

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 3601-3605

SAR of benzoylpyridines and benzophenones as p38a MAP kinase inhibitors with oral activity

Laszlo Revesz,* Ernst Blum, Franco E. Di Padova, Thomas Buhl, Roland Feifel, Hermann Gram, Peter Hiestand, Ute Manning and Gerard Rucklin

Novartis Institutes for BioMedical Research, Arthritis and Bone Metabolism, CH-4002 Basel, Switzerland

Received 21 January 2004; revised 22 March 2004; accepted 29 March 2004

Abstract—Benzoylpyridines and benzophenones were synthesized and evaluated in vitro as $p38\alpha$ inhibitors and in vivo in several models of rheumatoid arthritis. Oral activity was found to depend upon substitution: 1,1-dimethylpropynylamine substituted benzophenone **10b** (IC₅₀: 14 nM) and pyridinoyl substituted benzimidazole **17b** (IC₅₀: 21 nM) showed highest efficacy and selectivity with ED₅₀s of 9.5 and 8.6 mg/kg po in CIA. © 2004 Elsevier Ltd. All rights reserved.

TNF α inhibitors (Etanercept, Infliximab) and IL-1 inhibitors (Anakinra) have demonstrated clinical efficacy in the treatment of rheumatoid arthritis and have raised the desire to develop small molecules as inhibitors of TNF α and IL-1. Blockade of p38 α^1 is a very attractive option for this purpose, since p38 α inhibitors downregulate production and signalling of TNF α , IL-1 and in addition inhibit COX-2 induction. The value of COX-2 inhibitors (Celebrex, Vioxx) has been proved by their successful use in arthritic diseases.

Since the discovery of the pyridinylimidazoles,² several novel structural classes of p38 inhibitors have been reported.³ During our own efforts directed towards the synthesis of p38 inhibitors distinct from the pyridinyl-

^{*} Corresponding author. Tel.: +41-61-324-3273; fax: +41-61-324-3273; e-mail: laszlo.revesz@pharma.novartis.com

0960-894X/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2004.03.111

imidazoles, we discovered that pyrido[2,3-d]pyrimidine **A** was a weak inhibitor, while the ring-opened benzoylpyridines and benzophenones⁴ **B** were much more potent. We now wish to report on the in vivo and in vitro SAR of **B**.

Benzoylpyridines **6a–c** and **7a,b** (Scheme 1) were prepared from 2,5-dibromopyridine $1,^5$ which was reacted with 2,4-difluoroaniline to render $2,^6$ employing the Buchwald⁷ coupling conditions.

Combining the dilithium anion of 2^6 and aldehydes 3a-c yielded alcohols 4a-c. Jones⁸ oxidation generated the benzoylpyridines 5a-c. Sonogashira⁹ coupling of bromides 5b,c with 1,1-dimethylpropynylamine or 1,1-dimethylpropynol gave rise to 6a-c. Hydrogenation of 6a and 6c over Pd/C gave 1,1-dimethylpropylamine 7a and 1,1-dimethylpropanol 7b.

Benzophenones 10a, 10b, 11–13 (Scheme 2) were prepared from aldehydes 3a–d, which were first reacted at -78 °C with 1-bromo-4-lithiobenzene to provide the corresponding alcohols. Jones⁸ oxidation of the latter provided the bromobenzophenones 8a–d. The dibromides 8c,d reacted regioselectively under Buchwald⁷ coupling conditions with 2,4-difluoroaniline to provide the bromides 9c,d. Sonogashira⁹ coupling of 9c,d with 1,1-dimethylpropynylamine yielded propargyl amines 10a and 10b. Hydrogenation of 10b over Pd/C gave

Scheme 1. (a) Pd(OAc)₂, NaO*t*Bu, R-(+)-BINAP, 2,4-difluoroaniline, 1,4-dioxane, reflux 1 h, 57%; (b) -78 °C, *n*BuLi, (2.2 equiv), **2**,⁶ then add aldehyde **3a–c**; 50–60%; (c) CrO₃, H₂SO₄, acetone, room temperature, 10 min, 48–85%; (d) **6a**: PdCl₂(PPh₃)₂, CuI, 1,1-dimethyl-propynylamine, reflux in Et₃N 1 h, 63%. **6b**: PdCl₂(PPh₃)₂, CuI, Cs₂CO₃, 1,1-dimethylpropynylamine, reflux in DIPEA, 30 min, 84%. **6c**: PdCl₂(PPh₃)₂, CuI, 1,1-dimethylpropynol, Et₃N, DMF, 100 °C, 1.5 h, 70%. (e) Pd/C, H₂, EtOH, 15 min, room temperature, **7a**: 45%, **7b**: 85%.

propylamine **11**. The 4-hydroxy-4-vinylpiperidine substituted benzophenone **12** was obtained by coupling bromide **9d** with vinylstannane **14**⁶ under Stille¹⁰ conditions. Hydrogenation of **12** gave **13**.

