Palladium-Catalyzed Cyclization of *N-n*-Butyl, *N-(o-Iodobenzyl)-3-buten*amides: Six- versus Seven- and Eight-membered Ring Formation

Raffaella Ferraccioli,*a Davide Carenzi, Marta Catellanib

^b Dipartimento di Chimica Organica e Industriale, Parco Area delle Scienze 17/A, 43100 Parma, Italy *Received 1 August 2002*

Abstract: The regiochemistry of the palladium-catalyzed annulation of *N*-*n*-butyl, *N*-(*o*-iodobenzyl)-3-butenamides **1** can be dramatically varied by addition of water to the reaction mixture. In anhydrous DMF **1** lead to 6-membered ring formation, while in aqueous DMF 7/8-membered rings were formed. The water effect was also observed in MeCN and THF.

Key words: palladium catalysis, cyclization, medium-sized rings, regioselectivity, water

Palladium-catalyzed intramolecular arylation of a carboncarbon double bond has become an important and general tool in the synthesis of carbo- and heterocycles.¹ Being interested into benzazepine and benzodiazepine synthesis by metal-catalysed seven-membered ring formation from properly o-substituted iodoarenes,² we carried out a study on palladium-catalyzed intramolecular cyclisation of N-nbutyl, N-(o-iodophenylmethyl)amides (1) of organic acid (3-butenoic, 3-pentenoic, 4-phenyl-3-butenoic acid) chlorides, respectively. In the presence of Pd(OAc)₂/Ph₃P as a catalyst, *n*-Bu₄NOAc as a base in dry DMF³ at 85 °C compounds 1 underwent 6-membered ring cyclization leading to (E)-(Z)-1,4-dihydro-2H-isoquinolin-3-one derivatives 2 (1/1, molar ratio). In the case of \mathbb{R}^1 = Ph, the isomer (*E*)-2a was also obtained in addition to 2 E and Z(1/1/1, molar)ratio) (Scheme 1 and Table 1, entries 1, 3, 5).⁴ They were catalytically hydrogenated to 3^4 in the presence of Pd/C (Scheme 1).

Surprisingly, the regioselectivity of annulation changed dramatically if water was present in the reaction mixture. With a DMF–water mixture (10/1, v/v) the reaction proceeded through exo and endo insertion of the terminal carbon-carbon double bond leading to 7- and 8-membered ring formation (Scheme 2). In particular, compounds 1 $(\mathbf{R}^1 = \mathbf{H}, \mathbf{M}\mathbf{e})$ led to the isomeric 1*H*-2-benzazepin-3-one derivatives 4, 4a and dihydro-2H-2-benzazocin-3-ones 5 and **5a** (Table 1, entries 2, 4). With 1 ($R^1 = Me$) 2-benzazepine derivative 4b bearing a vinyl substituent on C-5 carbon atom was also obtained. Compound 1 ($R^1 = Ph$) transformed regioselectively into 4, 4a (entry 6). Particularly in the cases of $R^1 = H$, Me the mixture of isomeric Heck products turned out to be difficult to separate by flash chromatography. Base treatment of the crude obtained from 1 (t-BuOK, DMF, 80 °C, 18 h) allowed the transformation into the thermodynamically more stable compounds 4a and 5a (Scheme 2), which could be separated and characterized.5

Remarkably, the yields of *endo* cyclization products steadily decrease with more sterically hindered R^1 groups, as shown by comparing *exo/endo* (**4**/**5**) product ratios obtained with $R^1 = H$ (62/38), $R^1 = Me$ (87/13) and $R^1 = Ph$ (100/0).

