCl_5 ; a postulated ReCl_6 was also revealed to be ReCl_5 .^[1,2] However, hexavalent rhenium is found in ReOCl_4 .^[3] The only known rhenium(VII)–chlorine compound is ReO_3 Cl, which can be prepared in several ways and in large quantities.^[4,5] A compound richer in chlorine would be ReO_2 Cl₃; interestingly, no examples of chloride oxides of composition AO_2 Cl₃ (A = nonmetal or metal) have yet been reported. In contrast, several of the corresponding oxide fluorides AO_2 F₃ (A = Cl, I, Re, Os, Tc) have been described.

In the 1930s, attempts were made to prepare ReO₂Cl₃ (for example, through the reaction of rhenium with O_2 and $Cl_2^{[6]}$; however, they are now known to have been unsuccessful. The properties of the product obtained at that time are not consistent with those of ReO₂Cl₃, presented herein. We were also unable to confirm the results of a 1974 publication, in which the isolation of ReO₂Cl₃ by vacuum sublimation from the reaction of ReO₃Cl with ReOCl₄, WOCl₄, or MoOCl₄ was reported.^[7] We attempted to reproduce the most promising reaction, that of ReO₃Cl with WOCl₄, and did indeed obtain a red-brown sublimate, as previously described. However, this product was unambiguously characterized as ReO₃Cl·ReOCl₄ by single-crystal X-ray diffraction.^[8,9] The reaction conditions, namely heating at 100 or 180 °C for several hours, are also inconsistent with the thermal properties of our ReO₂Cl₃, which decomposes at lower temperatures.

In attempts to produce a largely uncoordinated ReO_3^+ ion by chloride-ion abstraction from ReO_3Cl , we treated ReO_3Cl with AlCl_3 [Eq. (1)]. This reaction was already tried in 1979, but only the adduct $\text{ReO}_3\text{Cl}\cdot\text{AlCl}_3$ was identified by elemental analysis at that time.^[10] We observed a slow reaction at room temperature in CFCl₃, with the formation of an orangecolored solution of ReO_2Cl_3 (ReO_3Cl is colorless, and AlCl_3 is nearly insoluble). At elevated temperatures, ReOCl_4 is formed, as evidenced by the intense dark red color of the solution. Alternatively, Re_2O_7 can be treated with AlCl_3 to produce ReO_2Cl_3 [Eq. (2)]. Moreover, the use of BCl_3 instead of AlCl_3 is advantageous, as the reaction proceeds homogenously without solvent, and ReO_2Cl_3 can be recrystallized

[*]	DiplChem. J. Supeł, Prof. Dr. K. Seppelt
	FB Bio/Chem/Pharm, Institut für Chemie
	Anorganische und Analytische Chemie
	Freie Universität Berlin
	Fabeckstrasse 34-36, 14195 Berlin (Germany)
	Fax: (+49) 30-8385-3310
	E-mail: seppelt@chemie.fu-berlin.de

[**] We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

Angew. Chem. Int. Ed. 2006, 45, 4675-4677

directly from the excess BCl_3 [Eq. (3)]. The orange-colored product solutions contain ReO_2Cl_3 , as well as small amounts of $ReOCl_4$. Purification can be accomplished by fractional crystallization.

$$\operatorname{ReO}_{3}\operatorname{Cl} + \operatorname{AlCl}_{3} \to \operatorname{ReO}_{2}\operatorname{Cl}_{3} + (\operatorname{AlOCl})_{x}$$
(1)

$$\operatorname{Re}_{2}O_{7} + 3\operatorname{AlCl}_{2} \rightarrow 2\operatorname{Re}O_{2}\operatorname{Cl}_{2} + 3(\operatorname{AlOCl})_{2}$$
(2)

$$\operatorname{ReO}_3\operatorname{Cl} + \operatorname{BCl}_3 \to \operatorname{ReO}_2\operatorname{Cl}_3 + (\operatorname{BOCl})_r$$
 (3)

The large orange crystals of ReO_2Cl_3 are easily distinguished from the dark red needles of ReOCl_4 and its adducts, and from the colorless platelets of ReO_3Cl . According to the single-crystal structure determination, ReO_2Cl_3 is composed of cyclic chlorine-bridged { ReO_2Cl_3 } dimers with nearly perfect D_{2h} symmetry (Figure 1). The *cis* orientation of the

Figure 1. Molecular structure of ReO₂Cl₃ (ORTEP representation, with thermal ellipsoids set at 50% probability). Selected interatomic distances [pm] and angles [°], along with their calculated values (italics), are indicated.

two double-bonded oxygen atoms at each rhenium center is typical for dioxo compounds of transition metals. Terminal chlorine atoms complete the (distorted) octahedral environments of the rhenium atoms. The melting point of 35-38 °C is reached without decomposition. Further heating results in decomposition and dark coloring. A congruent boiling point is not observed. Upon longer storage at room temperature, progressively more ReOCl₄ is formed.

