A New Family of Acylrhodium Organometallics

Sujay Pattanayak, Swarup Chattopadhyay, Kaushik Ghosh, Sanjib Ganguly, Prasanta Ghosh, and Animesh Chakravorty*

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India

Received September 3, 1998

The Schiff mono bases of 2,6-diformyl-4-methylphenol, 1, react with RhCl₃·3H₂O and PPh₃ in ethanol, affording dichloro[4-methyl-6-((arylimino)methyl)phenolato-C1,O]bis(triphenylphosphine)rhodium(III), $Rh(XL_{sb})(PPh_3)_2Cl_2$ (5; X = H, Me, OMe, Cl). Organometallics of the type (carboxylato)[4-methyl-6-formylphenolato-C¹,O]bis(triphenylphosphine)rhodium(III), $Rh(L_a)(PPh_3)_2(RCO_2)$ (6; R = H, Me, Et, Ph), have been synthesized by oxidative addition of 1 to RhCl(PPh₃)₃ in the presence of dilute RCO₂H in ethanol. Replacement of RCO₂H by dilute HNO₃ has afforded the nitrate analogue Rh(L_{al})(PPh₃)₂(NO₃) (7). Species of type 5 are susceptible to aldiminium → aldehyde hydrolysis in a dichloromethane—acetone—water mixture with concomitant chloride dissociation, furnishing Rh(L_a)(PPh₃)₂Cl (8a), from which the N-bonded nitrite Rh(L_a)(PPh₃)₂(NO₂) (8b) has been generated metathetically. The four types of species 5-8 are interconvertible, and a possible reaction pathway involving pentacoordinate intermediates is proposed. The X-ray structures of Rh(MeL_{sb})(PPh₃)₂Cl₂ (**5b**; bis(dichloromethane) adduct), Rh(Lal)(PPh₃)₂(MeCO₂) (6b), Rh(Lal)(PPh₃)₂(NO₃) (7), and Rh-(L_{al})(PPh₃)₂(NO₂) (**8b**) have been determined. Among these, **5b**, **6b**, and **7** are pseudooctahedral—the bonds *trans* to the acyl function being longer by 0.2–0.4 Å compared to those trans to phenolato oxygen. Complex 8b is square pyramidal, there being no ligand trans to the acyl function. In $\vec{5b}$ iminium—phenolato $(N \cdots O, 2.66(1) \text{ Å})$ and in the remaining species aldehyde-phenolato (C···O, 2.86(1) Å) hydrogen bonding is present. Internal charge balance is crucial for the stability of the present organometallics.

Introduction

The reaction of Ru(PPh₃)₃Cl₂ with the Schiff mono base of 2,6-diformyl-4-methylphenol, 1, has been shown to afford organometallics of type 2.1,2 The unusual four-

membered metallacycle has been proposed to arise from reductive (Ru(IV) → Ru(II)) decarbonylation of an elusive acyl intermediate incorporating the ring 3 formed via oxidative (Ru(II) → Ru(IV)) aldehyde addition. The richness of the chemistry $^{1-5}$ of **2** has prompted us to search for organorhodium species based on 1, with special reference to the status of the acylrhodium moiety

In the present work we have scrutinized the reaction of 1 with RhCl(PPh₃)₃. Aldehydes are usually decarbonylated $^{6-9}$ by RhCl(PPh₃)₃ (eq 1), a reaction that finds use

(4) Ghosh, P.; Chakravorty, A. Inorg. Chem. 1997, 36, 64.

^{(1) (}a) Bag, N.; Choudhury, S. B.; Pramanik, A.; Lahiri, G. K.; Chakravorty, A. *Inorg. Chem.* **1990**, *29*, 5013. (b) Bag, N.; Choudhury, S. B.; Lahiri, G. K.; Chakravorty, A. J. Chem. Soc., Chem. Commun.

⁽²⁾ Ghosh, P.; Bag, N.; Chakravorty, A. Organometallics 1996, 15,

⁽³⁾ Ghosh, P.; Pramanik, A.; Chakravorty, A. Organometallics 1996,

⁽⁵⁾ Ghosh, K.; Pattanayak, S.; Chakravorty, A. Organometallics 1998, 17, 1956.

⁽⁶⁾ Hughes, R. P. In Comprehensive Organometallic Chemistry, Wilkinson, G., Stone, F. G. A., Abel, F. W., Eds.; Pergamon Press: Oxford, U.K., 1982; Vol. 5, pp 277–540.

⁽⁷⁾ Doughty, D. H.; Pignolet, L. H. In Homogeneous Catalysis with Metal Phosphine Complexes; Pignolet, L. H., Ed.; Plenum: New York,

<sup>1983.
(8)</sup> O'Connor, J. M.; Ma, J. *Inorg. Chem.* **1993**, *32*, 1866.
(9) (a) Baird, M. C.; Mague, J. T.; Osborn, J. A.; Wilkinson, G. *J. Chem. Soc. A* **1967**, 1347. (b) O'Connor, J. M.; Ma, J. *J. Org. Chem.* Chem. Soc. A 1967, 1347. (b) O'Connor, J. M.; Ma, J. J. Org. Chem. 1992, 57, 5075. (c) Baird, M. C.; Nyman, C. J.; Wilkinson, G. J. Chem. Soc. A 1968, 348. (d) Stille, J. K.; Regan, M. T. J. Am. Chem. Soc. 1974, 96, 1508. (e) Stille, J. K.; Huang, F.; Regan, M. T. J. Am. Chem. Soc. 1974, 96, 1518. (f) Egglestone, D.; Baird, M. C. J. Organomet. Chem. 1976, 113, C25. (g) Lau, K. S. Y.; Becker, Y.; Huang, F.; Baenziger, N.; Stille, J. K. J. Am. Chem. Soc. 1977, 99, 5664. (h) Bennett, M. A.; Charles, R.; Mitchell, T. R. B.; Jeffrey, J. C. In Fundamental Research in Homogeneous Catalysis; Ishii, Y., Tsutsui, M. Eds.: Plenum Press: New York, 1978; Vol. 2, pp.93—100. (f) Lardine M., Eds.; Plenum Press: New York, 1978; Vol. 2, pp 93–100. (i) Jardine, F. H. In *Progress in Inorganic Chemistry*; Lippard, S. J., Ed.; Wiley-Interscience: New York, 1981. (j) Jardine, F. H.; Wilkinson, G. J. Chem. Soc. C 1967, 270.

in organic synthesis (Q = alkyl, aryl).^{10,11} Acyl inter-

QCHO +
$$Rh^{I}Cl(PPh_{3})_{3} \rightarrow$$

QH + $trans$ - $Rh(CO)Cl(PPh_{3})_{2}$ (1)

mediates formed *via* oxidative (Rh(I) \rightarrow Rh(III)) addition are implicated, but these are generally very unstable with respect to reductive $(Rh(III) \rightarrow Rh(I))$ decarbonylation. Instances of isolation and characterization of such intermediates are therefore rare. 12,13

If decarbonylation would prevail in our reaction also, the only products would be a salicylaldimine and trans-Rh(CO)Cl(PPh₃)₂. No rhodium(I) analogue of 2 is anticipated, since the low-spin d⁸ metal is already coordinatively saturated in trans-Rh(CO)Cl(PPh₃)₂. In practice, the reaction of 1 with RhCl(PPh₃)₃ proceeded smoothly in acidic media without decarbonylation, affording stable acylrhodium species incorporating motif 4. The structure and properties of the new family of organometallics generated via this route are reported in this present work.

