Photoinduced isomerisation of cis-[M(L-S,O)₂] (M = Pt^{II} and Pd^{II}) complexes of N,N-diethyl-N'-3,4,5-trimethoxybenzoylthiourea: key to preparation of the *trans* isomer

Dirk Hanekom, Jean M. McKenzie, Nocky M. Derix and Klaus R. Koch*

Received (in Cambridge, UK) 4th October 2004, Accepted 11th November 2004 First published as an Advance Article on the web 21st December 2004 DOI: 10.1039/b415306e

In acetonitrile solutions at room temperature, cis-[M(L-S,O)₂] Pt^{II} and Pd^{II} complexes of *N*,*N*-diethyl-*N'*-3,4,5-trimethoxybenzoylthiourea undergo reversible photoinduced isomerisation to the corresponding *trans* isomer upon irradiation with visible light in the 320–570 nm range, the rate and extent of isomerisation being significantly higher for the cis-[Pd(L-*S*,*O*)₂] complex compared to the Pt^{II} analogue; in the dark *trans*-[M(L-*S*,*O*)₂] cleanly reverts back to the cis complex at a rate dependent on the solution temperature, indicating a thermally controlled reverse process.

We have in the last decade extensively studied N,N-dialkyl-N'-aroylthioureas (RRNC(S)NHC(O)R') for their potential analytical and process chemistry applications in the platinum group metals refining industry.¹ These ligands have long been known to readily form stable complexes with softer 1st row transition metal ions as shown from the studies of Hoyer and Beyer² and later König and Schuster.³ Generally these molecules show an overwhelming tendency to coordinate particularly to d⁸ metal ions resulting, upon loss of a proton, in a cis-S,O mode of coordination. We have exploited the favorable physiochemical properties of N,N-dialkyl-N'-acylthioureas (HL) for the convenient reversed-phase high performance liquid chromatographic (rp-HPLC) determination of Pt^{II}, Pd^{II} and Rh^{III} in acid chloride media.⁴ Several years ago we serendipidously isolated a first example of a trans-bis(N,N-di(n-butyl)-N'-naphthoylthioureato)platinum(II) complex in ca. 15% yield.⁵ This is one of only two examples of trans complexes with these ligands of the more than 25 related crystal structures reported in the Cambridge Structural Database.⁶ Despite considerable effort we have not been able to predictably prepare substantial quantities of trans-[Pt(L-S,O)₂] or trans-[Pd(L-S,O)2] complexes with N,N-dialkyl-N'-aroylthioureas by any standard synthetic route.

We here report that the key to obtaining *trans*-[M(L-*S*,*O*)₂] complexes is a photoinduced isomerisation of the *cis*-[M(L¹-*S*,*O*)₂] complexes in acetonitrile solution⁷ as monitored by *rp*-HPLC (M = Pt^{II}, Pd^{II} and *N*,*N*-diethyl-*N'*-3,4,5-trimethoxyben-zoylthiourea (HL¹))†. Repeated injection of freshly prepared solutions (200 µg cm⁻³) of authentic *cis*-[Pt(L¹-*S*,*O*)₂] in MeCN at room temperature, which are kept in the dark over a period of several weeks, show the elution of only a single peak ($t_{\rm R} \sim 10.5 \text{ min}$)‡. Identical solutions of *cis*-[Pt(L¹-*S*,*O*)₂] exposed to ambient daylight show the development of a second peak in the chromatogram within *ca.* 30–60 min of exposure, reaching a

steady state within 25 h. As shown for cis-[Pt(L¹-S,O)₂] in Fig. 1, the area of the second peak at $t_{\rm R} \sim 8.6$ min grows with length of exposure to light, while the major peak area correspondingly decreases, eventually reaching a steady state. The absorbance profiles of the two eluted species as obtained by a diode array photometric detector are virtually identical ($\lambda_{max} = 307$ nm), suggesting that the two peaks are due to cis-trans isomers. Moreover rp-HPLC coupled to electrospray mass spectrometry (ESMS) shows that the two peaks in the chromatogram of cis- $[Pt(L^1-S,O)_2]$ solutions exposed to light have the same values (m/z)846.83 and 846.57, *calc.* for $[C_{30}H_{42}N_4O_8PtS_2 \cdot H]^+ \approx 846.22)$, confirming that the smaller peak corresponds to the trans-[Pt(L1- $(S,O)_2$ complex. Fig. 1 shows the peak area ratio $K_e = [trans]/[cis]$ as a function of the time exposed to ambient light at room temperature. Similar observation can be made for cis-[Pd(L1- $S(O)_2$, although the appearance of the second peak occurs much sooner, and steady state is reached within ca. 1 h.