Scheme 1 6-Membered ring cyclization products obtained in anhydrous DMF

^a CNR-Istituto di Scienze e Tecnologie Molecolari (ISTM), Via C. Golgi 19, 20133 Milano, Italy Fax +39(2)50314139; E-mail: rferra@icil64.cilea.it

Synlett 2002, No. 11, Print: 29 10 2002. Art Id. 1437-2096,E;2002,0,11,1860,1864,ftx,en;G21202ST.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0936-5214

	Substrate 1	Solvent	Time (h)	Yield ^b (%)	Product ratio ^c 2–2a/4–4a/5–5a
1	$R^1 = H$	DMF	2	60	100/_/_
2	$\mathbf{R}^1 = \mathbf{H}$	DMF/H_2O^d	2	87 ^e	-/62/38
3	$\mathbf{R}^1 = \mathbf{M}\mathbf{e}$	DMF	20	49 ^f	96/4/-
4	$\mathbf{R}^1 = \mathbf{M}\mathbf{e}$	DMF/H ₂ O ^d	2.5	76 ^e	-/87/13 ^g
5	$R^1 = Ph$	DMF	2	50	100/_/_
6	$\mathbf{R}^1 = \mathbf{P}\mathbf{h}$	DMF/H ₂ O ^d	2.5	62 ^e	-/100/-
7	$R^1 = H$	MeCN	2.5	55	90/4/6
8	$\mathbf{R}^1 = \mathbf{H}$	MeCN/H2Od	3	85	-/72/28
9	$\mathbf{R}^1 = \mathbf{P}\mathbf{h}$	MeCN	3	52	100/_/_
10	$\mathbf{R}^1 = \mathbf{P}\mathbf{h}$	MeCN/H2Od	2.5	73	-/100/-
11	$R^1 = H$	THF	20 ^h	62	100/_/_
12	$R^1 = H$	THF	5 ^h	n.d.	100// ⁱ
13	$R^1 = H$	THF/H ₂ O ^d	5 ^h	72	9/68/23
14	$\mathbf{R}^1 = \mathbf{P}\mathbf{h}$	THF	3 ^h	58	100/_/_
15	$\mathbf{R}^1 = \mathbf{P}\mathbf{h}$	THF/H ₂ O ^d	4 ^h	66	-/100/-
16	$\mathbf{R}^1 = \mathbf{H}$	DMF	2	62 ^j	30/30/40
17	$R^1 = H$	DMF	1	53 ^k	-/35/65

Table 1 Palladium-Catalyzed Cyclization of 1^a

^a Reactions were run with 10% mol Pd(OAc)₂, 20% mol Ph₃P, 2.5 equiv *n*-Bu₄NOAc, [1] = 0.05 M, at 85 °C (unless otherwise indicated) for the time required for complete conversion of **1**.

^b Isolated yield.

^c Determined by ¹H NMR analysis of the crude.

^d 10/1, v/v.

^e Isolated yield after *t*-BuOK treatment of the crude, in DMF at 80 °C for 18 h.

^f 6% of the starting material was recovered.

^g Determined by ¹H NMR analysis of the crude, after *t*-BuOK treatment.

^h At reflux.

ⁱ ¹H NMR analysis of the reaction mixture after 5h showed the presence of (E)-(Z)-2 (15%), and *iso*-1 (85%).

^j Reaction was run with 2.5 mol% of Herrmann catalyst.⁹

^k Reaction was run with 2.5 mol% of Pd₂(dba)₃·CHCl₃ and 10 mol% of (o-Tol)₃P, at 65 °C.

Independently of the substituents ($R^1 = H$, Me, Ph) substrates **1** show a similar behaviour in DMF, both under anhydrous and aqueous conditions. The palladium-catalyzed annulations of the model compounds **1** ($R^1 = H$, Ph), were also carried out in other solvents such as MeCN and THF. Under anhydrous conditions 6-membered ring cyclization was largely or completely favoured (entries 7, 9, 11, 14), whereas the addition of water caused highly or completely selective 7-/8-membered ring formation (entries 8, 10, 13, 15). Under dry conditions the reactions proceeded with lower yields due to alteration of the first products formed.

