ppm are observed between the protonated and nonprotonated forms of these compounds.¹² Given the relatively great magnitude of these chemical shift differences and the small chemical shift range observed over the 500-fold concentration range measured, it seems reasonable to conclude that intramolecular hydrogen bonding does not significantly influence the measured ¹⁹F chemical shifts in the solvents utilized here.

It is clear from these data that this SCS-based additivity method effectively predicts ¹⁹F chemical shifts in fluoroaromatic compounds. The extent to which this method would apply to other types of fluoroorganic compounds has yet to be determined, but is clearly an area for future investigation.

Registry No. o-Difluorobenzene, 367-11-3; m-difluorobenzene, 372-18-9; p-difluorobenzene, 540-36-3; o-fluoroacetanilide, 399-31-5; m-fluoroacetanilide, 351-28-0; p-fluoroacetanilide, 351-83-7; ofluoroacetophenone, 445-27-2; m-fluoroacetophenone, 455-36-7; p-fluoroacetophenone, 403-42-9; o-fluoraniline, 348-54-9; mfluoroaniline, 372-19-0; p-fluoroaniline, 371-40-4; o-fluoroanisole, 321-28-8; m-fluoroanisole, 456-49-5; p-fluoroanisole, 459-60-9; o-fluorobenzaldehyde, 446-52-6; m-fluorobenzaldehyde, 456-48-4; p-fluorobenzaldehyde, 459-57-4; o-fluorobenzamide, 445-28-3; m-fluorobenzamide, 455-37-8; p-fluorobenzamide, 824-75-9; ofluorobenzoic acid, 445-29-4; m-fluorobenzoic acid, 455-38-9; p-fluorobenzoic acid, 456-22-4; o-fluorobenzoyl chloride, 393-52-2; m-fluorobenzoyl chloride, 1711-07-5; p-fluorobenzoyl chloride, 403-43-0; o-fluorobenzonitrile, 394-47-8; m-fluorobenzonitrile, 403-54-3; p-fluorobenzonitrile, 1194-02-1; o-fluorobenzotrifluoride, 392-85-8; m-fluorobenzotrifluoride, 401-80-9; p-fluorobenzotrifluoride, 402-44-8; o-fluorobromobenzene, 1072-85-1; m-fluorobromobenzene, 1073-06-9; p-fluorobromobenzene, 460-00-4; ofluorochlorobenzene, 348-51-6; m-fluorochlorobenzene, 625-98-9; p-fluorochlorobenzene, 352-33-0; o-fluoroiodobenzene, 348-52-7; m-fluoroiodobenzene, 1121-86-4; p-fluoroiodobenzene, 352-34-1; N-(o-fluorophenyl)methanesulfonamide, 98611-90-6; N-(mfluorophenyl)methanesulfonamide, 35980-20-2; N-(p-fluorophenyl)methanesulfonamide, 35980-24-6; N-(o-fluorophenyl)-

(12) Fox, I. R.; Levins, P. L.; Taft, R. W., Jr. Tetrahedron Lett. 1971, 249.

