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ABSTRACT: o-Alkylphenyl ketones undergo a C–C 
bond forming carboxylation reaction with CO2 simply 
upon irradiation with UV light or even solar light.  The 
reaction presents a clean process exploiting light energy 
as the driving force for carboxylation of organic mole-
cules with CO2. 

C–C bond forming carboxylation reactions of organic 
molecules with carbon dioxide (CO2) have gained con-
siderable attention in organic synthesis.1  Most of con-
ventional methods including Grignard reactions and 
transition metal catalysis use stoichiometric amounts of 
reducing agents or bases.2-4  The major driving force of 
these carboxylation reactions derives from the chemical 
reagents. 	
 Alternatively, electro-5 or photo6-assisted 
reductive carboxylation reactions have been devised.  
Electron donors like triethylamine were used as the sac-
rificial reducing agents in most cases.  Herein, we report 
a unique and clean carboxylation reaction which uses no 
sacrificial reagent but light energy as the driving force; 
simply upon UV irradiation of a DMSO solution of o-
alkylphenyl ketones, CO2 is efficiently incorporated to 
produce o-acylphenylacetic acids. 

Photoirradiation of o-alkylphenyl ketones induces an 
endergonic isomerization to highly energetic o-
quinodimethanes through the Norrish Type II photoreac-
tion (referred to as “photoenolization”).7  The resulting 
o-quinodimethanes are highly reactive 1,3-dienes which 
facilely participate in a [4+2] cycloaddition reaction 
with various dienophiles like acrylates and aldehydes.8  
We questioned whether the o-quinodimethanes might 
react with CO2.  Such a photoreaction-based process 
would present a clean carboxylation reaction driven by 
light.9  With this idea in mind, a reaction of o-
methylbenzophenone (1a) with CO2 was examined using 
an LED lamp (365 nm) as the light source under various 
reaction conditions.  We discovered that the carboxyla-
tion reaction was effected by a remarkably simple opera-
tion.  When a DMSO solution of 1a (0.04 M) was irradi-
ated under an atmospheric pressure of CO2, carboxylic 
acid 2a was cleanly produced (eq 1).  Simple acid-base 
extraction of the reaction mixture afforded 2a in a pure 
form in 89% yield.  Whereas N,N-dimethylacetamide 

(DMA) was also effective for the production of 2a, less 
polar solvents like benzene and acetonitrile failed to af-
ford 2a, and produced benzocyclobutenol 3 instead.10 

 
Shown in Scheme 1 is a probable mechanistic scenario 

for the photochemical carboxylation reaction of 1a.  
Firstly, 1a absorbs a photon to produce the excited state.  
The oxygen of the excited carbonyl group abstracts a 
hydrogen of the ortho methyl group to furnish a 1,4-
biradical species A, which possesses a phenylene linker 
inbetween.  Such a biradical species spontaneously gen-
erates the o-quinodimethane B.  Whereas the (Z)-isomer 
rapidly undergoes 1,5-hydrogen shift to revert to the 
starting ketone 1a, the (E)-isomer possesses a lifetime 
long enough to react with CO2.  The 1,3-diene moiety of 
(E)-B undergoes a [4+2] cycloaddition reaction with the 
Scheme 1. Proposed Mechanism 
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C–O double bond of CO2 to afford the six-membered 
cycloadduct C.  Finally, a ring opening reaction gives 
the carboxylic acid 2a. 

It is possible to generate the assumed o-
quinodimethane intermediate (E)-B from benzocyclobu-
tenol 3 by a thermal torquoselective11 ring-opening reac-
tion with outward rotation of the hydroxy group.12  We 
thus examined a thermal reaction of 3 with CO2 in the 
absence of light to gain a mechanistic insight (Scheme 
2).  When a DMSO solution of 3 was simply heated at 
110 °C under an atmospheric pressure of CO2, the car-
boxylated product 2a was produced in 17% yield togeth-
er with the ring-opening product 1a (50%).  This result 
indicates that o-quinodimethane (E)-B thermally reacts 
with CO2.  Although the simple yield of trapping of (E)-
B with CO2 is low, the isomerization of 1a back to (E)-B 
repeats under photoirradiation conditions until 1a is ful-
ly carboxylated. 
Scheme 2. A thermal reaction of 3 with CO2 

 

A wide variety of dienophiles including aldehydes and 
ketones undergo a [4+2] cycloaddition reaction with 1,3-
dienes.13 To the best of our knowledge, however, a [4+2] 
cycloaddition reaction in which CO2 acts as the dieno-
phile is unprecedented in literature14 probably due to the 
much lower reactivity of CO2.  Therefore, we next inves-
tigated the energetics of the cycloaddition step using 
DFT calculations15 to assess the validity of the proposed 
[4+2] cycloaddition pathway (Figure 1a).  The six-
membered transition state could be located with the rea-
sonable activation energy (ΔG‡ = +17.1, ΔH‡ = +6.9 
kcal/mol) and the transition state connected to the cy-
cloadduct C at the local minimum, which was thermo-
dynamically more stable than the o-quinodimethane (E)-
B and CO2 (ΔG = -11.7, ΔH = -24.5 kcal/mol).  These 
results demonstrate the thermal [4+2] cycloaddition re-
action of o-quinodimethane (E)-B with CO2 is energeti-
cally feasible. 