A reasonable hypothesis to account for these results is that the reaction of 1 proceeded through different pathways depending on double bond isomerization. If no isomerization of **1** occurs the reaction proceeds through the well established pathway of oxidative addition to palladium(0) followed by ring closure and H-elimination to afford seven and eight-membered rings **4–4b** and **5–5a**. If **1** first isomerizes to *iso*-**1**, six-membered rings **2** and **2a** are formed (Scheme 3).

To prove this point *iso*-1 ($\mathbb{R}^1 = \mathbb{H}$) was synthesized and treated with Pd(OAc)₂/Ph₃P as catalyst, *n*-Bu₄NOAc as a base in anhydrous DMF. The reaction gave 2, isolated in 56% yield. This implies an intramolecular reaction of the Pd-C bond with the double bond carbon α to the carbonyl group. Apparently, the intramolecular 6-ring formation makes up for the unfavorable electronic situation¹ (Scheme 3).

 $R^{1} = Me: 4 + 4a + 4b + 5 + 5a$ $R^{1} = Ph: 4 + 4a$

Scheme 2 7-, 8-Membered ring cyclization products obtained in aqueous DMF. With $R^1 = Me$ a 2-benzazepine derivative bearing a vinyl substituent on the C-5 carbon atom (**4b**) also formed

The question now arises whether the isomerization of **1** is base-catalyzed or proceeds at the level of the palladium complex resulting from oxidative addition, probably through an η³-allylpalladium complex.⁶ Our experiments support the first hypothesis. Compounds 1 ($R^1 = H$, Me) treated with *n*-Bu₄NOAc at 85 °C under anhydrous conditions and in the absence of palladium catalyst, isomerized into the thermodynamically more stable compounds *iso-1*. No evidence of *iso*-1 ($\mathbf{R}^1 = \mathbf{Ph}$) was observed under the same conditions. This is due to the stabilizing effect of the phenyl group on the β , γ position of the side chain double bond.7 In this case base-catalyzed formation of the less stable isomer *iso*-1 ($R^1 = Ph$) must occur under kinetic control to allow formation of the 6-membered ring. By contrast, in aqueous DMF compounds 1 treated with n-Bu₄NOAc at 85 °C turned out to be stable.

The intermediacy of *iso*-1 in the palladium-catalyzed reactions was proved in the case of $1 (R^1 = H)$. As shown in Table 1 (entries 11 and 12), under anhydrous conditions in THF 1 ($R^1 = H$) was converted into 2 in 20 hours. After

5 hours 2 (15%) was present together with *iso*-1 (85%). Apparently, the addition of water caused a decreased medium basicity thus preventing the isomerization process.⁸

Replacing *n*-Bu₄NOAc with other bases such as MgO and Na₂CO₃ in anhydrous DMF, led to 6-membered rings **2** ($\mathbb{R}^1 = \mathbb{H}$), deriving from isomerization to *iso*-**1** (less than 20%) to a low extent. Again, their formation could be completely suppressed by water addition.

Interestingly, the water effect was curtailed in the presence of a more active catalyst. With Herrmann palladacycle⁹ or Pd₂(dba)₃/(o-Tol)₃P·CHCl₃ as catalyst, the reaction of **1** (R¹ = H) in anhydrous DMF led to 7-/8membered rings with high or complete regioselectivity (entries 16, 17). The substrate ability to undergo base-catalyzed isomerization being unaltered, we argue that **1** (R¹ = H) must undergo palladium-catalyzed annulation at higher rate than isomerization to *iso*-**1**. If performed in aqueous DMF under the same conditions the last two reactions again led to **4**, **4a** and **5**, **5a** with complete regioselectivity and improved yields (90%, 81%).