The vibrational spectra of the solid are in accord with the D_{2h} molecular structure and, thus, with the mutual exclusion rule. The structure and vibrational spectra of ReO₂Cl₃ can be reproduced well with a density functional theory (DFT) calculation.^[11] If the calculated energy values are assumed to be similarly trustworthy, an energy of dimerization of $\Delta H = -0.3 \text{ kcal mol}^{-1}$ is obtained for the equilibrium $2 \operatorname{ReO}_2 \operatorname{Cl}_3(C_S) \rightleftharpoons \operatorname{Re}_2 \operatorname{O}_4 \operatorname{Cl}_6(D_{2h})$. This low value indicates that the monomer could be observed as well. Indeed, the compound seems to be monomeric in CCl₄ or Cl₂ solutions, as the Raman spectra of dissolved ReO₂Cl₃ are considerably different from that of the solid. The calculated structure of monomeric ReO₂Cl₃ is trigonal bipyramidal, with the doublebonded oxygen atoms in equatorial positions (Scheme 1). A square-pyramidal structure, and a trigonal-bipyramidal structure with the double-bonded oxygen atoms in the axial

Communications

Scheme 1. Calculated structures of monomeric ReO_2Cl_3 . Selected interatomic distances [pm] and angles [°] are indicated.

positions are transition states with considerably higher energies.

In the presence of small amounts of water, the monohydrate ReO_2Cl_3 ·H₂O is formed (Figure 2). The ability to

Figure 2. Molecular structure of the hydrate $\text{ReO}_2\text{Cl}_3 \cdot \text{H}_2\text{O}$ (ORTEP representation, with thermal ellipsoids set at 50% probability). Hydrogen atoms are in assumed positions. Selected interatomic distances [pm] are indicated.

form a detectable hydrate, in spite of hydrolytic sensitivity, is common to ReO_2Cl_3 and ReOCl_4 .^[12] If the reaction temperature is too high, a large amount of ReOCl_4 is produced as a byproduct, and the adduct $\text{ReO}_2\text{Cl}_3\cdot\text{ReOCl}_4$ crystallizes. This adduct also contains a { ReO_2Cl_3 } dimer, in this case with slightly asymmetric chlorine bridges (Figure 3). Two { ReOCl_4 } molecules are coordinated by oxygen atoms from the dimer to form a { $\text{ReO}_3\text{Cl}\cdot\text{ReOCl}_4$ } tetramer.

A preference for a coordination number of 6 is often observed in oxide halides of the transition metals, especially in the oxide fluorides: ReO_2F_3 exists as a fluorine-bridged

Figure 3. Molecular structure of the adduct ReO_2Cl_3 ·ReOCl₄ (ORTEP representation, with thermal ellipsoids set at 50% probability). Selected interatomic distances [pm] and angles [$^{\circ}$] are indicated.

polymer, and also as cyclic fluorine-bridged trimers and tetramers;^[13,14] in ReO₃F, the rhenium atoms reach a coordination number of 6 through oxygen and fluorine bridges.^[14] It is anticipated that ReO₂Cl₃ can be transformed into a ReO₂Cl₂⁺ cation and a *cis*-ReO₂Cl₄⁻ anion.

Experimental Section

ReO₂Cl₃: a) ReO₃Cl (1 mmol, 270 mg), prepared according to reference [4], was combined with excess AlCl₃ (10-15 mmol, 1.3-2 mg). Upon mixing, the color of the solution changed to orange. After 30 min, the components that are volatile at room temperature were transferred under dynamic vacuum into a trap at -196 °C. CFCl₃ (3 mL) was then condensed onto the mixture. By slowly cooling the solution to -78°C, large orange crystals of ReO₂Cl₃ (ca. 100 mg, 31%) were obtained, which could be easily separated from unreacted ReO₃Cl (colorless platelets) and ReOCl₄ (dark red needles). M.p. 35-38°C, with color change to red. Elemental analysis (%) found for ReO₂Cl₃: Cl 32.95; calcd: 32.74. b) Re₂O₇ and AlCl₃ were mixed in the molar ratio 1:15 and shaken at room temperature. The product was isolated as described above, but with poorer yield and purity. c) ReO₃Cl (0.55 mmol, 150 mg) and BCl₃ (256 mmol, 3 g; free of HCl) were condensed into a glass ampoule. The mixture was briefly warmed and mixed at room temperature. Slow cooling of the redgreen BCl₃ solution to -60°C afforded orange crystals of ReO₂Cl₃ (175 mg, 97%). Longer reaction times and the presence of HCl led to the formation of ReOCl₄, which crystallizes as red needles that are easily distinguished from ReO₂Cl₃.