Results and Discussion

A. Synthesis. a. The Family. The title family consists of three pseudooctahedral and one distorted square pyramidal acylrhodium system. These are abbreviated as $Rh(XL_{sb})(PPh_3)_2Cl_2$ (5), $Rh(L_{al})(PPh_3)_2$ -(RCO₂) (6), Rh(L_{al})(PPh₃)₂(NO₃), (7), and Rh(L_{al})(PPh₃)₂-

b. $Rh(XL_{sb})(PPh_3)_2Cl_2$, 5. The type 5 organometallics are afforded in excellent yields upon reacting the Schiff mono base 1 with RhCl(PPh₃)₃ in boiling ethanol

in the presence of dilute hydrochloric acid. The reaction is shown in eq 2. The synthesis can be conveniently

$$RhCl(PPh_3)_3 + \mathbf{1} + HCl \rightarrow \mathbf{5} + PPh_3 + H_2 \quad (2)$$

carried out as a single-pot process involving 1, RhCl₃· 3H₂O, and PPh₃, the last two generating RhCl(PPh₃)₃ and HCl in situ. 14,15

In the absence of HCl the reaction of RhCl(PPh₃)₃ and 1 affords only trans-Rh(CO)Cl(PPh₃)₂, presumably formed via reductive decarbonylation of a hydridoacyl intermediate incorporating motif 9. The acid (here HCl) is

believed to facilitate rapid proton-assisted displacement of hydride from 9 by chloride. The acid also sustains the cationic aldiminium moiety, which helps to stabilize the system (vide infra). Upon using 2,6-diformyl-4methylphenol in place of 1 in eq 2, rapid decarbonylation occurs and only trans-Rh(CO)Cl(PPh₃)₂ is isolated.

c. Rh(Lal)(PPh₃)₂(RCO₂) (6) and Rh(Lal)(PPh₃)₂-(NO₃) (7). The reaction (eq 3) of RhCl(PPh₃)₃ with $\bf{1}$ in the presence of dilute carboxylic acids proceeds in a manner similar to that of eq 2 but with concomitant hydrolysis of the aldimine function affording 6 in excellent yields. Upon replacing RCO₂H by HNO₃, the

$$Rh^{I}Cl(PPh_{3})_{3} + \mathbf{1} + RCO_{2}H + H_{2}O \rightarrow$$

$$\mathbf{6} + PPh_{3} + XC_{6}H_{4}NH_{2}\cdot HCl + H_{2} \quad (3)$$

nitrate 7 is obtained. We have been able to isolate 6 and 7 only *via* this substitution-cum-hydrolysis route.

Use of 2,6-diformyl-4-methylphenol in place of the Schiff base 1 in eq 3 leads to decarbonylation, affording trans-Rh(CO)Cl(PPh₃)₂. This prompts us to propose that in the present synthesis the cation [Rh(XL_{sb})(PPh₃)₂-(RCO₂)]⁺ incorporating the aldiminium function is first formed in the same manner as **5** is formed in eq 2. It is, however, subject to facile nucleophilic water attack

(14) Cotton, S. A. In *Chemistry of Precious Metals;* Blackie Academic and Professional: London, 1997; pp 88–132. (15) (a) Chatt, J.; Shaw, B. L. *J. Chem. Soc. A* **1966**, 1437. (b)

⁽¹⁰⁾ Song, L.; Arif, A. M.; Stang, P. J. *Organometallics* **1990**, *9*, 2792. (11) Murakami, M.; Amii, H.; Shigeto, K.; Ito, Y. *J. Am. Chem. Soc.* 1996, 118, 8285

⁽¹²⁾ Suggs, J. W. J. Am. Chem. Soc. 1978, 100, 640.

⁽¹³⁾ Acylrhodium species have, however, been isolated by using specialized multidentate ligands 13a and \emph{via} other synthetic routes such as carbon monoxide insertion 13b into the Rh–C bond and addition of acid chlorides, acid anhydrides, and aldehydes to rhodium(I):13c-j (a) Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Bachechi, F. Organometallics 1991, 10, 820. (b) García, M. P.; Jiménez, M. V.; Cuesta, A.; Siurana, C.; Oro, L. A.; Lahoz, F. J.; Lopez, J. A. Catalán, M. P.; Tiripicchio, A.; Lanfranchi, M. *Organometallics* **1997**, *16*, 1026. (c) McGuiggan, M. F.; Doughty, D. H.; Pignolet, L. H. *J. Organomet. Chem.* 1980, 185, 241. (d) Bennett, M. A.; Jeffrey, J. C.; Robertson, G. B. Inorg. Chem. 1981, 20, 323. (e) Suggs, J. W.; Wovkulich, M. J.; Cox, S. D. Organometallics 1985, 4, 1101. (f) Suggs, J. W.; Wovkulich, M. J.; Williard, P. G.; Lee, K. S. J. Organomet. Chem. 1986, 307, 71. (g) Miller, J. A.; Nelson, J. A. Organometallics 1991, 10, 2958. (h) Moloy, K. G.; Wegman, R. W. Organometallics 1989, 8, 2883. (i) Egglestone, D. L.; Baird, M. C.; Lock, C. J. L.; Turner, G. *J. Chem. Soc., Dalton Trans.* **1977**, 1576. (j) Slack, D. A.; Egglestone, D. L.; Baird, M. C. *J.* Organomet. Chem. 1978, 146, 71.

Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. *J. Chem. Soc. A* **1966**, 1711. (c) Brown, J. M.; Lucy, A. R. *J. Chem. Soc., Chem. Commun.* **1984**, 914. (d) Duckett, S. B.; Newell, C. L.; Eisenberg, R. *J.* Am. Chem. Soc. 1994, 116, 10548.

furnishing electroneutral $\mathbf{6}$ *via* rapid aldiminium \rightarrow aldehyde hydrolysis.

d. $Rh(L_{al})(PPh_3)_2(Y)$ (8). Aldimine \rightarrow aldehyde hydrolysis occurs in the case of 5 also upon boiling its solution in a dichloromethane—acetone mixture with water. The process is associated with concomitant dissociation of a chloride ligand, affording electroneutral 8a (eq 4). In 5 the Rh–Cl bond *trans* to the acyl function

$$\mathbf{5} + \mathbf{H}_2\mathbf{O} \rightarrow \mathbf{8a} + \mathbf{XC}_6\mathbf{H}_4\mathbf{NH}_2 \cdot \mathbf{HCl} \tag{4}$$

is reletively weak (*vide infra*), and it is this bond that undergoes ionic dissociation. The synthesis of **8b** involves metathesis between **8a** with $NaNO_2$ (eq 5).

$$8a + NaNO_2 \rightarrow 8b + NaCl$$
 (5)

e. Stability. The Rh–C(acyl) bond in the present complexes is stabilized by chelate formation involving phenolato oxygen. All members in the family $\mathbf{5-8}$ are indefinitely stable in the solid state and in dry halocarbon (CH₂Cl₂, CHCl₃) solutions. The type $\mathbf{5}$ complexes are sparingly soluble in ethanol, and dissolution in boiling ethanol is associated with reductive decarbonylation to *trans*-Rh(CO)Cl(PPh₃)₂. In the synthesis of $\mathbf{5}$ it is therefore necessary to optimize the reaction time so that *trans*-Rh(CO)Cl(PPh₃)₂ remains only a minor byproduct. In contrast to $\mathbf{5}$, $\mathbf{6-8}$ have good solubility in ethanol and the solutions are thermally stable.

Internal charge balance is a crucial stabilizing factor in this family of organometallics. In this context we note the intimate relationship between the charge of the anion(s) bonded to the metal and the state of the remote side chain on the phenolato—acyl ligand. Thus, when two chloride ligands are present, electroneutrality is achieved in the form of 5, where the side chain is in the aldiminium form. In 8 only one chloride ligand is present and the side chain becomes aldehydic (6 and 7 are similar). We have not succeeded in isolating cationic species such as $[Rh(XL_{sb})(PPh_3)_2(RCO_2)]^+$, which was implicated as a hydrolytically unstable intermediate in the synthesis of 6; neither have we been able to prepare an anionic system such as $[Rh(L_{al})(PPh_3)_2Cl_2]^-$.