In summary, we have shown that with Pd(OAc)₂/Ph₃P as a catalyst the regiochemistry of the cyclization of **1** can be determined by the presence or absence of water. The α -, β -, and γ -carbon atoms of the 3-butenamide chain of **1** can be selectively involved in the palladium-catalyzed intramolecular carbon-carbon coupling, giving rise to 6membered rings (isoquinoline) in the absence of water, or seven-membered (2-benzazepine) and 8-membered (2benzazocine) rings in its presence. These nuclei are related to pharmacologically interesting compounds.¹⁰

Since the $Pd(OAc)_2$ system in the presence of *n*-Bu₄NOAc is largely used in organic synthesis our results may have implications in all cases where medium basicity affects substrate reactivity.

Acknowledgement

We thank the National Research Council (CNR) and the Ministero Università e Ricerca Scientifica for financial support.

Scheme 3 Proposed isomerization pathways of 1

Synlett 2002, No. 11, 1860-1864 ISSN 0936-5214 © Thieme Stuttgart · New York

References

- (1) For recent review, see: Beletskaya, I. P.; Cheprakov, A. V. *Chem. Rev.* **2000**, *100*, 3009; and references therein.
- (2) (a) Bocelli, G.; Catellani, M.; Chiusoli, G. P.; Cugini, F.; Lasagni, B.; Neri Mari, M. *Inorg. Chim. Acta* 1998, 270, 123. (b) Tietze, L. F.; Ferraccioli, R. *Synlett* 1998, 145.
 (c) Bocelli, G.; Catellani, M.; Cugini, F.; Ferraccioli, R. *Tetrahedron Lett.* 1999, 40, 2623. (d) Catellani, M.; Catucci, C.; Celentano, G.; Ferraccioli, R. *Synlett* 2001, 803.
- (3) The use of quaternary ammonium salts in the Heck reaction in dry and aqueous solvents was thoroughly studied by Jeffery: (a) Jeffery, T. *Tetrahedron* 1996, 52, 10113; and references therein. (b) Jeffery, T.; David, M. *Tetrahedron Lett.* 1998, *39*, 5751. (c) For a recent report on water effect on Heck reaction see ref.¹
- (4) Palladium-catalyzed Cyclization of 1 in Dry DMF: Synthesis of 1,4-Dihydro-2H-isoquinolin-3-ones (3): n-Bu₄NOAc (173 mg, 0.575 mmol) was placed in a Schlenktype flask and stirred under vacuo at 110 °C for 2 h in order to remove water. After cooling to r.t. 1 (0.23 mmol), Pd(OAc)₂ (5.2 mg, 0.023 mmol), Ph₃P (12 mg, 0.046 mmol) and dry and degassed DMF (the content of water was ≤0.005%) (4.6 mL, 0.05 M) were added under nitrogen. The mixture was heated at 85 °C under stirring until the conversion was complete (monitored by TLC). The reaction mixture was cooled, diluted with water (10 mL) and extracted with diethyl ether $(3 \times 5 \text{ mL})$. After drying (Na₂SO₄) and removal of the solvent the residue was purified by flash chromatography on silica gel (eluent: EtOAc/ petroleum ether) leading to (*E*), (*Z*)-2 ($\mathbb{R}^1 = \mathbb{H}$, 1/1, 60% yield), ($\mathbf{R}^1 = \mathbf{Me}$, 1/1, 49% yield), (*E*), (*Z*)-2 and (*E*)-2a $(R^1 = Ph, 1/1/1, 50\% \text{ yield})$, respectively (Table 1, entries 1, 3, 5; the configuration of 2 was determined by NOESY experiments). Due to their instability 2 and 2a, were submitted to catalytic reduction with 10% Pd/C (25-30% mol) under 1 atm of hydrogen in EtOAc for 24 h. After usual work-up and purification of the crude by flash chromatography on silica gel (EtOAc/petroleum ether) compounds 3 were obtained.

