

Bioorganic & Medicinal Chemistry Letters 12 (2002) 1719-1722

## Pyrrolidine-5,5-*trans*-lactams as Novel Mechanism-Based Inhibitors of Human Cytomegalovirus Protease. Part 3: Potency and Plasma Stability

Alan D. Borthwick,\* Anne M. Exall, Terry M. Haley, Deborah L. Jackson, Andrew M. Mason and Gordon G. Weingarten

Department of Medicinal Chemistry CVU UK, GlaxoSmithKline Research and Development, Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK

Received 20 February 2002; revised 15 April 2002; accepted 22 April 2002

Abstract—Mechanism-based inhibitors of HCMV protease, which are stable to human plasma ( $\geq 20$  h) and have single-figure potency in the  $\mu$ M range against HCMV protease, have been developed based on the dansylproline  $\alpha$ -methyl pyrrolidine-5,5-*trans*-lactam nucleus. © 2002 Elsevier Science Ltd. All rights reserved.

We recently reported the design and synthesis of a novel class of mechanism-based inhibitors (1, 2) of the human cytomegalovirus protease (HCMV),<sup>1,2</sup> based on the  $\alpha$ -methyl pyrrolidine-5,5-*trans*-lactam template (Fig. 1). These inhibitors are novel, potent in the nanomolar range and highly selective for the viral enzyme over the mammalian enzymes elastase, thrombin and acetylcho-line esterase.<sup>2</sup> Mechanism of action studies showed that these compounds acylate the nucleophile Ser 132 present in the catalytic triad His, His, Ser at the active site of this viral protease.

These compounds have reactive functionality so they are potentially vulnerable to metabolism. The chemical reactivity of the *trans*-lactam ring will determine the rates of both the non-specific hydrolysis due to the hydrolytic plasma enzymes found in the blood as well as the acylation of HCMV protease. Thus, the goal was to find a compound that would react with the viral enzyme after binding to the active site, but would be sufficiently stable to hydrolysis by the plasma enzymes. Two ways were investigated to increase plasma stability and yet retain potency against the viral protease. One way was to sterically hinder the approach of the hydrolytic plasma enzymes to the lactam carbonyl, the other was to make the lactam carbonyl less reactive by making the

\*Corresponding author. Fax: +44-1438-763616; e-mail: adb3028@ glaxowellcome.co.uk

substituent on the lactam nitrogen less electron with-drawing.

Initially a series of  $\alpha$ -methyl pyrrolidine-5,5-*trans*-lactams with Cbz on the pyrrolidine nitrogen and a range of subsituents on the lactam nitrogen were tested for stability in human plasma (Table 1). The stability range was:

 $CONHMe >> COMe \geq CO_2Me > SO_2Me$ 

The trend was similar to that seen with the mono- $\beta$ -lactam<sup>3</sup> inhibitors of human leukocyte elastase. Increasing steric bulk adjacent to the lactam carbonyl at the C-6 position by introducing a second methyl group gave the gem-dimethyl derivative **3** which was > 6 times more stable than the  $\alpha$ -methyl *trans*-lactam **4**. Similarly





0960-894X/02/\$ - see front matter O 2002 Elsevier Science Ltd. All rights reserved. PII: S0960-894X(02)00294-9

increasing the steric bulk of the acyl functionality on the lactam nitrogen of the  $\alpha$ -methyl *trans*-lactam template with the *tert*-butyl acyl derivative 5 also increased stability to human plasma. However, both 3 and 5 lost in vitro activity against HCMV protease (Table 1). A similar situation has been observed in the mono- $\beta$ -lactam series<sup>4</sup> of HCMV protease inhibitors. Interestingly the cyclopropyl carbonyl compound 6 is more potent and slightly more stable than the methyl carbonyl compound 4 (Table 1). The amide 9 was stable to human plasma as was the phosphonate 10 and the dinitrophenyl derivative 11 (Table 1), but all were inactive against HCMV protease.

To explore this plasma stability versus in vitro activity against HCMV protease, the more active and slightly more stable cyclopropyl acyl derivatives were investigated in both the Cbz and the more active dansylproline  $\alpha$ -methyl pyrrolidine-5,5-*trans*-lactam templates.