The aldehyde function in $\mathbf{6-8}$ is a potential site of further oxidative addition to RhCl(PPh₃)₃. In practice, however, no reaction occurs even on prolonged boiling in ethanol. The formyl function in $\mathbf{6-8}$ is deactivated by the existing acyl moiety and the bulk of the neighboring Rh(PPh₃)₂ fragment.

B. Spectra. The colors of type **5** (orange-yellow) and type **6–8** (yellow) are due to MLCT($t_2 \rightarrow \pi^*$) absorption occurring near 500 and 425 nm, respectively. The acyl C=O stretch^{13b,16} is observed as a strong band near 1700 cm⁻¹. Two well-separated Rh–Cl stretch (near 320 and 350 cm⁻¹) occur in **5**, consistent with the *cis*-RhCl₂ configuration having two Rh–Cl bonds of unequal lengths. Significantly, the single Rh–Cl stretch in **8a** is at 350 cm⁻¹. The two carboxyl vibrations^{3,13e,17} in **6**,

Table 1. Ring Current Shifts $(ppm)^a$ of ¹H NMR Signals of 5b, 6b, 7, and $8b^b$

compd	3-H	5-H	4-Me	9-H	10-Me
5b	1.00 (0.90)	С	0.24 (0.30)		
6b	1.33 (0.90)	0.50 (0.20)	0.50 (0.20)	0.60 (0.70)	0.94 (1.35)
7	1.20 (1.40)	0.58(0.53)	0.43 (0.45)	0.71 (0.68	
8b	0.91 (0.90)	0.29(0.36)	0.44(0.34)	0.83 (0.50)	

 a Calculated shifts are in parentheses. b The atom-numbering scheme is the same as in X-ray structures (see Figures 1–4). c Not individually resolved; lies within a complex multiplet of aromatic protons (7–8 ppm).

the three nitrate vibrations 4,18 in **7**. and the three nitrite vibrations 18e,19 in **8b** are consistent with the designated bonding modes.

A characteristic feature of the ^1H NMR spectra of the present organometallics is the significant upfield shift of several proton signals of chelated XL_{sb} and L_{al} ligands relative to 1 and 2,6-diformyl-4-methylphenol. The X-ray structural results (*vide infra*) revealed that ring currents due to phosphine phenyl rings can be the primary origin of such shifts. Using structural parameters and isoshielding $\rho-z$ plots²⁰ the expected shifts due to ring current have been estimated in the case of 5b, 6b, 7, and 8b. These are listed in Table 1 along with the corresponding observed shifts. The agreement is generally satisfactory. The most shifted protons are 3-H (all cases), 9-H (6b, 7, 8b), and 10-Me²¹ (6b).

C. Structure. a. Geometrical Features. The X-ray structures of **5b** (bis(dichloromethane) adduct), **6b**, **7**, and **8b** have been determined. Molecular views are shown in Figures 1–4, and selected bond parameters are listed in Tables 2–4. To our knowledge, instances where acyl complexes have been isolated by the reaction of RhCl(PPh₃)₃ with aldehydes followed by X-ray structural characterization are rare, probably unknown. The present structures are of particular significance in this context. The structures of a few rhodium acyl complexes formed *via* other routes have been documented. ^{13a-f}

In **5b**, **6b**, and **7** the coordination spheres are severely distorted from idealized octahedral geometry. In **5b** the Rh(MeL_{sb})Cl₂ fragment defines a crystallographic plane of symmetry $(x, {}^{1}/_{4}, z)$. The Rh(L_{al}) fragments in **6b** and **7** constitute good planes (plane A, mean deviation ≤ 0.05 Å), and the carboxylate (**6b**) and nitrate (**7**) chelate rings are nearly perfectly planar (plane B, mean deviation ≤ 0.01 Å). The dihedral angle between A and B is 11.7° in **6b** and 4.0° in **7**. Thus, the bulk of the equatorial region increases in the order **5b** < **7** < **6b**, and this is attended by a corresponding increase in the P–Rh–P angle in the same order.

⁽¹⁶⁾ Coutinho, K. J.; Dickson, R. S.; Fallon, G. D.; Jackson, W. R.; Simone, T. D.; Skelton, B. W.; White, A. H. *J. Chem. Soc., Dalton Trans.* **1997**, 3193.

⁽¹⁷⁾ Kavanagh, B.; Steed, J. W.; Tocher, D. A. *J. Chem. Soc., Dalton Trans.* **1993**, 327.

^{(18) (}a) Betts, C. E.; Haszeldine, R. N.; Parish, R. V. (Dick). J. Chem. Soc., Dalton Trans. 1975, 2218. (b) Steed, J. W.; Tocher, D. A. Polyhedron 1994, 13, 167. (c) Critchlow, P. B.; Robinson, S. D. Inorg. Chem. 1978, 17, 1896. (d) Critchlow, P. B.; Robinson, S. D. Inorg. Chem. 1978, 17, 1902. (e) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley: New York, 1986. (f) Heaton, B. T.; Lggo, J. A.; Jacob, C.; Blanchard, H.; Hursthouse, M. B.; Ghatak, I.; Harman, M. E.; Somerville, R. G.; Heggie, W.; Page, P. R.; Villax, I. J. Chem. Soc., Dalton Trans. 1992, 2533. (g) Hursthouse, M. B.; Malik, K. M. A.; Michael, D.; Mingos, P.; Willoughby, S. D. J. Organomet. Chem. 1980, 192, 235.

^{(19) (}a) Muccigrosso, D. A.; Mares, F.; Diamond, S. E.; Solar, J. P. *Inorg. Chem.* **1983**, *22*, 960. (b) Johnson, S. A.; Basolo, F. *Inorg. Chem.* **1962**, *1*, 925. (c) Hitchman, M. A.; Rowbottom, G. L. *Coord. Chem. Rev.* **1982**, *42*, 55.

⁽²⁰⁾ Johnson, C. E., Jr.; Bovey, F. A. *J. Chem. Phys.* **1958**, *29*, 1012. (21) The chemical shift of the acetate methyl signal in the absence of such shielding is 1.7 ppm: Jia, G.; Rheingold, A. L.; Haggerty, B. S.; Meek, D. W. *Inorg. Chem.* **1992**, *31*, 900.

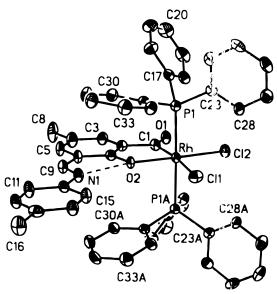


Figure 1. ORTEP plot (30% probability ellipsoids) and atom-labeling scheme for **5b**·2CH₂Cl₂.

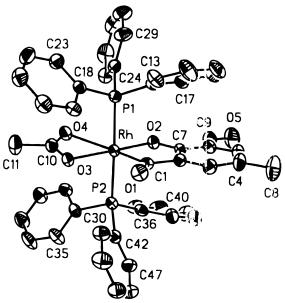


Figure 2. ORTEP plot (30% probability ellipsoids) and atom-labeling scheme for 6b.

In **8b** the coordination sphere has distorted-squarepyramidal geometry. The donor atoms P1, P2, O2, and N1 constitute an excellent equatorial plane (mean deviation 0.02 Å), from which the metal atom is shifted by 0.15 Å toward the acyl carbon atom. The Rh(NO₂) plane (mean deviation 0.02 Å) makes a dihedral angle of 86.1° with the equatorial plane and 12.8° with the Rh(Lal) plane (mean deviation 0.06 Å).

b. Bond Lengths. The observed Rh-C(acyl), C= O(acyl), and Rh-P lengths fall within reported ranges-1.94-1.99 Å, ^{13a-d} 1.18-1.22 Å, ^{13a-d} and 2.30-2.40 Å, ²² respectively. The Rh-N distance in **8b** (1.997(5) Å) is shorter than that in Rh(NO₂) $_6$ ³⁻ (2.06 Å).²³

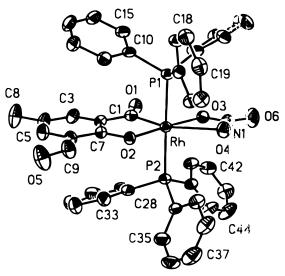


Figure 3. ORTEP plot (30% probability ellipsoids) and atom-labeling scheme for 7.