3 (R¹ = H): Oil, yield: 72%; IR (neat): 2961, 2931, 2872, 1651 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.82$ (t, 3 H, *J* = 7.53 Hz), 0.87 (t, 3 H, *J* = 7.6 Hz), 1.22–1.34 (m, 2 H), 1.47–1.57 (m, 2 H), 1.71–1.86 (m, 2 H), 3.24–3.34 (m, 1 H), 3.39 (t, 1 H, J = 6.86 Hz), 3.55–3.65 (m, 1 H), 4.17 (d, 1 H, J = 15.8 Hz, 4.59 (d, 1 H, J = 15.8 Hz), 7.05–7.20 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃): δ = 11.1, 13.8 (Me), 20.1, 27.1, 29.4, 46.9 (CH₂), 49.0 (CH), 50.4 (CH₂), 125.1, 126.4, 127.3, 127.6 (CH), 131.2, 136.6, 171.6 (C_{quat}); Ms (EI): m/z $(\%) = 231(12) [M^+], 202(100), 160(50), 146(25), 132(60),$ 117(55), 91(20). Anal. Calcd for C₁₅H₂₁NO: C, 77.88; H, 9.15; N 6.05. Found: C, 78.02; H, 9.14; N, 6.12. $3 (R^1 = Me)$: Oil, yield 68%; IR(neat): 2959, 2929, 2871, 1647 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): $\delta = 0.76$ (t, 3 H, *J* = 7.3 Hz), 0.80 (t, 3 H, *J* = 7.3 Hz), 1.13–1.2 (m, 4 H), 1.40–1.6 (m, 4 H), 3.17–3.20 (m, 1 H), 3.30 (t, 1 H, J = 7.0 Hz), 3.43–3.52 (m, 1 H), 4.26 (d, 1 H, J = 16.1 Hz), 4.56 (d, 1 H, J = 16.1 Hz), 7.10–7.20 (m, 4 H); ¹³C NMR (75 MHz, DMSO- d_6): $\delta = 14.0 (2 \text{ C}), 19.8 (2 \text{ C}), 29.2, 35.2, 45.9, 47.3,$ 49.5, 125.7, 126.6, 127.4 (2 C), 132.3, 137.1, 170.6; Ms (EI): m/z (%) = 245(15) [M⁺], 203 (100), 174 (30), 146 (15), 131 (30), 117 (15), 91 (10). Anal Calcd for C₁₆H₂₃NO: C, 78.32; H, 9.45; N 5.71. Found: C, 78.14; H, 9.59; N, 5.78. **3** (R¹ = Ph): Oil, yield: 70%; IR(neat): 2957, 2928, 2860, 1651 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.94$ (t, 3 H, J = 7.3 Hz), 1.35 (sextet, 2 H, J = 7.4 Hz), 1.59 (quintet, 2 H, J = 7.5 Hz), 1.96–2.20 (m, 2 H), 2.65 (t, 2 H, J = 8.3 Hz), 3.32-3.42 (m, 1 H), 3.60-3.72 (m, 2 H), 4.26 (d, 1 H,

 $J = 15.8 \text{ Hz}, 4.67 \text{ (d, 1 H, } J = 15.8 \text{ Hz}), 7.14-7.31 \text{ (m, 9} \text{ H});^{13}\text{C NMR} (75 \text{ MHz, CDCl}_3): \delta = 13.9 \text{ (Me)}, 20.1, 28.9, 32.9, 35.3, 46.9 \text{ (CH}_2), 47.5 \text{ (CH)}, 50.4 \text{ (CH}_2), 125.3, 125.9, 126.5, 127.4, 127.5, 128.3, 128.4 \text{ (CH)}, 131.3, 136.7, 141.4, 171.3 \text{ (C}_{quat}); \text{ MS (EI): } m/z \text{ (\%)} = 306(75) \text{ [M} - 1\text{]}, 214(90), 203(100), 158(25), 91(90). \text{ Anal. Calcd for C}_{21}\text{H}_2\text{s}\text{NO: C}, 82.04; \text{H}, 8.20; \text{N}, 4.56. \text{ Found: C}, 82.32; \text{H}, 8.19; \text{N}, 4.61.$