Pyridinoylbenzimidazoles **17a,b** (Scheme 3) were prepared from aldehydes **15a,b**.⁶ Combining the latter with the dilithium anion of 2^6 provided alcohols **16a,b**, which upon Jones⁸ or MnO₂¹¹ oxidation rendered the desired benzimidazoles **17a,b**.

Benzoylbenzimidazoles **19a,b** (Scheme 4) were prepared from aldehydes **15a,b**,⁶ which reacted at -78 °C with 1-bromo-4-lithiobenzene to the expected alcohols. The latter were oxidized with MnO₂¹¹ to the corresponding ketones. As Buchwald⁷ reactions failed using the unprotected imidazoles, a SEM protecting group was introduced first. Buchwald reaction of **18a,b** with 2,4difluoroaniline followed by SEM-deprotection yielded **19a** and **19b**.

Table 1 summarizes the $p38\alpha^{12}$ IC₅₀ values and the % inhibition of LPS induced TNF α release in mice upon oral administration. Bulky R₂ substituents such as bromine in **5b** were not favoured, whereas the rigid 1,1-dimethylpropynylamino group in **6a** and **6b** increased p38 α inhibitory potency 5–10 fold to IC₅₀ = 19 and 8 nM. One may speculate that the NH₂ group in R₂

increases potency by interacting with the acidic Asp168 of $p38\alpha$.¹³ The 1,1-dimethylpropynol derivative **6c** was seven times weaker than its NH₂-analogue **6b**. Saturation of the triple bonds in 6a and 6c led to the 1,1dimethylpropylamine 7a and 1,1-dimethylpropanol 7b with three freely rotatable C-C bonds. The effect of increased flexibility in the side chain resulted in an 8-fold loss in potency, with the amine 7a still being three times more potent than the alcohol 7b. Benzophenones and benzoylpyridines showed similar SAR; benzophenones were slightly more potent, when comparing 5a and 6a with 9a and 10a. 1,1-Dimethylpropynylamine substituted benzophenones 10a and 10b showed IC₅₀s of 6 and 14 nM, close to the benzoylpyridine analogues 6a,b. Saturation of the triple bond of 10b to 11 resulted in an 8-fold loss in activity. Introduction of the 1-methyl-4hydroxy-4-vinylpiperidine group yielded the highly potent p38 α inhibitor 12 (IC₅₀ = 1 nM). Reduction of the double bond in 12 produced 13 with increased flexibility of the side chain and an expected (50-fold) loss in affinity.

Pyridinoyl substituted benzimidazoles 17a and 17b as well as the benzoyl substituted benzimidazoles 19a and 19b were strong p38 α inhibitors, 19a being the most potent of the series with IC₅₀ = 0.7 nM. As above, the benzoyl analogues 19a and 19b were 4–10 times more potent than their pyridinoyl analogues 17a and 17b.

Compounds with $IC_{50} < 120 \text{ nM}$ against p38 α were further tested in vivo in the acute LPS induced TNF α release model in the mouse.¹⁴ Unsubstituted benzophenones (R₂ = H) **9a** and **9b** were orally inactive (Table 1), possibly due to their high lipophilicity. The hydrophilicity increasing groups 1,1-dimethylpropynyl-amine, 1,1-dimethylpropynol and 1-methyl-4-hydroxy-4-vinylpiperidine conferred potent oral activity in **6a–c**, **10a,b** and **12**, which inhibited TNF α by 50–95% at 20 mg/kg po. Benzimidazoles **17a,b** and **19a,b** were equally potent, inhibiting TNF α release by 57–93% at 20 mg/kg po. The saturated analogues **11** and **13** were devoid of oral efficacy.

From the 10 compounds with oral activity in the acute LPS/TNF α model,¹⁴ nine also showed good efficacy in the subchronic adjuvant induced arthritis (AIA)¹⁵ model in the rat at a dose of 25 mg/kg b.i.d. po; swelling was inhibited by 36–70% (Table 2). At this stage, compounds demonstrating low body weight increase in the AIA model or inhibition of cytochrome P450 isoenzymes¹⁶ or COX-1 inhibition¹⁷ or genotoxicity¹⁸ were dropped from further profiling, leaving three structures for further investigation in the collagen induced arthritis (CIA)¹⁹ model in the rat: **10b**, **17a** and **17b**. While **17a** proved ineffective in CIA, **10b** and **17b** had ED₅₀ s of 9.5 mg/kg qd and 8.6 mg/kg po qd. The ED₅₀ values compared favourably with two non-pyridinylimidazoles currently in clinical trials.^{20,21}