The whole process from 1a to 2a is a formal insertion 
reaction of CO2 into the benzylic C–H bond.  It should 
be noted that DFT calculations suggest the insertion pro-
cess is energetically uphill (ΔG = +17.3, ΔH = +6.6 
kcal/mol, Figure 1b).  Nevertheless, intervention of the 
considerably endergonic photoisomerization of 1a to 
(E)-B (ΔG = +38.2, ΔH = +38.0 kcal/mol) energetically 
allows the incorporation of CO2 without any additional 

reagents.  Light energy gained in the photoenolization 
step serves as the driving force for the whole process. 

 

Figure 1. (a) Energy diagram of [4+2] cycloaddition be-
tween (E)-B and CO2. (b) Energy diagram of 1a, (E)-B and 
2a. These structures are optimized with the B3LYP-D/6-
311+G(d,p) level of theory using polarizable continuum 
model (PCM, solvent = DMSO).  The numbers are Gibbs’ 
energy (kcal/mol, at 298 K, 1 atm) and the numbers in pa-
rentheses are enthalpies (kcal/mol). 

Various o-alkylphenyl ketones 1 underwent the car-
boxylation reaction with an atmospheric pressure of CO2 
at room temperature (Table 1).16  Alkyl o-tolyl ketones 
1b and 1c (R1 = alkyl) afforded the carboxylic acid 2b 
and 2c in good yields.  Functional groups like chloro, 
fluoro, hydroxyl and acetal groups were tolerated on the 
aromatic ring (2f-i).  Bis(o-tolyl) ketone (1j) underwent 
monocarboxylation selectively (2j).  In case of substrate 
1k having a methyl group at the benzylic position, a 
ring-closing reaction forming the corresponding benzo-
cyclobutenol competed with the [4+2] cycloaddition 
with CO2, lowering the yield of the carboxylated product 
2k (33%).  Nonetheless, addition of KOH (10 mol %) 
promoted the reversion of the benzocyclobutenol to the 
starting ketone,17 improving the yield of the carboxylat-
ed product 2k to 71% (entry 10).  Sterically more con-
gested ketones like 2-isopropylphenyl ketone and 2,4,6-
trimethylphenyl ketone failed to give the carboxylated 
products.  The 2,5-dimethylphenyl ketone 1l underwent 
site-selective carboxylation at the 2-position (ortho to 
the carbonyl group) (2l).  The methoxy-substituted ke-
tone 1m and the trifluoromethyl-substituted ketone 1n 
also afforded the carboxylated products, although a 
longer reaction time (4 h) was required for 1n. 
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Table 1. Photocarboxylation of 1 with CO2
a 

 

a Reaction conditions: 1 (0.20 mmol), CO2 (1 atm), DMSO (5 mL), UV light (365 nm, LED 
lamp), rt, 2 h.  b Isolated yield.  c 1 mL DMSO was used.  d 10 mL DMSO was used.  e Acetal 1i 
was used as the substrate.  The crude reaction mixture was treated with an aqueous H2SO4 solution 
(2M) at rt for 1.5 h. f KOH (10 mol %) was added and the reaction was conducted for 5 h. g Reac-
tion time = 4 h. 

Solar light also effected the present carboxylation re-
action (eq 2).  A DMSO solution (5 mL) of ketone 1a 
(0.20 mmol) was placed in an ordinary Pyrex® Erlen-
meyer flask (100 mL) filled with CO2 (1 atm).  The flask 
was then put on a rooftop on a sunny day to be irradiated 
with solar light.  After 7 h (total amount of solar radia-
tion was 4.2 kWh/m2), acid-base extraction of the reac-
tion mixture was conducted to isolate analytically pure 
carboxylic acid 2a in 72% yield. 

   
The present carboxylation reaction provides a simple 

and straightforward access from readily available mate-
rials (o-alkylphenyl ketones, CO2, and hydrazine) to 2,3-
benzodiazepines, which constitute a versatile pharmaco-
phore of various biologically active compounds includ-
ing Tofisopam and Girisopam.18  Initially, carboxylation 
of 1a was conducted under the standard reaction condi-
tions, and then hydrazine was added to the reaction mix-
ture directly (Scheme 3).  Subsequent treatment with an 

aqueous HCl solution (2N) in-
duced condensation to furnish 2,3-benzodiazepine 4 in 
72% yield. 
Scheme 3. Synthesis of 2,3-benzodiazepine 4 

 
In conclusion, o-alkylphenyl ketones undergo a C–C 

bond forming carboxylation reaction with CO2 by ex-
ploiting UV light or even solar light as the driving force.  
The reaction presents an interesting example of usage of 
light energy for carboxylation of organic molecules with 
CO2. 
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