(5) Palladium-catalyzed Cyclization of 1 in Aqueous DMF: Synthesis of 2,3-Dihydro-1H-2-benzazepin-3-ones (4a) and 1,4-Dihydro-2H-2-benzazocin-3-ones (5a). In a Schlenk-type flask nBu₄NOAc (173 mg, 0.575 mmol), Pd(OAc)₂ (5.2 mg, 0.023 mmol), Ph₃P (12.1 mg, 0.046 mmol), a solution of 1 (0.23 mmol) in degassed DMF (4.2 mL), degassed water (0.42 mL) were added under nitrogen. The mixture was heated at 85 °C under stirring until the conversion was complete (TLC), then worked-up as described in ref.³ The crude obtained was dissolved in dry DMF (3.0 mL) and added with t-BuOK (28 mg, 0.25 mmol). The resulting mixture was heated under stirring at 80 °C for 18 h. After cooling it was poured into water (7 mL) and extracted with ether $(3 \times 4 \text{ mL})$. The combined organic layer was dried (Na₂SO₄) and evaporated under vacuo. The crude was purified by flash chromatography on silica gel (EtOAc/ petroleum ether) to give in order of elution 5a (R¹ = H, Me) and **4a** ($R^1 = H$, Me, Ph).

5a ($R^1 = H$): Mp 41–42 °C (*n*-hexane/EtOAc); IR (nujol): 1737, 1646 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.92$ (t, 3 H, J = 7.3 Hz), 1.3 (sextet, 2 H, J = 7.4 Hz), 1.49–1.59 (m, 2 H), 3.33–3.40 (m, 4 H), 4.45 (s, 2 H), 5.8 (ddd, 1 H, *J* = 12.6, 6.4, 6.4 Hz), 6.55 (d, 1 H, *J* = 12.6 Hz), 7.16–7.32 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.9$ (Me), 20.1, 29.5, 38.9, 45.1, 51.9 (CH₂), 125.7, 127.6, 128.4, 130.1, 131.6, 131.8 (CH), 135.0, 136.5, 168.7 (C_{quat}); MS (EI): *m*/*z* $(\%) = 229(60) [M^+], 186(30), 129(100), 115(40).$ Anal. Calcd for C₁₅H₁₉NO: C, 78.56; H, 8.35; N, 6.11. Found: C, 78.48; H, 8.41; N, 6.15. **4a** (R¹ = H): Oil; IR (neat): 2931, 2872, 1737, 1636, 1595 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.85$ (t, 3 H, J = 7.3Hz), 1.20-1.27 (m, 2 H), 1.47-1.57 (m, 2 H), 2.29 (s, 3 H), 3.44–3.49 (m, 2 H), 3.7–4.5 (br s, 2 H), 6.4 (s, 1 H), 7.25– 7.48 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃): δ = 13.7 (Me), 19.9 (CH₂), 23.9 (Me), 30.5, 47.1, 51.6 (CH₂), 125.5, 126.9, 127.2, 128.2, 128.8 (CH), 137.1, 137.7, 143.0, 166.4 (C_{quat}); MS (EI): *m*/*z* (%) = 229(80) [M⁺], 187(90), 173(100), 159(60), 129(85), 115(55). Anal. Calcd for C₁₅H₁₉NO: C, 78.56; H, 8.35; N, 6.11. Found: C, 78.75; H, 8.15; N, 5.99. **5a** (R¹ = Me): Oil; IR(neat): 2958, 2927, 2871, 1728, 1635 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.91$ (t, 3 H, J = 7.3Hz), 1.25-1.37 (m, 2 H), 1.50-1.63 (m, 2 H), 2.06 (s, 3 H), 2.64 (d, 2 H, J = 8.0 Hz), 3.49 (pst, 2 H, J = 7.49 Hz), 4.16 (s, 2 H), 5.62 (br t, 1 H, J = 8.0 Hz), 7.17–7.30 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃): δ = 13.9, 20.1, 22.1, 30.3, 39.3, 50.5, 52.4, 119.2, 125.6, 128.0, 128.4, 130.3, 133.8, 140.4, 142.3, 168.4; MS (EI): m/z (%) = 243 (15) [M⁺], 200 (40), 187 (25), 144 (25), 129 (100), 115 (20); HRMS (EI): Calcd for C₁₆H₂₁NO: 243.1623. Found: 243.1654. **4a** (R¹ = Me): Mp 52–53 °C (*n*-hexane); IR(nujol): 1733, 1641, 1596 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.86$ (t, 3 H, J = 7.2 Hz), 1.11 (t, 3 H, J = 7.0 Hz), 1.20–1.29 (m, 2 H), 1.45–1.60 (m, 2 H), 2.69–2.73 (br q, 2 H, *J* = 8.0 Hz), 3.46 (pst, 2 H, J = 7.3 Hz), 4.0 (br s, 1 H), 4.35 (br s, 1 H), 6.26 (br s, 1 H), 7.27–7.50 (m, 4 H);¹³C NMR (75 MHz, CDCl₃): $\delta = 13.2,\, 13.7,\, 19.9,\, 29.8,\, 30.5,\, 46.9,\, 51.6,\, 123.9,\, 126.6,$ 127.2, 128.1, 128.5, 137.0, 137.6, 148.6, 166.5; MS (EI): m/ z (%) = 243 (65) [M⁺], 201 (72), 187 (100), 173 (45), 144 (30), 128 (43), 115 (20). Anal Calcd for C₁₆H₂₁NO: C, 78.97; H, 8.70; N, 5.76. Found: C, 78.93; H, 8.41; N, 5.71.