Pharmacokinetic profiles of **10b** and **17b** in the rat showed marked differences in their volumes of distribution (Vss) and the maximal plasma concentrations

Scheme 2. (a) 1. *n*BuLi, 1,4-dibromobenzene, THF, $-78 \circ$ C, 5 min, then add aldehyde 3a–d; 70–85%; 2. CrO₃, H₂SO₄, acetone, water, room temperature, 10 min, 50–83%. (b) 9a–c: Pd(OAc)₂, NaO*t*Bu, R-(+)-BINAP, 2,4-difluoroaniline, 1,4-dioxane, reflux 20 min; 10–40%. 9d: Pd(OAc)₂, Cs₂CO₃, R-(+)-BINAP, 2,4-difluoroaniline, 1,4-dioxane, reflux 2.5 h, 65%. (c) 10a: PdCl₂(PPh₃)₂, CuI, 1,1-dimethylpropynylamine, reflux in Et₃N, 1 h, 86%. 10b: PdCl₂(PPh₃)₂, CuI, Cs₂CO₃, 1,1-dimethylpropynylamine, reflux in DIPEA/diglyme (2:1) 3.5 h, 76%. (d) Pd/C, H₂, EtOH, 1 h, room temperature, 72%. (e) Pd(PPh₃)₄, toluene, 9d, 14,⁶ 100 °C, 12 h, 33%.

Scheme 3. (a) 2,⁶ *n*BuLi (2.2 equiv), -78 °C, THF, 20 min, then add aldehyde (0.5 equiv), 10 min, -70 °C, 46–76%. (b) 17a: MnO₂, acetone, 30 min, 35 °C, 36%. 17b: CrO₃, H₂SO₄, acetone, water, room temperature, 10 min, 71%.

Scheme 4. (a) *n*BuLi (3.3 equiv), 1,4-dibromobenzene (3.0 equiv), THF, $-78 \,^{\circ}$ C, 15 min, add aldehyde (1 equiv), 10 min, $-70 \,^{\circ}$ C, 80–90% of alcohol. (b) MnO₂, acetone, reflux 10 min, 80–90%. (c) KN(TMS)₂, THF, $-80 \,^{\circ}$ C, 5 min, add SEM-Cl, 0 $^{\circ}$ C, 5 min, **18a,b**: 75–80% (mixture of regioisomers). (d) Pd(OAc)₂, Cs₂CO₃, R-(+)-BINAP, 2,4-difluoroaniline, 1,4-dioxane, reflux 15 min, 77–87%. (e) EtOH/HCl conc. (1:1) 5 min, 60 $^{\circ}$ C, **19a,b**: 80–90%.

 (C_{max}) , while oral bioavailabilities with 46% and 54% as well as terminal half lives with 7 and 4.4 h were similar. Compound **10b** showed a high Vss of 9 L kg⁻¹ and a low C_{max} (@ 1 mg/kg po) of 59 nmol, while **17b** had a low Vss of 1.1 L kg⁻¹ and a high C_{max} (@ 1 mg/kg po) of 607 nmol pointing to high plasma protein binding of **17b**. Both compounds had a satisfactory selectivity profile²² (**17b** was \geq 1000-fold, **10b** \geq 100-fold selective against a panel of 13 kinases).

In summary, we discovered a series of novel benzoylpyridines and benzophenones as $p38\alpha$ inhibitors. Appropriate substitution of these structures leads to compounds with potent oral efficacy in disease models of rheumatoid arthritis.

3604	
Table	1

Benzoylpyridines			Benzophenones			Benzimidazoles		
Nr	p38aaa	TNFα ^b	Nr	p38α ^a	TNFα ^b	Nr	p38aª	TNFα ^b
5a	101	n.t.	9a	11	6	17a	8	91
5b	300	n.t.	9b	38	0	17b	21	57
6a	19	50	10a	6	85	19a	0.7	93
6b	8	91	10b	14	95	19b	5	90
6c	54	88	11	113	0			
7a	160	n.t.	12	1	68			
7b	479	n.t.	13	51	0			

^a IC₅₀(nM).¹²

^b% Inhibition of LPS induced TNFα release in mice at 20 mg/kg po.¹⁴

Table 2

Benzoylpyridines		Benzophenones			Benzimidazoles			
Nr	AIA ^a	CIA ^b	Nr	AIA ^a	CIA ^b	Nr	AIA ^a	CIA ^b
6a	36	n.t.	10a	51	n.t.	17a	40	с
6b	52	n.t.	10b	45	9.5	17b	70	8.6
6c	23	n.t.	12	47	n.t.	19a	46	n.t.
						19b	50	n.t.

^a% Inhibition of swelling in adjuvant induced arthritis rats (AIA)¹⁵ at 25 mg/kg po b.i.d.

