

Tetrahedron Letters 39 (1998) 2569-2570

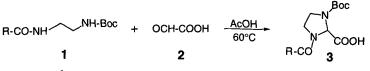
TETRAHEDRON LETTERS

Orthogonally Protected Imidazolidine-2-Carboxylic Acid, a new Proline Surrogate suitable for SPPS.

Loïc René*, Loïc Yaouancq and Bernard Badet

Institut de Chimie des Substances Naturelles-C.N.R.S. 91198 Gif-sur-Yvette, France Received 16 January 1998; accepted 29 January 1998

Abstract : N-Boc-N'-Fmoc-imidazolidine-2-carboxylic acid, easily prepared from N-Boc-N'-Fmocethylenediamine and glyoxylic acid, is a racemic proline surrogate which can be used in Solid Phase Peptide Synthesis. © 1998 Elsevier Science Ltd. All rights reserved.


Differentially protected α -aminoglycines, in particular N- α -Boc-N- α '-Fmoc-diaminoacetic acid, is a promising building block that can be used in the synthesis of α -aminoglycine containing peptides by solid phase peptide synthesis¹. Whereas selective acylation of one amino group turned out to be a good strategy to provide access to "betidaminoacid" containing polymers, introduction of an alkyl group at the same position has met with little success so far². In the course of a search for a general solution to this synthetic problem, we especially looked for the methods susceptible to afford a N,N'-disubstituted diaminoacetic acid as a proline equivalent, suitable for SPPS which would be useful for generation of molecular diversity in combinatorial chemistry. Since the approach optimized³ for the synthesis of N- α -Boc-N- α '-Fmoc-diaminoacetic acid was unsuccessful, new conditions were systematically investigated to obtain differentially protected imidazolidine-2-carboxylic acids.

N,N'-diphenyl ethylenediamine was previously reported to give 1,3-diphenyl imidazolidine-2carboxylic acid upon condensation with glyoxylic acid in alcohol⁴. Similarly, 1,3-dibenzoyl imidazolidine was isolated in modest yield upon reaction of ethylenediamine with aqueous formaldehyde followed by acylation with benzoyl chloride⁵. Finally, 2-alkyl imidazolidines were prepared upon reaction of ethylenediamine with alkylvinylethers in the presence of mercuric benzoate⁶.

We have found that N-acetyl-N'-Boc-imidazolidine-2-carboxylic acid $3a^7$, N-Boc-N'-Zimidazolidine-2-carboxylic acid $3b^8$ and N-Boc-N'-Fmoc-imidazolidine-2-carboxylic acid $3c^9$ are easily obtained using glyoxylic acic monohydrate with N-acetyl-N'-Boc ethylenediamine 1a, N-Boc-N'-Zethylenediamine $1b^{10}$, and N-Boc-N'-Fmoc-ethylenediamine $1c^{11}$, respectively, in acetic acid at 60° C (Scheme 1).

*Fax: (33-1) 69 07 72 47; e-mail: Loic.Rene@icsn.cnrs-gif.fr

0040-4039/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(98)00262-7

a: R = CH₃, b: R = Benzyloxy, c: R = Fluorenylmethyloxy

Scheme 1

Using the pentafluoro-phenyl ester of compound **3c**, the racemic proline surrogate could easily be incorporated into a peptide using the Fmoc-based solid phase synthesis strategy as exemplified by the synthesis of the octapeptide V-S-Q-N-F-(2-imidazolidinyl)-I-V-OH¹² overlapping the Matrix-Capsid cleavage site of the HIV-1 protease natural substrate¹³.

References and notes

Abbreviations: Boc: t-butyloxycarbonyl; Fmoc: 9-fluorenylmethyloxycarbonyl; Z: benzyloxycarbonyl; SPPS: Solid Phase Peptide Synthesis; TFA: trifluoroacetic acid.