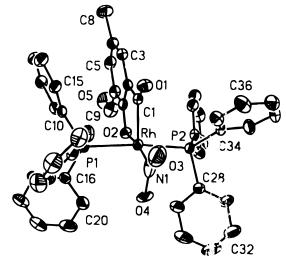


Figure 4. ORTEP plot (30% probability ellipsoids) and atom-labeling scheme for 8b.

Table 2. Selected Bond Distances (Å) and Angles (deg) and Their Estimated Standard Deviations for 5b·2CH₂Cl₂

Distances						
Rh-C1	1.983(9)	Rh-Cl2	2.365(3)			
Rh-O2	2.070(6)	Rh-Pl	2.367(2)			
Rh-Cl1	2.552(3)	Rh-PlA	2.367(2)			
Cl-O1	1.203(11)	N1…O2	2.663(1)			
Angles						
C1-Rh-O2	83.8(3)	O2-Rh-Cl1	86.8(2)			
Cl1-Rh-Cl2	96.2(1)	Cl2-Rh-Cl	93.2(3)			
Pl-Rh-P1A	173.4(1)	Cl-Rh-Cl1	170.6(3)			
O2-Rh-Cl2	177.0(2)	P1-Rh-Cl	92.6(1)			
P1-Rh-O2	88.2(1)	P1-Rh-Cl1	87.1(1)			
P1-Rh-Cl2	91.9(1)					

The structures provide an unique opportunity for observing the strong *trans* influence of the acyl function. The two Rh-Cl distances in 5b, Rh-O(acetate) distances in 6b, and Rh-O(nitrate) distances in 7 differ by \sim 0.2, \sim 0.3, and \sim 0.4 Å, respectively. In each case the longer and shorter bonds lie respectively trans to the acyl and phenolato functions.

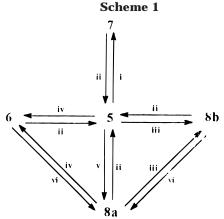
The C-O(acetate), N-O(nitrate), and N-O(nitrite) distances in 6b, 7, and 8b are consistent with the

^{(22) (}a) Cotton, F. A.; Kang, S. J. Inorg. Chem. 1993, 32, 2336. (b) Hataya, K. O. K.; Yamamoto, T. Inorg. Chem. 1993, 32, 2360. (c) Harlow, R. L.; Thorn, D. L.; Baker, T.; Jones, N. L. Inorg. Chem. 1992,

⁽²³⁾ Gronilov, S. A.; Alekseev, V. I.; Baudina, I. A.; Kharanenko, S. P. *Russ. J. Inorg. Chem. (Engl. Transl.)* **1992**, *37*, 306.

Table 3. Selected Bond Distances (Å) and Angles (deg) and Their Estimated Standard Deviations for 6b and 7

	6b	7		6b	7
		Dista	ances		
Rh-C1	1.955(5)	1.965(7)	C10-O3	1.261(6)	
Rh-O2	2.045(3)	2.038(4)	C10-O4	1.237(7)	
Rh-O3	2.089(4)	2.077(4)	N1-O3		1.278(8)
Rh-O4	2.402(4)	2.495(6)	N1-O4		1.246(7)
Rh-P1	2.368(2)	2.359(2)	N1-O6		1.206(8)
Rh-P2	2.368(2)	2.370(2)	C9···O2	2.861(1)	2.860(1)
C1-O1	1.226(6)	1.194(7)		. ,	` '
		Ang	gles		
C1-Rh-O2	82.7(2)	83.9(2)	P1-Rh-O2	91.0(1)	88.4(1)
O2-Rh-O4	115.2(1)	120.2(2)	P1-Rh-O4	83.0(1)	84.4(1)
O4-Rh-O3	57.3(1)	55.0(2)	P1-Rh-O3	91.6(1)	91.1(1)
O3-Rh-Cl	105.3(2)	100.9(2)	P2-Rh-Cl	91.2(1)	91.4(1)
P1-Rh-P2	178.2(1)	176.4(1)	P2-Rh-O2	90.8(1)	89.8(1)
Cl-Rh-O4	160.4(2)	155.3(2)	P2-Rh-O4	96.2(1)	93.7(1)
O2-Rh-O3	171.6(1)	175.2(2)	P2-Rh-O3	86.6(1)	90.4(1)
P1-Rh-C1	89.1(1)	91.6(1)		. ,	. ,


Table 4. Selected Bond Distances (Å) and Angles (deg) and Their Estimated Standard Deviations for 8b

Distances					
Rh-C1	1.975(5)	Rh-O2	2.059(3)		
Rh-N1	1.997(5)	Rh-P1	2.369(2)		
Rh-P2	2.376(2)	N1-O3	1.094(8)		
N1-O4	1.334(7)	C1-O1	1.205(6)		
		O9···O2	2.860(1)		
		1			
Angles					
C1-Rh-O2	83.3(2)	C1-Rh-N1	106.5(2)		
C1-Rh-P1	90.1(1)	C1-Rh-P2	95.7(1)		
O2-Rh-N1	170.1(2)	P1-Rh-P2	173.8(1)		

approximate valence-bond structures 10, 11, and 12, respectively. The length of the shorter N-O bond (1.094-(3) Å) in **8b** approaches that of nitric oxide and the complex is thus a potentially good candidate for oxotransfer activity. 19a,24

c. Aldiminium-Phenolato and Aldehyde-Phe**nolato Moieties.** The nonhydrogen atoms of the aldiminium-phenolato moiety 13 present in 5b define a virtually perfect plane. The observed N1···O2 length,

2.663(11) Å, is the same as that, 2.665(12) Å, in the ruthenium complex **2** (Ar = p-tolyl), where the iminium hydrogen was directly located.² The iminium N-H stretch in **5** occurs near 3400 cm⁻¹,²⁵ and in ¹H NMR the iminium proton resonates near 14 ppm, giving rise to a relatively broad signal which disappears upon shaking with D₂O. Further, the presence of the aldiminium function in 5 is consistent with relatively high

Reagents:

$$i = NaNO_3$$
, $ii = MeArNH_2.HCl$, $iii = NaNO_2$
 $iv = NaMeCO_2$, $v = H_2O$, $vi = HCl$

Reaction media:

C=N stretching frequency^{25,26} (~1635 cm⁻¹) and a highfield shift²⁷ of the C-H proton signal (\sim 7.3 ppm; 8.7 ppm in **1**).

The nearly perfectly planar aldehyde-phenolato moiety 14 is present in 6b, 7, and 8b. All hydrogen atoms were resolved in difference Fourier maps in the case of **8b**. The C9···O2 distance is 2.86(1) Å in all the species. The rotameric conformations of **13** and **14** around the C6-C9 axis differ by 180°, consistent with the presence of hydrogen bonding.

d. Interconversion. (i) Species 5–8. The four groups of organometallics reported in this work are readily interconvertible upon treatment with appropriate reagents. Some of the interconversions centered around 5 are shown in Scheme 1. Thus, when 5 is reacted with excess carboxylates or free carboxylic acids, **6** is obtained in excellent yields and the reverse reaction occurs on treating 6 with XC₆H₄NH₂·HCl (excess) and HCl (eq 6).

$$\mathbf{5} + \text{RCO}_2\text{H} + \text{H}_2\text{O} \xrightarrow{\text{CH}_2\text{Cl}_2 - \text{Me}_2\text{CO} - \text{H}_2\text{O}} \\ \mathbf{6} + \text{XC}_6\text{H}_4\text{NH}_2 \cdot \text{HCl} + \text{HCl} \quad (6)$$

In the conversion of **5** to the other species the reaction medium always contains water. In view of the facile nature of the reaction $5 \rightarrow 8a$, it is plausible that the conversions of 5 to the other species proceed through pentacoordinated **8a**. For example, the reaction $5 \rightarrow 6$ can proceed via occupation of the vacant site by a carboxyl oxygen followed by displacement of chloride ligand and completion of chelate ligation (Scheme 2).