^bCIA: collagen induced arthritis in rats.¹⁹ ED₅₀ (mg/kg po).

^c10 mg/kg po: 10% inhibition of swelling.

References and notes

- 1. Chakravarty, S.; Dugar, S. Annu. Rep. Med. Chem. 2002, 37, 177–186.
- Jackson, P. F.; Bullington, J. L. Curr. Topics Med. Chem. 2002, 2, 1011–1020.
- Cirillo, P. F.; Pargellis, C.; Regan, J. Curr. Topics Med. Chem. 2002, 2, 1021–1035.
- Independently, Leo Pharma claimed benzophenones for topical use. Havez, S. E. WO 0283622, *Chem. Abstr.* 2002, *137*, 325234; Horneman, A. M. WO 0190074, *Chem. Abstr.* 2002, *136*, 5794.
- 5. Yamamoto, T.; Ito, T.; Kubota, K. Chem. Lett. 1988, 1, 153–154.
- 6. Revesz, L. WO 0276447, Chem. Abstr. 2002, 137, 279216.
- 7. Muci, A. R.; Buchwald, S. L. Topics Curr. Chem. 2002, 219, 133–209.
- Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. J. Chem. Soc. 1946, 39–45.
- Sonogashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron* Lett. **1975**, *16*, 4467–4470; Sonogashira, K. In *Metal*-Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998, Chapter 5.
- 10. Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508-524.
- Papadopoulos, E. P.; Jarrar, A.; Issidorides, C. H. J. Org. Chem. 1966, 31, 615–616.
- A phosphorylated form of His-p38α MAP kinase (10 ng/ well) of murine origin was used and immobilized GST-ATF-2 as substrate in the presence of 120 μM cold ATP.
- 13. The proposed binding mode of benzoylpyridines and benzophenones to $p38\alpha$ implies, that the carbonyl oxygen forms a crucial H-bridge to the NH of Met109 and the diffuorophenyl ring accommodates in the lipophilic binding pocket near Thr106. Reduction of the ketone to an alcohol or to a methylene group renders molecules inactive (data not shown).

Proposed binding mode of 6b to p38α

- 14. Eight-week old female OF1 mice were dosed orally by gavage with solutions of the compounds in DMSO/ cornoil. One hour after dosing, LPS (20 mg/kg) was injected iv for stimulation of TNF α release into plasma. One hour later blood was collected and TNF α was determined using a mouse specific ELISA.
- 15. AIA: Adjuvant induced arthritis. Female Wistar rats were immunized with Mycobacterium tuberculosis at day 0 and dosed with the compounds twice (b.i.d.) 25 mg/kg po per day from day 14–20. Swelling of the joints was measured on day 20.
- 16. Profiling continued, if IC₅₀ > 2 μM for human P450 isoenzymes CYP1A2, CYP2C9, CYP2D6, CYP3A4.
- 17. Profiling continued, if $IC_{50} > 80 \,\mu\text{M}$ for COX-1.
- 18. Profiling continued, if Ames assay and the Comet assay (in vitro with human lymphocytes) were negative.
- 19. CIA: Collagen induced arthritis. Female (WAGxBUF/F1) rats were immunized intradermally with bovine nasal septum type II collagen emulsified in Freund's incomplete adjuvant. Swelling started ~10 days after immunization. Dosing of compounds started on day 13, when swelling was nearly maximal. Compounds were dosed once (qd) daily for 10 days.

- 20. Haddad, J. J. Curr. Opin. Invest. Drugs 2001, 2, 1070-1076.
- Regan, J.; Breitfelder, S.; Cirillo, P.; Gilmore, T.; Graham, A. G.; Hickey, E.; Klaus, B.; Madwed, J.; Moriak, M.; Moss, N.; Pargellis, C.; Pav, S.; Proto, A.; Swinamer, A.; Tong, L.; Torcellini, C. J. Med. Chem. 2002, 45, 2994– 3008.
- 22. Selectivity profiles were determined in house as described. 23 Kinase (IC_{50} or % inhibition at $10\,\mu M$ for

10b/19b): JNK2 (>10 μ M/>10 μ M); CDK1: (-32%/0%); HER-1 (8.8 μ M/-10%); c-Abl (-36%/-15%); c-Src (-10%/ 0%); Kdr (-33%/-13%); c-Met (1.5 μ M/-34%); FGFR (-16%/0%); c-Kit (-12%/0%); IGF1R (0%/0%); HER-2 (4.4 μ M/-24%); Flt-3 (-11%/n.t.); c-Raf (0%/n.t.).

23. Revesz, L.; Di Padova, F. E.; Buhl, T.; Feifel, R.; Gram, H.; Hiestand, P.; Manning, U.; Wolf, R.; Zimmerlin, A. G. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 2109–2112.