IR (solid, NaCl, polyethylene): $\tilde{\nu} = 964.1$ (m), 934.9 (s), 371 cm⁻¹ (s, br); calculated values:^[11] $\tilde{\nu} = 1013.6$ (228), 993.3 (206), 371.5 (125), 365.1 (9.6), 348.7 cm⁻¹ (1.6), and eight other absorptions in the range 278–76 cm⁻¹. Raman (solid): $\tilde{\nu} = 979$ (100), 948 (40), 385 (95), 357 (30), 283 (45), 261 (90), 255 (sh), 180 (sh), 164 (25), 123 (45), 105 (10), 82 cm⁻¹ (14); calculated values: $\tilde{\nu} = 1016.5$ (136), 981.9 (76), 366.3 (24.4), 356.1 (0.7), 348.7 (27.2), 266 (24.5), 246.6 (5.4), 245.6 (0.1), 175.1 (0.14), 149.4 (9.7), 122.7 (4.5), 107.2 (2.1), 90.5 (1.1), 46.9 cm⁻¹ (0.26). Raman (Cl₂ solution): $\tilde{\nu} = 1000$ (40, p), 950 (5, dp), 539, 546 (Cl₂), 400 (100, p), 338 (20, p), 309 (10, dp), 264 (30, dp), 215 (2, dp), 195 (15, dp), 158 cm⁻¹ (30, p); calculated values: $\tilde{\nu} = 1016.7$ (48.3, p), 982.2 (14.3, dp), 381.8 (20.8, p), 354.4 (0.0, dp), 321.1 (9.3, p), 292.5 (8.1, p), 272.7 (7.5, dp), 263.9 (9.1, dp), 213.2 (0.2, dp), 191 (1.7, dp), 145.7 (4.0, p), 36.5 cm⁻¹ (1.3, dp). MS: most abundant fragment at $m/z = 308 [^{187} \text{Re}^{35} \text{Cl}_3 \text{O}]^+$, as well as isotopomers of $^{185/187} \text{Re}$ and $^{35/37} \text{Cl}$.

Crystal structures: crystals were mounted at -100 °C on a Smart CCD diffractometer; full spheres of data were collected, 1800 frames separated by $\Delta \omega = 0.3^{\circ}$; the structures were solved and refined with the SHELX programs.^[15] ReO₂Cl₃: orange crystal; $2\theta_{max} = 61^{\circ}$, 8385 measured, 822 independent reflections; a = 797.3(1), b = 813.2(1), c =774.1(1) pm, Pnnm, Z=4, R=0.014, $wR_2=0.039$. ReO₂Cl₃·H₂O: brown needle; $2\theta_{max} = 61.0^{\circ}$, 3459 measured, 1657 independent reflections; a = 543.4(2), b = 616.9(2), c = 944.5 pm, a = 93.42(1), $\beta = 104.39(1), \gamma = 98.0(1)^{\circ}, P\bar{1}, Z = 2, R = 0.067, wR_2 = 0.166.$ $\text{ReO}_2\text{Cl}_3\cdot\text{ReOCl}_4$: black needle; $2\theta_{\text{max}} = 83.6^\circ$, 29579 measured, 7210 independent reflections; a = 615.7(1), b = 1087.7(1), c =1617.0(2) pm, $\beta = 94.939(4)^{\circ}$, $P2_1/n$, Z = 4, R = 0.048, $wR_2 = 0.097$. Further details on the crystal structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de), on quoting the depository numbers CSD-416056 (ReO₂Cl₃), CSD-416057 (ReO₂Cl₃·H₂O), CSD-416053 (ReO₂Cl₃·ReOCl₄), and CSD-416429 (ReO₃Cl·ReOCl₄, P1).