(ii) Comparison with Ruthenium. The pair 5 and 6 provides a contrast to the ruthenium pair 2 and 15,

⁽²⁴⁾ Sieker, F.; Blake, A. J.; Johnson, B. F. G. J. Chem. Soc., Dalton Trans. 1996, 1419.

^{(25) (}a) Sandorfy, C.; Vocelle, D. *Mol. Phys. Chem. Biol.* **1989**, *IV*, 195. (b) Chevalier, P.; Sandorfy, C. *Can. J. Chem.* **1960**, *38*, 2524. (c) Favrot, J.; Vocelle, D.; Sandorfy, C. Photochem. Photobiol. 1979, 30,

⁽²⁶⁾ Bohme, H.; Haake, M. In Advances in Organic Chemistry, Bohme, H., Viehe, H. G., Eds.; Interscience: New York, 1976; Part 1, Vol. 9, p 1. (27) Sharma, G. M.; Roels, O. A. *J. Org. Chem.* **1973**, *38*, 3648.

Scheme 2

which are also interconvertible. In the 5, 6 pair substi-

tution of chloride by carboxylate occurs in the ratio 2:1, but in the **2**, **15** pair this ratio is 1:1. Electroneutrality thus remains unaffected by the substitution in the latter case and there is no aldiminium hydrolysis in the conversion $2 \rightarrow 15$, unlike in $5 \rightarrow 6$. Chelation by RCO₂ is accommodated in 15 by sacrificing the Ru-O(phenolato) bond present in 2. The process is attended with aldiminium-phenolato → aldimine-phenol tautomerization and a rotameric transformation around the Ru-C(aryl) axis.³

The case of nitrites provides another notable rhodium ruthenium contrast, highlighting the qualitative effect of the acyl trans influence on the binding of ligands. In the case of rhodium a pentacoordinated structure, 8b, with a strong Rh-NO2 bond is preferred to a hexacoordinated situation involving O,O-chelation weakened by acyl trans influence. For ruthenium this effect is absent and nitrite is chelating (as in 15 with RCO₂⁻ replaced by NO₂⁻).

Concluding Remarks

Organometallics of type 5-7 incorporating acylphenolate chelation have been synthesized via oxidative addition of the Schiff mono base 1 to RhCl(PPh3)3 in acidic media. These are rare instances where the aldehyde-RhCl(PPh₃)₃ reaction gets arrested prior to reductive decarbonylation. In **5**–**7** the metal is hexacoordinated, the bond trans to the acyl function being strongly elongated (by 0.2-0.4 Å). This bond is prone to ionization, thus providing access to square-pyramidal species of type 8. The intermediacy of pentacoordination forms a plausible basis for the observed interconversion among species of types 5-8.

Internal charge balance is a crucial stabilizing factor, and there is an intimate relationship between the charge of the anion(s) bonded to the metal and the state of the remote side chain of the phenolato-acyl ligand. Thus, in 5 the side chain is aldiminium in nature and in 6-8 it is aldehydic. The rotameric conformations of the two functions get spontaneously adjusted to promote NH···O or CH···O hydrogen bonding.

The **5**, **6** pair provides a contrast with the ruthenium pair 2, 15, where chelation by RCO₂⁻ is accommodated by sacrificing the Ru-O(phenolato) bond. The strong trans influence of the acyl function promotes monodentate Rh-NO₂ bonding in 8b, while in the nitrite analogue of **15**, NO₂⁻ is O,O-chelating. In view of the large asymmetry of N-O bond lengths, we are scrutinizing the possible oxo transfer behavior of 8b.

Experimental Section

Materials. RhCl(PPh₃)₃ was prepared by a reported method.²⁸ The purification of dichloromethane was done as described before. 29 All the other chemicals and solvents were of analytical grade and were used as received. The Schiff bases 1 were prepared by reacting 2,6-diformyl-4-methylphenol with the amine $XC_6H_4NH_2$ in a 1:1 (in hot ethanol) ratio.

Physical Measurements. Electronic and IR spectra were recorded with Hitachi 330 and Perkin-Elmer 783 IR spectrophotometers. For ¹H NMR spectra a Bruker 300 MHz FT NMR spectrophotometer was used (tetramethylsilane is the internal standard). Microanalyses (C, H, N) were done by using a Perkin-Elmer 240C elemental analyzer.

Preparation of Complexes. The Rh(XL_{sh})(PPh₃)₂Cl₂ (5), $Rh(L_{al})(PPh_3)_2(RCO_2)$ (6), $Rh(L_{al})(PPh_3)_2(NO_3)$ (7), $Rh(L_{al})(PPh_3)_2$ Cl (8a), and Rh(L_{al})(PPh₃)₂(NO₂) (8b) complexes were synthesized by using the same general procedures. Details are given for representative cases.

Rh(HL_{sb})(PPh₃)₂Cl₂ (5a). a. From RhCl(PPh₃)₃. To a solution of 2-formyl-4-methyl-6-((phenylimino)methyl)phenol (1; X = H) (13 mg, 0.05 mmol) in hot ethanol (25 mL) was added RhCl(PPh₃)₃ (50 mg, 0.05 mmol) and 2 N HCl (5 mL). The mixture was heated to reflux for 0.5 h. Upon cooling, a bright orange-yellow crystalline solid separated, which was collected by filtration, washed thoroughly with cold ethanol, and dried in vacuo. The crude product was purified by washing with benzene (30 mL), which removes the small amount of Rh-(CO)Cl(PPh₃)₂ formed as a byproduct. Yield: 45 mg (89%). Anal. Calcd for RhC₅₁H₄₂NO₂P₂Cl₂: C, 65.38; H, 4.48; N, 1.49. Found: C, 65.30; H, 4.46; N, 1.50. ¹H NMR (CDCl₃; δ): 6.81 (s, 1H, arom), 7.13–7.86 (m, 32H arom), 7.35 (d, 2H, arom, $J_{HH} = 8.7$ Hz), 7.40 (d, 2H, arom, $J_{HH} = 8.8$ Hz), 2.16 (s, 3H, CH₃), 7.30 (s, 1H, $-CH=N^+$), 14.00 (s, 1H, $=N^+H$). IR (KBr; cm⁻¹): $\nu(C=$ N) 1630; ν (C=O(acyl)) 1680; ν (Rh-Cl) 320, 350; ν (N-H, hexachlorobutadiene) 3420. UV-vis (CH₂Cl₂; λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)): 500 (11 600), 310 (23 300).

b. From RhCl₃·3H₂O. To a solution of 2-formyl-4-methyl-6-((phenylimino)methyl)phenol (45 mg, 0.18 mmol) in hot ethanol (25 mL) was added an ethanolic solution (25 mL) of RhCl₃·3H₂O (50 mg, 0.18 mmol) and PPh₃ (100 mg, 0.38 mmol). The mixture was heated to reflux for 0.5 h. Upon cooling, a

⁽²⁸⁾ Osborn, J. A.; Wilkinson, G. *Inorg. Synth.* **1967**, *10*, 67. (29) (a) Vogel, A. I. *Practical Organic Chemistry*, 3rd ed.; ELBS and Longman Group: Harlow, U.K., 1965; Chapter 2, pp 176–177. (b) Sawyer, D. T.; Roberts, J. L., Jr. *Experimental Electrochemistry for Chemists*; Wiley: New York, 1974; p 212.

bright orange-yellow crystalline solid separated, which was collected by filtration, washed with cold ethanol, and dried in vacuo. This crude product was purified by washing with benzene (30 mL). Yield: 155 mg (88%).