Table 1.



| Compd | R                                     | R1 | Human <sup>8</sup><br>plasma stab<br>$t_{1/2}$ min | HCMV<br>protease <sup>2</sup> pNA<br>assay IC <sub>50</sub> (μM) |
|-------|---------------------------------------|----|----------------------------------------------------|------------------------------------------------------------------|
| 3     | COMe                                  | Me | 6.5 h                                              | > 500                                                            |
| 4     | COMe                                  | Н  | 54                                                 | 40                                                               |
| 5     | COCMe <sub>3</sub>                    | Н  | 3.7 h                                              | > 500                                                            |
| 6     | CO-cyclopropyl                        | Н  | 1.4 h                                              | 9                                                                |
| 7     | $\dot{CO}_2\dot{M}e^{-1}$             | Н  | 50                                                 | 148                                                              |
| 8     | $SO_2Me$                              | Н  | < 5                                                | $\sim$ 500                                                       |
| 9     | CONHMe                                | Н  | > 24 h                                             | > 500                                                            |
| 10    | $PO(OMe)_2$                           | Н  | > 24 h                                             | > 500                                                            |
| 11    | Ph2,4-(NO <sub>2</sub> ) <sub>2</sub> | Н  | > 24 h                                             | $\sim$ 500                                                       |

Cbz

2-Thiazole

Table 2.

17

Steric hindrance was achieved by substitution of the cyclopropyl ring with methyl groups. The stability of these derivatives to plasma increased cyclopropyl < methylcyclopropyl < *cis*-dimethyl *cis*-cyclopropyl < tetramethylcyclopropyl. Methylation in the cyclopropyl ring gave 12 and 13 with increased stability to plasma, but the dimethyl compound lost some potency, and the tetramethyl analogue 14 although stable to plasma lost all activity (Table 1). A similar increase in stability to human plasma and decrease in potency was seen in the dansylproline series: cyclopropyl > methylcyclopropyl > cis-dimethyl cis-cyclopropyl > tetramethylcyclopropyl with the dimethyl analogue 19 in the dansylproline series having the best profile ( $K_i$  1.1  $\mu$ M

In contrast, replacing the cyclopropyl carbonyl substituent in the Cbz series with an amide, an electronwithdrawing aryl or heterocyclic ring produced stable compounds but they were inactive against HCMV protease. However, the increase in potency in going from the Cbz to the dansylproline series seen with the cyclopropyl carbonyl derivatives was developed for these plasma stable compounds (Table 2). Thus the N-methylamide 9 and N-benzylamide 15 were inactive  $(IC_{50} > 500 \,\mu\text{M})$  in the Cbz series, but in the dansylproline series both the N-methylamide 21 and Nbenzylamide 22 had low µM activity against HCMV protease in the order  $CH_2Ph > Me$ .

and  $t_{1/2} = 20$  h in plasma).

Electronegative aromatic heterocycles have been used<sup>5</sup> to activate peptidyl ketones towards nucleophilic addition by the active-site serine hydroxyl of human neutrophile elastase and prolyl endopeptidase. The potency of peptidyl  $\alpha$ -keto heterocyclic inhibitors of the mammalian serine protease HLE have been correlated<sup>5a,c</sup> with the electon-withdrawing character  $\sigma_I$  of the heterocyclic group. Although the plasma stable para-nitrophenyl analogue 16 in the Cbz series was inactive the corresponding derivative 23 in the dansylproline series was weakly active (IC<sub>50</sub> 41  $\mu$ M). The stable thiazole was