Experiments show that the rate of photoisomerisation observed for *cis*-[Pt(L^{*n*}-*S*,*O*)₂] or *cis*-[Pd(L^{*n*}-*S*,*O*)₂] at room temperature in dilute acetonitrile solutions is significantly influenced by the relative intensity as well as the wavelength range of the light used for irradiation. Irradiation of solutions of *cis*-[Pt(L¹-*S*,*O*)₂] or *cis*-[Pd(L¹-*S*,*O*)₂] in a water jacketed, 15 cm glass cell using intense white light§ with relatively constant light flux (~ 320 µmol s⁻¹ m⁻²), results in isomerisation of *cis*-[Pt(L¹-*S*,*O*)₂] to a steady state within *ca*. 70 min ($K_e = 0.14 \pm 0.005$), while *cis*-[Pd(L¹-*S*,*O*)₂] reaches a steady state within *ca*. 21 min ($K_e = 0.43 \pm 0.02$). The relatively higher rate of isomerisation for *cis*-[Pd(L¹-*S*,*O*)₂] complexes at constant photon flux is consistent with the fact that Pd^{II} complexes

Fig. 1 K_e (ratio of *translcis* peak areas) for pure *cis*-[Pt(L¹-*S*, *O*)₂] in MeCN (*ca.* 100 µg cm⁻³), as a function of the time exposed to ambient daylight at 20 °C, as monitored by *rp*-HPLC. The inset shows typical chromatograms obtained. Control dark experiments show only one peak.

^{*}krk@sun.ac.za

are generally more kinetically labile compared to those of Pt^{II}. Experiments using optical filters to yield blue, yellow and red light respectively, show that light in the wavelength range of 320–570 nm is responsible for the observed photoisomerisation. Fig. 2 shows the influence of the wavelength range of visible light on the relative K_e values of *cis*-[Pd(L¹-*S*,*O*)₂] being 0.43 \pm 0.02, 0.40 \pm 0.05, 0.20 \pm 0.01 and 0.01 for white, blue, yellow and red light respectively.

When the (yellow) light intensity is increased from ~ 320 to 2280 µmol s⁻¹ m⁻², the K_e value increases from 0.20 to 0.40, at 20 °C for *cis*-[Pd(L¹-*S*,*O*)₂]. Similar trends are obtained for *cis*-[Pt(L¹-*S*,*O*)₂] in MeCN, showing relative K_e values of 0.14 ± 0.01, 0.10 ± 0.01, and 0 for white (and blue), yellow and red light respectively. These experiments confirm that *cis*-[M(L¹-*S*,*O*)₂] (M = Pt^{II}, Pd^{II}) in solution undergo wavelength dependent photoinduced *cis*-*trans* isomerisation in MeCN. In the absence of light the isomerisation is reversed resulting in pure *cis*-[M(L¹-*S*,*O*)₂] again, suggesting a thermally controlled reverse reaction.

Fig. 3 clearly shows that K_e is temperature dependent, and that after an appropriate time in the dark, only the *cis* complex is again found in solution as monitored by *rp*-HPLC. Monitoring the isomerisation by *rp*-HPLC has the disadvantage of a time delay corresponding to the retention-time of the complexes on column. Thus monitoring the reverse *trans* to *cis* thermal reaction of *inter alia cis*-[Pd(L¹-*S*,*O*)₂] after irradiation with white light at various temperatures by means of ¹H NMR, confirms the results obtained with *rp*-HPLC. Fig. 4 shows a typical series of ¹H NMR spectra as a function of time after irradiation, confirming that the resonance at $\delta \sim 7.33$ ppm (assigned to H2 and H6 of the trimethoxybenzoyl moiety) due to the *trans* complex decreases with time and the $\delta \sim$ 7.53 ppm resonance of the *cis* isomer grows to eventually dominate the spectrum again.

In conclusion, although photoinduced geometrical isomerizations of metal complexes particularly with monodentate ligands

Fig. 2 K_e for pure *cis*-[Pd(L¹-*S*,*O*)₂] in MeCN (20 °C) as a function of wavelength of irradiation at relatively constant intensity. \Box white; \blacklozenge blue (cutoff 310 nm); \diamondsuit yellow (465 nm); \blacktriangle red (580 nm) light.

Fig. 3 K_e for *ca.* 200 µg cm⁻³ *cis*-[Pd(L¹-*S*,*O*)₂] in MeCN kept in the dark after irradiation at relatively constant intensity with white light as a function of temperature, as monitored by *rp*-HPLC.