Rh(MeLsb) (PPh3)2Cl2 (5b). Yield: 89%. Anal. Calcd for RhC₅₂H₄₄NO₂P₂Cl₂: C, 65.68; H, 4.63; N, 1.47. Found: C, 65.62; H, 4.61; N, 1.48. ¹H NMR (CDCl₃; δ): 6.80 (s, 1H, arom), 7.14– 7.86 (m, 31H, arom), 7.33 (d, 2H, arom, $J_{HH} = 9.0$ Hz), 7.38 (d, 2H, arom, $J_{HH} = 8.9$ Hz), 2.17 and 2.46 (2s, 6H, 2CH₃), 7.28 (s, 1H, $-CH=N^+$), 13.98 (s, 1H, $=N^+H$). IR (KBr; cm⁻¹): ν (C=N) 1645; ν (C=O(acyl)) 1690; ν (Rh-Cl) 320, 355; ν (N-H, hexachlorobutadiene) 3440. UV-vis (CH2Cl2; λ_{max} , nm (ϵ , M $^{-1}$ cm⁻¹)): 500 (11 300), 310 (22 600).

Rh(MeOL_{sb}) (**PPh**₃)₂**Cl**₂ (**5c**). Yield: 90%. Anal. Calcd for RhC₅₂H₄₄NO₃P₂Cl₂: C, 64.59; H, 4.55; N, 1.44. Found: C, 64.61; H, 4.57; N, 1.42. ¹H NMR (CDCl₃; δ): 6.75 (s, 1H, arom), 7.11– 7.81 (m, 31H, arom), 6.93 (d, 2H, arom, $J_{HH} = 8.7$ Hz), 7.15 (d, 2H, arom, $J_{HH} = 7.3$ Hz), 2.13 (s, 3H, CH₃), 3.84 (s, 3H, OCH₃), 7.28 (s, 1H, -CH=N⁺), 14.02 (s, 1H, =N⁺H). IR (KBr; cm⁻¹): ν (C=N) 1635; ν (C=O(acyl)) 1680; ν (Rh-Cl) 315, 350; ν (N–H. hexachlorobutadiene) 3440. UV–vis (CH₂Cl₂; λ_{max} , nm $(\epsilon, M^{-1} cm^{-1})$: 505 (10 800), 315 (21 900).

Rh(ClL_{sh}) (PPh₃)₂Cl₂ (5d). Yield: 91%. Anal. Calcd for RhC₅₁H₄₁NO₂P₂Cl₃: C, 63.06; H, 4.22; N, 1.44. Found: C, 63.10; H, 4.24; N, 1.45. ¹H NMR (CDCl₃; δ): 6.82 (s, 1H, arom), 7.13– 7.83 (m, 31H, arom), 7.19 (d, 2H, arom, $J_{HH} = 7.2$ Hz), 7.42 (d, 2H, arom, $J_{HH} = 8.7 \text{ Hz}$), 2.17 (s, 3H, CH₃), 7.34 (s, 1H, $-CH=N^{+}$), 14.01 (s, 1H, $=N^{+}H$). IR (KBr; cm⁻¹): ν (C=N) 1630; ν (C=O(acyl)) 1685; ν (Rh-Cl) 310, 350; ν (N-H, hexachlorobutadiene) 3440. UV-vis (CH₂Cl₂; λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)): 510 (11 600), 320 (22 400).

Rh(Lal)(PPh₃)₂(HCO₂) (6a). To a solution of 2-formyl-4methyl-6-((p-tolylimino)methyl)phenol (20 mg, 0.07 mmol) in hot ethanol (25 mL) was added RhCl(PPh₃)₃ (50 mg, 0.05 mmol) and 0.3 N HCOOH (10 mL). The mixture was heated to reflux for 1.5 h, affording a yellow solution. The solvent was removed under reduced pressure, leaving a yellow residue. This was isolated by filtration and washed with water and dried in vacuo. Yield: 41 mg (92%). Anal. Calcd for RhC₄₆H₃₇O₅P₂: C, 66.18; H, 4.43. Found: C, 66.02; H, 4.32. ¹H NMR (CDCl₃; δ): 6.876 (d, 1H, arom, $J_{HH} = 1.7$ Hz), 7.01 (d, 1H, arom, $J_{HH} = 1.9 \text{ Hz}$), 7.34–7.61 (m, 31H, arom and HCO₂), 1.93 (s, 3H, CH₃), 9.50 (s, 1H, -CHO). IR (KBr; cm⁻¹): ν (C= O(acyl, formyl)) 1670; ν(OCO) 1455 (sym), 1545 (asym). UVvis (CH₂Cl₂; λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)): 435 (6450).

 $Rh(L_{al})(PPh_3)_2(MeCO_2)$ (6b). Yield: 93%. Anal. Calcd for RhC₄₇H₃₉O₅P₂: C, 66.50; H, 4.59. Found: C, 66.40; H, 4.61. ¹H NMR (CDCl₃; δ): 6.52 (d, 1H, arom, $J_{HH} = 1.8$ Hz), 7.01 (d, 1H, arom, $J_{HH} = 2.0$ Hz), 7.31-7.56 (m, 30H, arom), 1.91 and 0.76 (2s, 6H, 2CH₃), 9.89(s, 1H, -CHO). IR (KBr; cm⁻¹): ν (C= O(acyl, formyl)) 1670; ν (OCO) 1450 (sym), 1550 (asym). UVvis (CH₂Cl₂; λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)): 430 (6830).

Rh(L_{al})(PPh₃)₂(EtCO₂) (6c). Yield: 94%. Anal. Calcd for RhC₄₈H₄₁O₅P₂: C, 66.82; H, 4.75. Found: C, 66.92; H, 4.82. ¹H NMR (CDCl₃; δ): 6.48 (d, 1H, arom, $J_{HH} = 1.8$ Hz), 6.98 (d, 1H, arom, $J_{HH} = 2.1$ Hz), 7.32-7.55 (m, 30H, arom), 0.96 (q, 2H, Et), 0.17 (t, 3H, Et), 1.90 (s, 3H, CH₃), 9.88 (s, 1H, -CH= O). IR (KBr; cm⁻¹): ν (C=O(acyl, formyl)) 1665; ν (OCO) 1450 (sym), 1550 (asym). UV-vis ($\check{C}H_2Cl_2$; λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)): 430 (6520).

Rh(Lal)(PPh₃)₂(PhCO₂) (6d). Yield: 94%. Anal. Calcd for RhC₅₂H₄₁O₅P₂: C, 68.57; H, 4.50. Found: C, 68.63; H, 4.61. ¹H NMR (CDCl₃; δ): 6.52 (d, 1H, arom, $J_{HH} = 1.8$ Hz), 7.02 (d, 1H, arom, $J_{HH} = 2.0$ Hz), 7.11-7.58 (m, 31H, arom), 6.66 (d, 2H, arom, $J_{HH} = 7.8$ Hz), 6.93 (t, 2H, arom, $J_{HH} = 6.7$ Hz), 1.91 (s, 3H, CH₃), 9.96 (s, 1H, -CH=O). IR (KBr; cm⁻¹): ν (C= O(acyl, formyl)) 1670; ν (OCO) 1457 (sym), 1555 (asym). UV– vis (CH₂Cl₂;, λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)): 430 (7200).