Dansylproline

2-Thiazole

| Compd | R                              | Human <sup>8</sup><br>plasma stab<br>$t_{1/2}$ min | HCMV <sup>2</sup><br>Protease<br><i>p</i> NA assay | Compd | R                              | Human <sup>8</sup><br>plasma stab<br>$t_{1/2}$ min | HCMV protease <sup>2</sup> $p$ NA assay ( $\mu$ M) |             |  |
|-------|--------------------------------|----------------------------------------------------|----------------------------------------------------|-------|--------------------------------|----------------------------------------------------|----------------------------------------------------|-------------|--|
|       |                                |                                                    | IC <sub>50</sub> (µM)                              |       |                                |                                                    | IC <sub>50</sub>                                   | $K_{\rm i}$ |  |
| 6     | CO-cyclopropyl                 | 1.4 h                                              | 9                                                  | 2     | CO-cyclopropyl                 | 5 h                                                | 0.34                                               |             |  |
| 12    | CO-cyclopropyl-Me              | 2.6 h                                              | 16                                                 | 18    | CO-cyclopropyl-Me              | 2.5 h                                              | 1.4                                                |             |  |
| 13    | CO-(Z) diMecyclopropyl         | 9.8 h                                              | 72                                                 | 19    | CO-(Z) diMecyclopropyl         | 20 h                                               | 5.1                                                | 1.1         |  |
| 14    | CO-Me <sub>4</sub> cyclopropyl | 33 h                                               | > 500                                              | 20    | CO-Me <sub>4</sub> cyclopropyl | > 24 h                                             | >100                                               |             |  |
| 9     | CONHMe                         | > 24 h                                             | > 500                                              | 21    | CONHMe                         | 12 h                                               | 22                                                 |             |  |
| 15    | CONHCH <sub>2</sub> Ph         | 12 h                                               | 250                                                | 22    | CONHCH <sub>2</sub> Ph         | > 33 h                                             | 6.6                                                | 2.6         |  |
| 16    | Ph-4-NO <sub>2</sub>           | 40 h                                               | $\sim$ 500                                         | 23    | $Ph-4-NO_2$                    |                                                    | 41                                                 |             |  |
| 17    | 2-Thiazole                     | 44 h                                               | $\sim$ 500                                         | 24    | 2-Thiazole                     | > 50  h                                            | 2.1                                                | 0.4         |  |

Me



## Figure 2.

inactive in the Cbz series 17 but in the dansylproline series 24 had a  $K_i$  of  $0.4 \,\mu\text{M}$  (IC<sub>50</sub>  $2.1 \,\mu\text{M}$ ). In the dansylproline series the greater potency of the thiazole over the *para*-nitrophenyl derivative is reflected in the greater electon-withdrawing character of the thiazole group  $\sigma_I = 3.4$  over the *para*-nitrophenyl group  $\sigma_I = 2.3.^6$ 

Examples of the three classes of compounds [the dimethylcyclopropyl carbonyl compound **19** ( $K_i$  1.1  $\mu$ M), the amide **22** ( $K_i$  2.6  $\mu$ M) and the thiazole **24** ( $K_i$  0.4  $\mu$ M)], which were stable to human plasma ( $\geq$ 20 h) and had single figure potency in the  $\mu$ M range against HCMV protease were investigated by ESI-MS to study their mechanism of action and to see how quickly they were turned over by the enzyme.

The ESI-MS study of these three compounds, incubated with  $\delta$ -Ala protease, has shown three modes of action. The *N*-benzylamide **22** inhibits without acylation, the dimethylcyclopropyl carbonyl compound **19** acylates within 30 min and the enzyme is restored after 24 h, and the thiazole **24** also acylates within 30 min but the enzyme remains almost completely acylated for 24 h (Fig. 2). The thiazole **24** is thus the most potent



Scheme 1. (a) LiHMDS (1.5 equiv)/THF,  $-78^{\circ}$  then RCOOCOCMe<sub>3</sub> (2 equiv) -78 to 0 °C, 2h; (b) *p*-NO<sub>2</sub>-bromobenzene or 2-bromothiazole, CuCl, K<sub>2</sub>CO<sub>3</sub>, TDA-1, xylene; (c) NaH (0.2–0.5 equiv)/THF, then RN=C=O (1.3–2.5 equiv), 2h; (d) H<sub>2</sub>, 10% Pd/C, IPA: HCl/Et<sub>2</sub>O; (e) 2-(4-methoxybenzyloxycarbonyloxyimino)-2-phenylacetonitrile, Et<sub>3</sub>N, aq dioxan; (f) TFA/rt; (g) dansylproline, TBTU, HOBT, *i*Pr<sub>2</sub>Net, MeCN, DMF.