trifluoroacetamide, 61984-68-7; N-(m-fluorophenyl)trifluoroacetamide, 35980-21-3; N-(p-fluorophenyl)trifluoroacetamide, 35980-25-7; N-(o-fluorophenyl)trifluoromethanesulfonamide, 23383-98-4; N-(m-fluorophenyl)trifluoromethanesulfonamide, 23384-01-2; N-(p-fluorophenyl)trifluoromethanesulfonamide, 23384-00-1; o-fluoronitrobenzene, 1493-27-2; m-fluoronitrobenzene, 402-67-5; p-fluoronitrobenzene, 350-46-9; o-fluorophenol, 367-12-4; m-fluorophenol, 372-20-3; p-fluorophenol, 371-41-5; o-fluorotoluene, 95-52-3; m-fluorotoluene, 352-70-5; p-fluorotoluene, 352-32-9; o-fluorophenyl isocyanate, 16744-98-2; m-fluorophenyl isocyanate, 404-71-7; p-fluorophenyl isocyanate, 1195-45-5; N-(o-fluorophenyl)phthalimide, 568-95-6; N-(m-fluorophenyl)phthalimide, 19357-20-1; 4-chloro-2-fluoroacetanilide, 59280-70-5; (2,4-difluorophenyl)acetanilide, 399-36-0; (3,4-difluorophenyl)acetanilide, 458-11-7; 2,5-difluoroaniline, 367-30-6; 2,6-difluoroaniline, 5509-65-9; 2-amino-3-fluorobenzoic acid, 825-22-9; 2,6difluorobenzonitrile, 1897-52-5; 3-amino-5-fluorobenzotrifluoride, 393-39-5; 3-amino-4-fluorobenzotrifluoride, 535-52-4; 4-amino-3fluorobenzotrifluoride, 69409-98-9; 5-amino-2-fluorobenzotrifluoride, 2357-47-3; 3-chloro-4-fluorobenzotrifluoride, 78068-85-6; 4-fluoro-3,5-dinitrobenzotrifluoride, 393-76-0; 2,3-dimethylfluorobenzene, 443-82-3; 3,4-dimethylfluorobenzene, 452-64-2; 1-bromo-2,5-difluorobenzene, 399-94-0; 2,4-difluorophenol, 367-27-1; 4,5-difluorophthalic anhydride, 18959-30-3; N-(2,6-difluorophenyl)phthalimide, 120371-26-8; 5-fluorosalicyclic acid, 345-16-4; N-(2,4-difluorophenyl)methanesulfonamide, 98611-91-7; N-(2,4-difluorophenyl)(trifluoromethyl)acetanilide, 98651-71-9; N-(2,6-difluorophenyl)(trifluoromethyl)acetanilide, 98634-00-5; N-(2,4-difluorophenyl)trifluoromethanesulfonamide, 23384-22-7; N-(2,6-difluorophenyl)trifluoromethanesulfonamide, 98611-93-9; 2-cyano-2-fluoroacetanilide, 829-81-2; 2-fluoro-4-(trifluoromethyl)acetanilide, 88288-14-6; (2,5-difluorophenyl)acetanilide, 398-90-3; 3-fluoro-4-methylacetanilide, 458-10-6; 2-fluoro-4nitroacetanilide, 348-19-6; 3-fluoroanthranilic acid, 825-22-9; 4,5-difluoroanthranilic acid, 83506-93-8; 4-chloro-2-fluoroaniline, 57946-56-2; 2-carboxamido-4,5-difluorobenzoic acid, 83506-92-7; 2-chloro-4-fluorobenzotrifluoride, 94444-58-3; 3-chloro-4,5-difluorobenzotrifluoride, 77227-99-7; 1-bromo-2,6-difluorobenzene, 64248-56-2; 1,4-dibromo-2-fluorobenzene, 1435-52-5; 2,5-difluoronitrobenzene, 364-74-9; 5-fluoro-2-nitrotoluene, 446-33-3; 2-chloro-4-fluorophenol, 1996-41-4; 4,5-difluorophthalic acid, 18959-31-4; tetrafluorophthalic acid, 652-03-9; 3,6-difluorophthalic anhydride, 652-40-4.

Perfluoro- and Polyfluorosulfonic Acids. 21. Synthesis of Difluoromethyl Esters Using Fluorosulfonyldifluoroacetic Acid as a Difluorocarbene Precursor

Qing-Yun Chen* and Sheng-Wen Wu

Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai, China

Received September 22, 1988

Difluoromethyl alkanoates 5 and fluorinated and nonfluorinated alkanesulfonates 9 were synthesized in moderate yields by the reaction of alkali metal salts of acids with fluorosulfonyldifluoroacetic acid (3) in acetonitrile under mild conditions. The presumed intermediate anion $FO_2SCF_2CO_2^-$ generates CF_2 : by elimination of SO_2 , CO_2 , and F^- . The esters are formed by insertion of CF_2 : into the O-H of the acid, whereas HCF₃ is formed by the competing capture of F^- . Organic acids can be used indirectly in the reaction in the presence of inorganic salts such as Na_2SO_4 and KCl, with comparable yields of difluoromethyl esters.

Introduction

Difluorocarbene is a useful intermediate for synthesizing organofluorine compounds.¹ Although several methods

for generating CF_2 : are known,² there is a need for more readily available CF_2 : precursors. In our study of the synthesis and reactions of perfluoro- and polyfluoroalkanesulfonic acids, we have discovered a new series of

⁽¹⁾ Chambers, R. D. Fluorine in Organic Chemistry; Wiley: New York, 1973; pp 119-134. Sheppard, W. A.; Sharts, C. N. Organic Fluorine Chemistry; Benjamin: New York, 1969; pp 237-272.

⁽²⁾ Burton, D. J.; Hahnfeld, J. L. In Fluorine Chemistry Review; Tarrent, P., Ed.; 1977; Vol. 8, pp 153-179.

difluorocarbene precursors. Thus treatment of HCF₂SO₂Z $(Z = F, OC_6H_5, OCH_2CF_2CF_2H, OC_6F_5, HCF_2O,$ $NCH_3C_6H_5$)^{3,4} with alkoxide (EtO⁻, C₆H₅O⁻) generates CF₂: by abstracting the hydrogen and eliminating Z^- and SO_2 , except for $HCF_2SO_2N(CH_3)C_6H_5$, which extrudes $C_6H_5N_5$ $(CH_3)SO_2^-$. Difluorocarbene can also be prepared by nucleophilic attack of LiCl, KBr, KCNS, or an amine on the methoxy carbon of $CH_3O_2CCF_2SO_2Y$ (Y = F,⁵ OC_6H_5 , $HCF_2CF_2CH_2O^3$) in an aprotic solvent.⁵ Also, CF_2 : can be produced under strongly acidic conditions from HC- F_2SO_2W (W = OH, OCF₂H, OC₆H₅).³⁻⁶ Difluoromethyl esters 1 are formed by heating a mixture of HCF_2SO_3H and a perfluoroalkane sulfonic acid in the presence of P_2O_5 , POCl₃, or SOCl₂.⁶