Rh(Lal)(PPh₃)₂(NO₃) (7). To a solution of 2-formyl-4methyl-6-((p-tolylimino)methyl)phenol (20 mg, 0.07 mmol) in hot ethanol (25 mL) was added RhCl(PPh₃)₃ (50 mg, 0.05 mmol) and 0.4 N HNO3 (10 mL). The mixture was heated to reflux for 1 h, affording a yellow solution. The solvent was removed under reduced pressure, leaving a yellow residue. This was isolated by filtration, washed with water, and dried in vacuo. Yield: 42 mg (92%). Anal. Calcd for RhC₄₅H₃₆NO₆P₂: C, 63.45; H, 4.23. Found: C, 63.48; H, 4.19; N, 1.62. ¹H NMR (CDCl₃; δ): 6.65 (d, 1H, arom, $J_{HH} = 3$ Hz), 6.93 (d, 1H, arom, $J_{HH} = 3 \text{ Hz}$), 7.33–7.51 (m, 30H, arom), 1.97 (s, 3H, CH₃), 9.84 (s, 1H, -CHO). IR (KBr; cm⁻¹): ν (C=O(acyl)) 1705; ν (C= O(formyl)) 1670; ν (N=O) 1500; ν (NO₂) 1000 (sym), 1200 (asym). UV-vis (CH₂Cl₂; λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)): 420 (4250).

Rh(Lal)(PPh₃)₂Cl (8a). To a solution of Rh(MeL_{sb})(PPh₃)₂-Cl₂ (50 mg, 0.05 mmol) in dichloromethane (20 mL) and acetone (20 mL) was added water (15 mL). The heterogeneous mixture was then heated to reflux for 0.5 h, affording a yellow solution. The organic solvents were removed under reduced pressure, leaving a suspension of the yellow residue in water. The solid was isolated by filtration, washed with water, and dried in vacuo. Yield: 40 mg (93%). Anal. Calcd for RhC₄₅H₃₆O₃-ClP₂: C, 65.49; H, 4.36. Found: C, 65.51; H, 4.38. ¹H NMR (CDCl₃, δ): 6.87 (d, 1H, arom, $J_{HH} = 2.1$ Hz), 7.01 (d, 1H, arom, $J_{\rm HH} = 2.1 \text{ Hz}$), 7.33–7.51 (m, 30H, arom), 2.00 (s, 3H, CH₃), 9.51 (s, 1H, -CHO). IR (KBr; cm⁻¹): ν (C=O(acyl)) 1705; ν (C= O(formyl)) 1675; ν (Rh–Cl) 350. UV–vis (CH₂Cl₂; λ _{max}, nm (ϵ , M⁻¹ cm⁻¹)): 425 (5200).

Rh(Lal)(PPh3)2(NO2) (8b). To a stirred solution of Rh-(MeL_{sb})(PPh₃)₂Cl₂ (50 mg, 0.005 mmol) in dichloromethaneacetone (1:1) (30 mL) was added an aqueous solution of NaNO₂ (40 mg, 0.57 mmol). Stirring was continued for 0.5 h, and the orange color of the solution changed to yellow. The resulting solution was evaporated under reduced pressure. A yellow suspension of the complex was obtained, which was isolated by filtration and then washed repeatedly with water. The crystalline solid was dried *in vacuo*. Yield: 41 mg (94%). Anal. Calcd for RhC₄₅H₃₆NO₅P₂: C, 64.67; H, 4.31; N, 1.67. Found: C, 64.61; H, 4.40; N, 1.65. ¹H NMR (CDCl₃; δ): 6.94 (d, 1H, arom, $J_{HH} = 3.2$ Hz), 7.22 (d, 1H, arom, $J_{HH} = 2.8$ Hz), 7.37-7.65 (m, 30H, arom), 1.96 (s, 3H, CH₃), 9.72 (s, 1H, -CHO). IR (KBr; cm⁻¹): ν (C=O(acyl)) 1705; ν (C=O(formyl)) 1670; ν (N-O) 1280 (sym), 1310 (asym); ν (O-N-O) 830. UV-vis (CH₂-Cl₂; λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)): 420 (5120).

Interconversions. a. Rh(MeLsb)(PPh3)2Cl2 (5b) to Rh-(L_{al})(PPh₃)₂(MeCO₂) (6b). To a stirred solution of Rh-(MeL_{sb})(PPh₃)₂Cl₂ (50 mg, 0.05 mmol) in 1:1 dichloromethaneacetone (40 mL) was added an aqueous solution of NaCO₂Me· 3H₂O (50 mg, 0.36 mmol). The solution instantly changed from orange to yellow. Stirring was continued for 0.5 h. The organic solvents were removed under reduced pressure, leaving an aqueous suspension of a yellow residue of 6b. This was isolated by filtration, washed with water, and dried in vacuo. Yield: 93%

- b. $Rh(L_{al})(PPh_3)_2(MeCO_2)$ (6b) to $Rh(MeL_{sb})(PPh_3)_2Cl_2$ (5b). To a stirred solution of Rh(Lal)(PPh₃)₂(MeCO₂) (10 mg) in ethanol (5 mL) were added MeArNH2·HCl (10 mg) and 0.3 N HCl solution (2 mL). The solution immediately changed from vellow to orange. Stirring was continued for another 15 min. The solvent was then removed under reduced pressure, and water was added to the orange residue of **5b**. The suspension was stirred, and the orange solid was collected by filtration, washed with water, and dried in vacuo. Yield: 79%.
- c. $Rh(L_{al})(PPh_3)_2Cl$ (8a) to $Rh(MeL_{sb})(PPh_3)_2Cl_2$ (5b). To a stirred solution of Rh(Lal)(PPh₃)₂Cl (10 mg) in ethanol (20 mL) was added MeC₆H₄NH₂·HCl (10 mg) and 0.3 N HCl solution (5 mL). Stirring was continued for 0.5 h. After the organic solvent was evaporated, the residue of ${\bf 5b}$ was washed with ethanol dried in vacuo. Yield: 94%.
- d. Rh(L_{al})(PPh₃)₂Cl (8a) to Rh(L_{al})(PPh₃)₂(RCO₂) (6b). To a stirred solution of $Rh(L_{al})(PPh_3)_2Cl$ (50 mg, 0.06 mmol) in a 1:1 dichloromethane-acetone mixture (25 mL) was added an aqueous solution of NaCO₂Me (30 mg, 0.24 mmol). Stirring was continued for 0.5 h. After the organic solvents were

4.22

1.03

5b·2CH₂Cl₂ 6h mol formula $C_{54}H_{49}Cl_6NO_2P_2Rh$ $C_{47}H_{39}O_5P_2Rh$ $C_{45}H_{36}NO_6P_2Rh$ $C_{45}H_{36}NO_5P_2Rh$ 848.6 851.6 mol wt 1121.5 835.6cryst syst orthorhombic monoclinic monoclinic monoclinic space group Pnma (No. 62) $P2_1/c$ (No. 14) $P2_1/n$ (No. 14) $P2_1/c$ (No. 14) a, Å 18.560(7) 10.967(4) 21.086(10) 17.885(10) b, Å 18.230(6) 31.117(16) 10.216(6) 9.930(3)c, Å 15.182(4) 11.698(6) 21.309(7) 22.060(9) β , deg V, \mathring{A}^3 93.02(4) 118.70(3) 94.43(4) 5137(3) 3987(3) 4026(3) 3904(3) Ż λ, Å 0.710 73 0.71073 0.710 73 0.71073 μ , cm⁻¹ 7.49 5.56 5.67 5.54 $D_{
m calcd}$, g cm $^{-3}$ temp, °C 1.450 1.414 1.408 1.422 22 22 22 22 R,a %3.79 4.10 4.12 3.63

Table 5. Crystal, Data Collection, and Refinement Parameters for 5b·2CH2Cl2, 6b, 7, and 8b

 ${}^{a}R = \sum ||F_{0}| - |F_{c}| / \sum |F_{0}|. \ {}^{b}R_{w} = [\sum w(||F_{0}| - |F_{c}|)^{2} / \sum w|F_{0}|^{2}]^{1/2}; \ w^{-1} = \sigma^{2}|F_{0}| + g|F_{0}|^{2}. \ g = 0.004 \ \text{for} \ \mathbf{5b \cdot 2CH_{2}Cl_{2}}, \ 0.002 \ \text{for} \ \mathbf{6b}, \ 0.0002 \ \text{for} \ \mathbf{6b}, \ 0.0002$ 7, and 0.0003 for **8b**. The goodness of fit is defined as $\left[\sum w(|F_0| - |F_c|)^2/(n_0 - n_v)\right]^{1/2}$, where n_0 and n_v denote the numbers of data and variables, respectively.