Received: December 16, 2005 Revised: March 16, 2006 Published online: June 21, 2006

4676 www.angewandte.org

© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Keywords: rhenium oxide halides · rhenium · structure elucidation · synthetic methods

- J. H. Canterford, A. B. Wangh, *Inorg. Nucl. Chem. Lett.* **1971**, 7, 395–399; R. Colton, *Nature* **1962**, *194*, 374–375; D. Brown, R. Colton, *J. Chem. Soc.* **1964**, 714–717.
- [2] J. Burgess, C. J. Fraser, I. Haigh, R. D. Peacock, J. Chem. Soc. Dalton Trans. 1973, 501–504; C. J. L. Lock, A. Guest, Can. J. Chem. 1971, 49, 603–610.
- [3] A. Brukl, K. Ziegler, Ber. Dtsch. Chem. Ges. 1932, 65, 916-918.
- [4] K. Dehnicke, W. Liese, Chem. Ber. 1977, 110, 3959-3960.
- [5] W. A. Herrmann, R. M. Kratzer, R. W. Fischer, Angew. Chem. 1997, 109, 2767–2768; Angew. Chem. Int. Ed. Engl. 1997, 36, 2652–2654; W. A. Herrmann, F. E. Kühn, C. C. Romão, M. Kleine, J. Mink, Chem. Ber. 1994, 127, 47–54.
- [6] H. V. A. Briscol, P. L. Robinson, A. J. Rudge, J. Chem. Soc. 1932, 1104–1107.
- [7] I. A. Glukhov, N. A. El'manova, S. S. Eliseev, M. T. Temurova, *Zh. Neorg. Khim.* **1974**, *19*, 314–318; M. T. Temurova, N. A. El'manova, R. A. Bukharizoda, *Dokl. Akad. Nauk Tadzh. SSR* **1990**, *33*, 176–179; A. M. Makhmadmurodov, M. T. Temurova, N. A. El'manova, I. A. Glukhov, *Dokl. Akad. Nauk Tadzh.* **1982**, *25*, 225–227.
- [8] Crystal structures of ReO₃Cl·ReOCl₄: a = 576.7(1), b = 593.4(1), c = 773.9(1) pm, a = 70.159(3), $\beta = 79.918(3)$, $\gamma = 85.225(3)^{\circ}$, P1, Z = 1, -100° C, R = 0.049, $wR_2 = 0.11$, Flack parameter = 0.047(23). This structure is equivalent to that published in reference [9] (a = 578, b = 602, c = 779.2 pm, a = 70.268, $\beta =$ 79.669, $\gamma = 84.99^{\circ}$, $[^{9a]}$ after transformation by (100 0-10 0-1-1)). The compound also exists in a centrosymmetric form: a = 521.2(1), b = 876.9(1), c = 1100.2(1) pm, a = 67.774(4), $\beta =$ 81.311(4), $\gamma = 79.973(5)^{\circ}$, $P\bar{1}$, Z = 2, -100° C, R = 0.023, $wR_2 =$ 0.054.
- [9] a) A. J. Edwards, J. Chem. Soc. Dalton Trans. 1976, 2419–2421;
 b) K. I. Petrov, V. V. Kravchenko, D. V. Drobot, V. A. Aleksandrova, *Zh. Neorg. Khim.* 1971, 16, 1749–1750;
 c) D. V. Drobot, B. G. Korshunov, V. A. Aleksandrova, *Zh. Neorg. Khim.* 1971, 16, 2295–2298.
- [10] R. Lössberg, K. Dehnicke, Z. Naturforsch. B 1979, 34, 1040– 1041.
- [11] Calculation methods: B3LYP functional; effective core potential (ECP) and a 6s5p3d valence basis set from the Institut für Theoretische Chemie der Universität Stuttgart, were used for the rhenium atoms; 6-31 + G(d,p) basis sets, as implemented in the program Gaussian, were used for the chlorine and oxygen atoms; Gaussian 03, Revision B.04, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 2003. [12] P. W. Frais, C. J. L. Lock, Can. J. Chem. 1972, 50, 1811-1818.
- [13] N. Le Blond, G. Schrobilgen, *Inorg. Chem.* **2001**, *40*, 1245–1249.

- [14] J. Supeł, R. Marx, K. Seppelt, Z. Anorg. Allg. Chem. 2005, 631, 2979–2986.
- [15] G. M. Sheldrick, SHELXS-86, Program for crystal structure solution, Universität Göttingen, 1986; G. M. Sheldrick, SHELXS-97, Program for crystal structure solution, Universität Göttingen, 1997.