Fig. 4 Expanded ¹H NMR spectra of *cis*-[Pd(L^{1} -*S*,*O*)₂] in MeCN at 20 °C in the dark, showing a *trans* to *cis* isomerisation after irradiation with white light to steady state; ¹H(2,6) trimethoxyphenyl resonances.

are known,⁸ such geometrical isomerisations are rare for chelating ligands, and there is to our knowledge only one well-studied case of a photoinduced *cis–trans* isomerisation observed for the $[Pt(glycinato)_2]$ complex in the literature,⁸ with no examples of comparable Pd^{II} complexes. The well studied facile *cis–trans* isomerism of bis(glycinato)copper(II) complexes,⁹ is apparently *not* photoinduced, occurring spontaneously at ambient temperatures, presumably *via* an energetically favourable ring-twisting mechanism.¹⁰ We are currently investigating in detail the possible mechanisms of the photoisomerisation of *cis*- $[M(L-S,O)_2]$ reported here.

Financial support from the University of Stellenbosch, the NRF (GUN 2046827), THRIP (project 2921) and Angloplatinum is gratefully acknowledged.

Dirk Hanekom, Jean M. McKenzie, Nocky M. Derix and Klaus R. Koch*

Department of Chemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa. E-mail: krk@sun.ac.za; Fax: +27 21 808 3342; Tel: +27 21 808 3020

Notes and references

[†] Ligands **HL**¹, and the corresponding *cis*-[M(L¹-*S*,*O*)₂] complexes (M = Pt^{II}, Pd^{II}) were prepared as previously described,^{1,4} fully characterised by elemental analysis, mp and ¹H and ¹³C NMR in CDCl₃; *cis*-[Pt(L¹-*S*,*O*)₂] was confirmed by single crystal X-ray diffraction (unpublished results; K. R. Koch, J. Miller and L. Barbour, 2003).

 $\ddagger rp$ -HPLC conditions: 150 mm \times 4.6 mm, Luna (end-capped) 5 μ m C18 column, isocratic flow at 1 cm³ min⁻¹, mobile phase: 90% CH₃CN, 10% 0.1 M sodium acetate buffer pH 6, 20 μ L injections, photometric detection.

§ Light source 150 W quartz-halogen lamp from a conventional slide projector; intensity measured with an LI-250 quantum meter (Lincoln, LI-COR, USA). Photographic optical filters blue (80B), yellow (Y2) and red (25A) provided coloured light.

- K. R. Koch, *Coord. Chem. Rev.*, 2001, **216**, 473; K. R. Koch, C. Sacht, T. Grimmbacher and S. Bourne, *S. Afr. J. Chem.*, 1995, **48**, 71.
- L. Beyer, E. Hoyer, H. Hartman and J. Liebscher, Z. Chem., 1981, 21, 81; P. Mühl, K. Gloe, F. Dietze, E. Hoyer and L. Beyer, Z. Chem., 1986, 26, 81.
- 3 K.-H. König, M. Schuster, B. Steinbrech, G. Schneeweis and R. Schlodder, *Fresenius' Z. Anal. Chem.*, 1985, **321**, 457; K.-H. König, M. Schuster, G. Schneeweiss and B. Steinbrech, *Fresenius' Z. Anal. Chem.*, 1984, **319**, 66; M. Schuster, *Fresenius' Z. Anal. Chem.*, 1992, **342**, 791; M. Schuster and M. Schwarzer, *Anal. Chim. Acta*, 1996, **328**, 1; M. Schuster and M. Sandor, *Fresenius' Z. Anal. Chem.*, 1996, **356**, 326.

- 4 A. N. Mautjana, J. D. Miller, A. Gie, S. A. Bourne and K. R. Koch, J. Chem. Soc., Dalton Trans., 2003, 1952.
- 5 K. R. Koch, J. du Toit, M. R. Caira and C. Sacht, J. Chem. Soc., Dalton Trans., 1994, 785.
- 6 F. H. Allen, Acta Crystallogr., Sect. B, 2002, 58, 380–388 CSC Version 5.25 updates (Jul 2004).
- 7 D. Hanekom and K. R. Koch, Presented in part as poster at the 36th International Conference on Coordination Chemistry, Merida, Mexico, 18–23 July, 2004. (Best poster in section award).
- 8 F. Scandola, O. Traverso, V. Balzani, G. L. Zucchini and V. Carassiti, *Inorg. Chim. Acta*, 1967, 1, 76; C. R. Bock and A. E. Koerner von Gustorf, in *Advances in Photochemistry*, eds. J. N. Pitts, G. S. Hammond and K. Gollnick, Interscience Publication, John Wiley & Sons, New York, 1977, vol. 10, pp. 221–310.
- 9 P. O'Brien, J. Chem. Educ., 1982, 59, 1052–1053; S. M. Moussa, R. R. Fenton, B. A. Hunter and B. J. Kennedy, Aust. J. Chem., 2002, 55, 3319.
- 10 C. S. Trautermann, J. Sabolović, A. F. Voegele and K. R. Liedl, J. Phys. Chem., 2004, 108, 2098.