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Abstract: A new chrial organosulfide was synthe-
sized through an unexpected Wagner–Meerwein re-
arrangement. This organosulfide could catalyze the
epoxidation reaction of various aromatic aldehydes
smoothly with benzyl bromide to give trans-diaryl
epoxides in satisfactory yields (60–84%) with excel-
lent diastereoselectivities (trans:cis=95:5–100:0)
and good to excellent enantioselectivities (86–96%
ee).
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In the last decade, organocatalysis has undergone
great advances and become a powerful tool for the
synthesis of important optically active building
blocks.[1] It is well known that chiral epoxides are one
of the most important synthetic building blocks owing
to their versatile chemical transformations and signifi-
cant biological activities. Recently, the chiral ylide
route has become one of the most important strat-
egies for optically active epoxides because it combines
the formation of a carbon-carbon bond and an epoxi-
dation into one reaction.[2–6] Although there are many
reports on employing chiral sulfides to catalyze epoxi-
dation reactions via sulfonium ylides, very successful
cases are still limited.[2a,3–6] Aggarwal et al. found that
chiral sulfonium ylides could be formed by the reac-
tion of sulfides with diazo compounds under the catal-
ysis of Cu ACHTUNGTRENNUNG(acac)2 or Rh2ACHTUNGTRENNUNG(OAc)4, affording an elegant
synthesis of trans-diaryl epoxides in high yields with
excellent distereoselectivities and enantioselectivities
(up to 94% ee).[3] In these processes, although novel
sulfides were used as organocatalysts, metal com-
plexes were also neccessarily employed.[1b,2a,3] Dai�s
group reported a camphor-derived sulfide as an orga-

nocatalyst to undergo the epoxidation reaction, fur-
nishing trans-stilbene oxides with moderate enantio-
metric excesses (about 74% ee).[4] Metzner et al. suc-
cessfully developed epoxidations catalyzed by C2-sym-
metrical thiolanes to give trans-diaryl epoxides with
excellent enantioselectivities (up to 96% ee).[5] How-
ever, the diastereoselective excesses are 66–88% in
most cases.[5] Goodman�s group also utilized C2-sym-
metrical chiral sulfides to catalyze asymmetric epoxi-
dation, and a couple of good examples, the trans-2,3-
diphenyl epoxide with 97% ee and trans-2-(4-fluoro-
benzenyl)-3-phenyl epoxide with 98% ee were ob-
tained.[6] Neverthless, the yields of the two epoxides
are only 41% and 19%, respectively. Therefore, it is
still a challenge to find new organosulfur catalysts for
epoxidations to achieve not only excellent enantiose-
lectivities but also excellent diastereoselectivities.

Initially, cheap d-camphor was chosen as a starting
material to undergo oxidation with selenium dioxide,
reaction with methylmagnesium iodide, and another
oxidation with lead tetraacetate, leading to diketone 3
in a satisfactory yield similar to that reported in the
literature (Scheme 1).[7] Then it was found that dike-
tone 3 could react stereoselectively with sodium boro-
hydride to give diol 4 as major product in a reasona-
ble yield. After the mesylation of 4 and the successive
nucleophilic substitution of dimesylate 5 with sodium
sulfide nonahydrate in DMSO at 100–105 8C, we iso-
lated desired chiral organosulfide 6 in 37% yield as
major product and an unkown liquid. The configura-
tions of the two carbons connected with two hydroxy
groups, respectively, in diol 4 should be opposite to
the configurations of that connected to sulfur in orga-
nosulfide 6 due to the SN2 reaction initiated by sulfide
anion.[5] The structure of organosulfide 6 was deduced
from its oxide 7 by single crystal X-ray diffraction.[8a]

Because the spot of the unkown liquid on TLC after
exposure to iodine vapor is very close to the spot of
organosulfide 6, the 1H NMR spectrum of the liquid
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is analogous to that of 6 and the molecule weight of
the liquid is equal to that of 6 according to mass spec-
tra data, we presumed that the liquid might be an
isomer of organosulfide 6. Thus, the reaction of the
liquid with benzyl bromide and silver tetrafluorobo-
rate was perfomed at room temperature, and the ex-
pected sulfonium salt 9 was obtained in 87% yield. Fi-
nally, the unkown liquid was determined to be orga-
nosulfide 8 by single crystal X-ray diffraction of its
salt 9.[8b]

By lowering the temperature in the reaction of di-
mesylate 5 with sodium sulfide from 100–105 8C to
65–70 8C,[5c] the yield of organosulfide 6 was increased
to 55%. With the novel organosulfide 6 in hand, we
examined the epoxidation reaction of benzaldehyde
10a with benzyl bromide under the catalysis of orga-
nosulfide 6. It was found that when sodium hydroxide
or potassium hydroxide and tetrabutylammonium
iodide (TBAI) were employed, respectively, as a base
and an additive for halogen exchange and phase-
transfer catalysis,[5b] organosulfide 6 could catalyze
the epoxidation reaction smoothly in MeCN-H2O (9:1
v/v) at room temperature to give desired diphenyl ep-
oxide 11a in good yields with excellent trans diaste-
reoselectivities (entries 5 and 6, Table 1). However,
the enantioselectivities were rather low under various
reaction conditions. (Table 1).