- 1. Qasmi, D.; René, L.; Badet, B. Tetrahedron Lett. 1993, 34, 3861-3862.
- 2. Rivier, J.E.; Jiang, G.; Koerber, S.C.; Porter, J.; Simon, L.; Graig, A.G.; Hoeger, C.A. Proc.Natl. Acad. Sci. USA, 1996, 93, 2031-2036
- 3. René, L.; Badet, B. Synthetic Commun. 1996, 26, 3237-3239
- 4. Moehrle, H.; Seidel, C.M. Monatsh. Chem. 1976, 107, 51-58.
- 5. Katrizky, A.R.; Murugan, R.; Luce, H.; Zerner, M.; Ford, G.P. J. Chem. Soc. Perkin Trans 11, 1987, 1695-1700.
- 6. Watanabe, W.H. J. Am. Chem. Soc. 1957, 79, 2833-2836.
- 7. 3a: yield 77%; mp = 118 °C; RMN ¹H (300 MHz, CDCl₃) δ 1.41 (s, 9H), 2.11, 2.19 (s, 3H), 3.70 (m, 4H), 5.70 (m, 1H), 9.63 (bs, 1H); RMN ¹³C (75 MHz, CDCl₃) δ 21.71, 22.18, 28.27, 28.33, 28.42, 43.61, 44.14, 45.76, 69.70, 70.56, 82.24, 169.53, 176.8; Mass spectroscopy (chemical ionization, isobutane) m/z 259 (M+H), 203 (M+H -isobuten), 159 (M+H -Boc);
- 3b: yield 87%; RMN ¹H (300 MHz, CDCl₃) δ 1.45 (s, 9H), 3.70 (m, 4H), 5.14 (m, 2H), 5.58 (bs, 1H), 7.32 (bs, 5H), 9.45 (bs, 1H), 13.3 (b, 1H); RMN ¹³C (75 MHz, CDCl₃) δ 28.30, 44.31, 68.11, 69.76, 82.14, 128.21, 128.65, 135.78; Mass spectroscopy (chemical ionization, isobutane) m/z 351 (M+H), 295 (M+H -isobuten), 251 (M+H -Boc).
- 9. 3c: yield 74%; mp = 168-169 °C; RMN ¹H (300 MHz, DMSO-d₆) δ 1.52 (s, 9H), 3.71 (m, 4H), 4.39 (m, 1H), 4.45 (m, 2H), 5.45 (m, 1H), 7.44 (m, 2H), 7.51 (m, 2H), 7.80 (d, 2H), 8.02 (d, 2H); RMN ¹³C (75 MHz, DMSO-d₆) δ 28.42, 44.48, 47.08, 67.86, 70.16, 80.84, 120.58, 125.74, 127.69, 128.29, 141.29, 144.10, 144.16, 153.45, 170.63; Mass spectroscopy (chemical ionization, isobutane) m/z 439 (M+H), 383 (M+H -isobuten), 339 (M+H -Boc); Pentafluorophenyl ester of 3c: Mass spectroscopy (chemical ionization, isobutane) m/z 605 (M+H), 549 (M+H -isobuten), 505 (M+H -Boc).
- 10. Barker, P.L.; Grendler, P.L.; Rapoport, H. J. Org. Chem. 1981, 46, 2455-2465.
- 11. Adamczyk, M.; Grote, J. Org. Prep. Proceed. Int. 1995, 27, 239-342.
- 12. The synthesis was performed using a Milligen 9050 PepSynthesizer[™] with Fmoc-amino-acid pentafluorophenyl esters. Mass spectroscopy (FAB) m/z: 905 (M+H), 911 (M+Li). The two diastereometric peptides could not be resolved by C₁₈ Reverse-Phase HPLC (CH₃CN-H₂O, 0.05% TFA) used for purification.
- Farmerie, W.G.; Loeb, D.D.; Casavant, N.C.; Hutchinson, C.A.; Egdell, M.A.; Swanstrom, R. Science, 1987, 236, 305-308.