4.99

1.32

evaporated. the yellow aqueous suspension of **6b** was filtered, washed with water, and dried in vacuo. Yield: 98%.

4.36

1.29

R.b %

 GOF^c

e. Rh(Lal)(PPh3)2Cl (8a) to Rh(Lal)(PPh3)2(NO3) (7). Use of NaNO₃ instead of NaCO₂Me in the above procedure afforded 7. Yield: 94%.

f. $Rh(L_{al})(PPh_3)_2Cl$ (8a) to $Rh(L_{al})(PPh_3)_2(NO_2)$ (8b). Use of NaNO₂ in place of NaCO₂Me in procedure **d** above furnished **8b**. Yield: 98%.

g. $Rh(L_{al})(PPh_3)_2(NO_2)$ (8b) to $Rh(L_{al})(PPh_3)_2Cl$ (8a). To a stirred solution of $Rh(L_{al})(PPh_3)_2(NO_2)$ (50 mg, 0.05 mmol) in ethanol (20 mL) was added 0.3 N aqueous HCl (5 mL). The stirring was continued for 0.5 h. After the organic solvent was evaporated, the residue 8a was extracted with water and finally isolated by filtration. It was washed repeatedly with water and dried in vacuo. Yield: 95%.

h. $Rh(L_{al})(PPh_3)_2(MeCO_2)$ (6b) to $Rh(L_{al})(PPh_3)_2Cl$ (8a). This was achieved by using Rh(Lal)(PPh₃)₂(MeCO₂) in place of $Rh(L_{al})(PPh_3)_2(NO_2)$ in procedure g. Yield: 97%.

i. $Rh(L_{al})(PPh_3)_2(NO_3)$ (7) to $Rh(L_{al})(PPh_3)_2Cl$ (8a). Rh-(Lal)(PPh₃)₂(NO₃) was used instead of Rh(Lal)(PPh₃)₂(NO₂) in procedure g. Yield: 98%.

Reaction of 1 (X = OMe) with RhCl(PPh₃)₃ in the **Absence of HCl.** To a solution of 2-formyl-4-methyl-6-((pmethoxyimino)methyl)phenol (22 mg, 0.08 mmol) in hot ethanol (25 mL) was added RhCl(PPh₃)₃ (50 mg, 0.05 mmol). The mixture was heated to reflux for 0.5 h. Upon cooling, bright yellow crystalline trans-Rh(CO)Cl(PPh₃)₂ separated out. It was collected by filtration, washed thoroughly with cold ethanol, and dried in vacuo. Yield: 36 mg (98%). The same result was obtained irrespective of the X substituent.

X-ray Structure Determinations. Single crystals of 5b. $2CH_2Cl_2~(0.40\times0.30\times0.25~mm^3)$ and **6b** $(0.50\times0.40\times0.35$ mm³), **7** (0.20 × 0.30 × 0.30 mm³), and **8b** (0.20 × 0.20 × 0.35 mm³) were grown by slow diffusion of hexane into dichloromethane and benzene solutions, respectively. To avoid loss of solvent and crystallinity 5b·2CH₂Cl₂ was mounted in a sealed capillary over mother liquor. Cell parameters were determined by a least-squares fit of 30 machine-centered reflections (2 θ = 15-30°). Data were collected by the ω -scan technique in the ranges $3^{\circ} \le 2\theta \le 46^{\circ}$ for **5b·**2CH₂Cl₂, $3^{\circ} \le 2\theta \le 45^{\circ}$ for **6b**, 3° $\leq 2\theta \leq 48^{\circ}$ for 7, and $3^{\circ} \leq 2\theta \leq 45^{\circ}$ for **8b** on a Siemens R3m/V four-circle diffractometer with graphite-monochromated Mo $K\alpha$ radiation ($\lambda = 0.710~73~\text{Å}$). Two check reflections measured after every 198 reflections showed no significant intensity reduction in all cases. All data were corrected for Lorentzpolarization effects, and an empirical absorption $correction^{30}$ was done on the basis of an azimuthal scan of six reflections for each crystal.

In each case the metal atom was located from a Patterson map; the rest of the non-hydrogen atoms emerged from successive Fourier synthesis. The structures were refined by full-matrix least-squares procedures. All the non-hydrogen atoms were refined anisotropically, and the hydrogen atoms of 5b·2CH₂Cl₂, 6b, and 7 were added at calculated positions with fixed $U = 0.08 \text{ Å}^2$. All the hydrogen atoms of **8b** were located by difference Fourier maps and refined with a fixed U= 0.08 Å^2 using a riding model. The highest residuals were 0.33 e Å⁻³ (**5b·**2CH₂Cl₂), 0.92 e Å⁻³ (**6b**), 0.94 e Å⁻³ (**7**), and 0.50 e Å^{-3} (**8b**) near the metal atom. All calculations were done on a MicroVax II computer using the SHELXTL-PLUS program package.³¹ Significant crystal data are listed in Table 5.

4.58

Computation of Chemical Shift Due Ring Currents. The parameters taken from the crystallographic data of 5b. 2CH₂Cl₂, **6b**, **7**, and **8b** are (i) distance of the concerned proton from the centroid (G) of each PPh3 phenyl ring and (ii) the angle between each distance vector and the normal to the plane of the phenyl ring at G. From these parameters the cylindrical coordinates³² ρ and z of the proton involved were calculated in units of the radius of the benzene hexagon. With the help of isoshielding plots²⁰ and ρ , z values the shifts were calculated. The net shifts were obtained after summation of the individual contributions. Further details are given in a dissertation.33

Acknowledgment. We are thankful to the Indian National Science Academy, New Delhi, India, the Department of Science and Technology, New Delhi, India, and the Council of Scientific and Industrial Research, New Delhi, India, for financial support. Affiliation with the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India, is acknowledged.

Supporting Information Available: For Rh(MeLsb)(PPh3)2- $Cl_2 \cdot 2CH_2Cl_2$ (**5b**·2 CH_2Cl_2), $Rh(L_{al})(PPh_3)_2(MeCO_2)$ (**6b**), Rh- $(L_{al})(PPh_3)_2(NO_3)$ (7), and $Rh(L_{al})(PPh_3)_2(NO_2)$ (8b) all bond distances (Tables S1, S6, S11, and S16) and angles (Tables

⁽³⁰⁾ North, A. C. T.; Phillips, D. C.; Mathews, F. A. Acta Crystallogr., Sect. A 1968, A24, 351.

⁽³¹⁾ Sheldrick, G. M. SHELXTL-Plus Structure Determination Software Programs; Siemens Analytical X-ray Instruments Inc., Madison, WI, 1990.

⁽³²⁾ Margenan, H.; Murphy, G. M. The Mathematics of Physics and Chemistry, Van Nostrand: Princeton, NJ, 1956.

⁽³³⁾ Pattanayak, S. Chemistry of New Coordination and Organometallic Compounds of d-Block Elements. Ph.D. Thesis, Jadavpur University, Calcutta, India, 1998.

S2, S7, S12, and S17), anisotropic thermal parameters (Tables S3, S8, S13, and S18), hydrogen atom positional parameters (Tables S4, S9, S14, and S19), and non-hydrogen atomic coordinates and Uvalues (Tables S5, S10, S15, and S20). This

material is available free of charge via the Internet at http://pubs.acs.org.

OM980748E