 $(K_i \ 0.4 \ \mu\text{M})$  and stable  $(t_{1/2} > 50 \ h$  in plasma) acylating inhibitor of HCMV protease and is essentially stable to turnover by the viral enzyme during 24 h.

## Chemistry

The cyclopropyl acyl derivatives 2, 6, 12-14, 18-20 were prepared by acylating the anion of the required lactam 25 or 26, with the corresponding mixed anhydride or acid chloride,<sup>1,2</sup> while the amides 9, 15, 21, 22 were prepared by reacting the lactam nitrogen with the corresponding isocyanate under base-catalysed conditions (Scheme 1). The aryl 16, 23, or heterocyclic ring 17, 24, derivatives were prepared by reacting the lactam nitrogen with the corresponding aryl or heterocyclic bromide under Cu catalysis using modified Goldberg conditions.<sup>7</sup> The plasma stable thiazole derivative **17** was prepared in 67% yield, however when the modified Goldberg reaction was carried out on the dansylproline translactam 26 only a 3% yield of thiazole 24 could be obtained, possibly due to co-ordination of Cu by the dansylproline moiety. The Cbz group could not be removed by hydrogenolysis from the more readily prepared Cbz analogue 17, hence a more labile protecting group was used. The Cbz group was removed from the lactam 25 and the pyrrolidine nitrogen protected by a *p*-methoxybenzyloxy group to give **27**. The thiazole was then added in the usual way,<sup>7</sup> in 53% yield, and the protecting group removed with TFA to give the proline 28. Coupling with dansylproline gave 24 (Scheme 1).

## **References and Notes**

1. Borthwick, A. D.; Angier, S. J.; Crame, A. J.; Exall, A. M.; Haley, T. M.; Hart, G. J.; Mason, A. M.; Pennell, A. M. K.; Weingarten, G. W. *J. Med. Chem.* **2000**, *43*, 4452.

2. Borthwick, A. D.; Crame, A. J.; Ertl, P. F.; Exall, A. M.; Haley, T. M.; Hart, G. J.; Mason, A. M.; Pennell, A. M. K.; Singh, O. M. P.; Weingarten, G. W.; Woolven, J. M. J. Med. Chem. **2002**, 45, 1.

3. Shah, K. S.; Dorn, C. P.; Finke, P. E.; Hale, J. J.; Hagmann, W. K.; Brause, K. A.; Chandler, G. O.; Kissenger, A. L.; Ashe, B. M.; Weston, H.; Knight, W. B.; Maycock, A. L.; Dellea, P. S.; Flechter, D. S.; Hand, K. M.; Mumford, R. A.; Underwood, D. J.; Doherty, J. B. *J. Med. Chem.* **1992**, *35*, 3745.

4. Borthwick, A. D.; Weingarten, G. G.; Haley, T. M.; Tomaszewski, M.; Wang, W.; Hu, Z.; Bedard, J.; Jin, H.; Yeun, L.; Mansour, T. S. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 365.

 (a) Edwards, P. D.; Wolanin, D. J.; Andisik, D. W.; Davis, M. W. J. Med. Chem. 1995, 38, 76. (b) Tsutsumi, S.; Okonogi, T.; Shibahara, S.; Ohuchi, S.; Hatsushiba, E.; Patchett, A. A.; Christensen, B. G. J. Med. Chem. 1994, 37, 3492. (c) Chan, A. W. E.; Golec, J. M. C. Bioorg. Med. Chem. 1996, 4, 1673.
Taylor, P. J.; Wait, A. R. J. Chem. Soc., Perkin Trans. 2 1986, 11 1765.

7. Greiner, A. Synthesis 1989, 312.

8. Each compound was incubated in fresh human plasma at a concentration of 10 mM and aliquots deproteinated with acetonitile at the following times 0, 15, 30, 60, 120, 240 min, and 22 h. The samples were then assayed individually by LC–MS on an API-300 using an APCI source and single-ion monitoring.