4a (R¹ = Ph): Mp 92–93 °C (*n*-hexane); IR(nujol): 1746, 1636, 1597 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 0.8$ (t, 3 H, *J* = 7.3 Hz), 1.16 (sextet, 2 H, *J* = 7.6 Hz), 1.46 (quintet, 2 H, *J* = 7.5 Hz), 3.40 (t, 2 H, *J* = 7.3 Hz), 3.90 (br s, 3 H), 4.25 (br s, 1 H), 6.20 (s, 1 H), 7.10–7.30 (m, 8 H), 7.40–7.45 (m, 1 H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.2$ (Me), 20.4, 30.9, 43.5, 47.4, 52.1 (CH₂), 126.9, 127.4, 127.7, 128.6, 129.0, 129.2, 129.3 (CH), 137.3, 138.0, 138.8, 146.0, 166.7 (C_{qual}); MS (EI): *m/z* (%) = 305(100) [M⁺], 263(87), 249(50), 206(33), 115(25), 91(67) Anal Calcd for C₂₁H₂₃NO: C, 82.59; H, 7.59; N, 4.59. Found: C, 82.76; H,

 $C_{21}H_{23}NO: C, 82.59; H, 7.59; N, 4.59. Found: C, 82.76; H, 7.46; N, 4.71.$

- (6) Tsuji, J. *Palladium Reagents and Catalysts*; Wiley: Chichester, **1995**.
- (7) Linstead, R. P.; Williams, L. T. L. J. Chem. Soc. 1926, 2735.
- (8) Although the water effect is felt even in the presence of traces of water we preferred to carry out experiments with 10% water for reasons of reproducibility.
- (9) Herrmann, W. A.; Brossmer, C.; Reisinger, C. P.; Riermeier, T. H.; Oefele, K.; Beller, M. *Chem.-Eur. J.* **1997**, *3*, 1357.
- (10) (a) *Chem. Abstr.* **1978**, *88*, 152456. (b) Knobloch, K.;
 Eberbach, W. *Org. Lett.* **2000**, *2*, 1117. (c) Lindman, S.;
 Lindenberg, G.; Nyberg, F.; Karlèn, A.; Hallberg, A. *Bioorg. Med. Chem.* **2000**, *8*, 2375.