Owing to the poor enantioselectivities of the epoxi-
dation catalyzed by chiral organosulfide 6, we turned
our attention to chiral organosulfide 8. The organosul-
fide 8 was a Wagner–Meerwein rearrangement prod-
uct from dimesylate 5. The quartenary carbon adja-
cent to the secondary carbon cation in 12 might pro-
mote a 1,2-carbon shift to form a more stable tertiary
carbon cation as in 13 (Scheme 2). We improved the

rearrangement reaction by raising the reaction tem-
perature and decreasing the amount of sodium sulfide
in the nucleophilic substitution, and found that when
the reaction of dimesylate 5 with sodium sulfide nona-
hydrate was performed in DMF at 140–150 8C and the
amount of sodium sulfide nonahydrate was decreased
from about 2 equiv. to about 1 equiv., the organosul-
fide 8 could be obtained as major product in a yield
of 41% with the organosulfide 6 in 13% yield in the
two-step sequence (Scheme 3).

Scheme 1. Synthesis of chiral organosulfide 6.

Table 1. Optimization of the asymmetric epoxidation cata-
lyzed by organosulfide 6.[a]

Entry Solvent (9:1
v/v)

Base Yield
[%][b]

trans/
cis[c]

ee
[%][d]

1 t-BuOH/H2O NaOH 54 98:2 9
2 i-PrOH/H2O NaOH 50 98:2 11
3 MeCN/H2O Cs2CO3 trace –[e] –[e]

4 MeCN/H2O K2CO3 trace –[e] –[e]

5 MeCN/H2O NaOH 78 99:1 19
6 MeCN/H2O KOH 80 99:1 15

[a] Reaction temperature was 20–25 8C and reaction time
was 40 h. Other conditions are similar to the general pro-
cedure for epoxides in Experimental Section.

[b] Isolated yields.
[c] Determined by 1HNMR or GC.
[d] Enantiomeric excesses of trans isomers were determined

by chiral HPLC using a Chiracel OD-H column.
[e] Not determined.
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With the new organosulfide 8 in hand, we chose
benzaldehyde 10a as a model substrate to probe the
reaction conditions for asymmetric epoxidation.
When t-BuOH/H2O (9:1 v/v), sodium hydroxide and
TBAI were employed as solvent, base and additive,
respectively, we were pleased to find that organosul-
fide 8 could catalyze the epoxidation reaction of ben-
zaldehyde 10a readily with benzyl bromide to give the
desired diphenyl epoxide 11a in a moderate yield
with excellent diastereoselectivity and good enantio-
selectivity (entry 1, Table 2). Encouraged by this
result, we examined other solvents in the reaction.
Using i-PrOH/H2O (9:1 v/v) as solvent led to similar
yield, diastereoselectivity and enantioselectivity
(entry 2, Table 2). To our delight, when MeCN/H2O
(9:1 v/v) was employed as a solvent, both the yield
and the enantioselectivity were improved remarkably
(entry 3, Table 2). The effect of bases on yields was
also studied. Using potassium hydroxide led to a simi-
lar yield, diastereoselectivity and enantioselectivity as
those using sodium hydroxide (entries 3 and 4,
Table 2). When weak bases such as cesium carbonate
and potassium carbonate were employed, only a trace
amount of trans-diphenyl epoxide 11a was obtained
(entries 5 and 6, Table 2). As compared to the 10
mol% loading, using 20 mol% of organosulfide 8 led
to a slight decrease of enantioselectivity while there
was a slight increase in yield (compare entries 3 and
8, Table 2). When the reaction temperature was de-
creased from room temperature to 0 8C, the epoxida-
tion reaction proceeded slowly, and no significant in-

crease of the ee value was observed (entry 9, Table 2).
It was further found that without TBAI, both the
yield and enantioselectivity of the epoxidation were
decreased (compare entries 3 and 10, Table 2). Thus,
the optimal reaction conditions were as follows: the
reaction was performed at room temperature, the sol-
vent was CH3CN/H2O (9:1 v/v), the base was sodium
hydroxide, TBAI was employed as an additive and
the amount of organosulfide 8 was 10 mol%.

After the optimal reaction conditions were estab-
lished, various aromatic aldehydes 10a–i were exam-
ined in the asymmetric epoxidation. It was found that
organosulfide 8 at 10 mol% loading could catalyze
the epoxidation of aromatic aldehydes 10a–i smoothly
with benzyl bromide via a chiral sulfonium ylide,
giving the desired trans-diaryl epoxides 11a–i with sat-
isfactory yields (60–84%) in 40 h (entries 1–9,
Table 3). Almost solely trans isomers of epoxides
were obtained in most cases for the aromatic alde-
hydes 10a–i. Moreover, various aromatic aldehydes
could result in good to excellent enantioseletivities
(88–96% ee) and among them, 4-methylbenzaldehyde
led to the highest enantioselectivity (entries 1–9,
Table 3). For the asymmetric epoxidation of bezalde-
hyde 10a with benzyl bromide, the chiral sulfide 8 as
an organocatalyst could result in both excellent enan-
tioselectivity (93% ee) and excellent diastereoselectiv-

Scheme 2. Simplified scheme of the rearrangement to form
organosulfide 8.

Scheme 3. Synthesis of chiral organosulfide 8.

Table 2. Optimization of the asymmetric epoxidation cata-
lyzed by organosulfide 8.[a]

Entry Mol%
8

Solvent/
H2O

[b]
Base Yield

[%][c]
trans/
cis[d]

ee
[%][e]

1 10 t-BuOH NaOH 51 98:2 88
2 10 i-PrOH NaOH 48 98:2 87
3 10 MeCN NaOH 70 99:1 93
4 10 MeCN KOH 71 99:1 91
5 10 MeCN Cs2CO3 trace –[f] –[f]

6 10 MeCN K2CO3 trace –[f] –[f]

7 5 MeCN NaOH 58 98:2 92
8 20 MeCN NaOH 74 99:1 90
9[g] 10 MeCN NaOH 63 99:1 93
10[h] 10 MeCN NaOH 60 99:1 88

[a] Reaction temperature was 20–25 8C and reaction time
was 40 h. Other conditions are similar to the general pro-
cedure for epoxides in Experimental Section.

[b] Solvent/H2O: v:v= 9:1.
[c] Isolated yields.
[d] Determined by 1HNMR or GC.
[e] Enantiomeric excesses of trans isomers were determined

by chiral HPLC using a Chiracel OD-H column.
[f] Not determined.
[g] Reaction temperature: 0 8C.
[h] No TBAI was used.
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ity (98% de), which was rarely reported in the litera-
ture.[10] The absolute configurations of the epoxides
11a–n were assigned by comparison of the results of
optical rotation and chiral HPLC with those of known
compounds and all (R, R)-isomers of 11a–h are dex-
trorotatory in EtOH.[3d,4] Furyl aldehyde 10j as a het-
eroaromatic aldehyde also underwent the epoxidation
reaction readily, giving a similar yield, diastereoselec-
tivity and enantioselctivity (entry 10, Table 3). The
configuration of 2-(4-nitrophenyl)-3-phenyl epoxide
11i was reversed and the configuration of 2-(2-furyl)-
3-phenyl epoxide 11j is the same as that in most
diaryl epoxides 11a–h although it was designated
(2S,3R) (entries 9 and 10, Table 3).[3d,9]

As compared to many epoxidations of aromatic al-
dehydes, only a small amount of examples involved
aliphatic aldehydes. In order to examine the new
chiral organosulfide 8 more extensively, we studied
the epoxidation of aliphatic aldehydes. It was found
that organosulfide 8 could also catalyze the epoxida-
tion of aliphatic aldehydes smoothly with benzyl bro-
mide to furnish 2-alkyl-3-phenyl epoxides 11l–n in
reasonable yields with moderate diastereoselectivities
(entries 12–14, Table 3). Among them, cyclohexane-
carboxaldehyde led to good enantioselectivity, and va-

leraldehyde or isovaleraldehyde led to moderate
enantioselectivities.

In conclusion, we have synthesized two new chiral
organosulfides 6 and 8 using cheap d-camphor as
starting material. Among them, the chiral organosul-
fide 8 was synthesized through an unexpected
Wagner–Meerwein rearrangement. It was found that
the organosulfide 8 could catalyze the epoxidation re-
action of various aromatic aldehydes smoothly with
benzyl bromide to give trans-diaryl epoxides in satis-
factory yields (60–84%) with excellent diastereoselec-
tivities (trans:cis =95:5–100:0) and good to excellent
enantioselectivities (86–96% ee). Therefore, organo-
sulfide 8 has better catalytic functions in comparison
with the other organosulfides summarized in ref.[10]

The studies on the utility of the chalcogenides having
a novel structure like 8 in organocatalyzed epoxida-
tions, cyclopropanations and aziridinations with excel-
lent diastereoselectivies and enantioselectivies are un-
derway.

Experimental Section

General Procedure for Epoxides

To the solution of chiral organosulfide 8 (6.0 mg, 0.03 mmol)
in MeCN/H2O (3 mL, 9:1v/v) was added aldehyde
(0.30 mmol), benzyl bromide (77 mg, 0.45 mmol), n-Bu4NI
(108 mg, 0.30 mmol) and NaOH (24 mg, 0.60 mmol).The re-
action mixture was stirred at 20–25 8C for 40 h. Filtration
and evaporation gave a residue that was purified by prepa-
rative TLC or column chromatography, affording the de-
sired epoxide 11a–n.

Supporting Information

Preparations, analytical data, 1H and 13C NMR spectra of 3–
6, 8, 9 and 11a–n and chiral HPLC diagrams of 11a–n are
available as Supporting Information.
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