$$HCF_{2}SO_{3}H + R_{F}SO_{3}H \xrightarrow{100-120 \circ C} HCF_{2}SO_{3}CF_{2}H + R_{F}SO_{3}CF_{2}H$$

$$\mathbf{R}_{\mathbf{F}} = \mathbf{CF}_3, \ \mathbf{I}(\mathbf{CF}_2)_2 \mathbf{O}(\mathbf{CF}_2)_2, \ \mathbf{Cl}(\mathbf{CF}_2)_2 \mathbf{O}(\mathbf{CF}_2)_2, \\ \mathbf{Cl}(\mathbf{CF}_2)_4 \mathbf{O}(\mathbf{CF}_2)_2 \mathbf{O}(\mathbf{CF}_2)_4 \mathbf{O}(\mathbf{CF}_$$

Similarly, $R_FCO_2CF_2H$ (2) is obtained, although in lower yields, when perfluorocarboxylic acids are used in this reaction.6

The starting material for all of these routes to CF₂: is the readily available FO₂SCF₂COF, which is one of the starting materials for producing the commercial ion-exchange resins Nafion-H.7

Difluoromethyl esters 1 and 2 are useful intermediates because they have three reactive sites: the hydrogen, the methoxy carbon, and the sulfonyl sulfur (or carbonyl carbon). The reaction of 1 with nucleophiles has been shown to be more complicated⁸ than those of R_FSO₃CF₂R_F and $R_FSO_3CH_2R_F$, the former undergoing only S-O cleavage⁹ and the latter undergong predominantly C-O scission.¹⁰ In our studies of such esters, we sought a more readily available and convenient difluorocarbene precursor than HCF_2SO_3H for preparing them. We have found that $FO_2SCF_2CO_2H$ (3) is a suitable carbene source that is quite thermally stable and easily handled and can be readily obtained by hydrolysis of the acid fluoride. Herein we present a novel method for synthesizing difluoromethyl esters 1 and 2 using the acid 3 as a difluorocarbene precursor.

Results and Discussion

A few compounds 1 (R = CF₃), 5 (R = CH₃, n-C₆H₁₃, C₆H₅), and 2 (R_F = CF₃, n-C₃F₇) have been prepared by the insertion of CF₂: generated by photolysis of CF₂N₂, into the O-H of an acid. Owing to the unavailability of CF_2N_2 , this method is seriously limited.¹¹ We have found that treatment of potassium or sodium alkanoates 4 with

Table I. Effect of Temperature on the Reaction of 3 with 4e in CH₃CN

			products (%)	
temp, °C	time, h	conversn,ª %	5	6
-80	5	0	0	0
-20	5	45	60	35
0	3	100	56	40
20	1	100	54	40
100	momentary	100	21	70

^a Determined by ¹⁹F NMR.

3 in acetonitrile at ambient temperature for 1-2 h gives difluoromethyl alkanoates 5 in 40-70% yields.

$$\begin{array}{c} \operatorname{FO_2SCF_2CO_2H} + \operatorname{RCO_2M} \xrightarrow{\operatorname{CH_3CN}} \\ 3 \\ \operatorname{RCO_2CF_2H} + \operatorname{HCF_3} + \operatorname{SO_2} + \operatorname{CO_2} + \operatorname{MF} \\ 5 \\ \end{array}$$

The reaction does not proceed at -80 °C, and above +20°C the yield of 5 decreases with increasing temperature, probably because of slight thermal decomposition of 3 (Table I). The results with a variety of acid salts are shown in Table II.

Fluoroform (6) is the only organic byproduct. Aprotic polar solvents such as dimethyl sulfoxide, diglyme, glyme, and tetrahydrofuran could not be used because DMSO reacts with 3 and the last three cause side reactions. Dimethylformamide is known to react with CF₂:,¹² but acetonitrile is inert to 3. Acetonitrile must be thoroughly dry: the yield of 5e decreased from 54% to 12%, and 4–10% of HCF_2SO_2F was formed, when the acetonitrile contained 3% v/v of water.

Attempts to prepare difluoromethyl polyfluoroalkanoates by reaction of 3 with salts of R_FCO_2M [7, M = K, Na; $R_F = H(CF_2)_6$ (a), CF_3 (b), $C_3F_7OCF(CF_3)$] under similar conditions gave only HCF₃ and unchanged salt.

Reaction of 3 with RSO_3M (8) gives diffuoromethyl sulfonates 9. The yield of 9 is also sensitive to the presence of water, and the reaction requires slightly higher temperatures than the reaction with RCO_2M (Table III). The results are shown in Table IV.

$$\underset{8}{\mathrm{RSO}_3\mathrm{M}} + 3 \xrightarrow{} \mathrm{R}_{\mathrm{F}}\mathrm{SO}_3\mathrm{CF}_2\mathrm{H} + 6$$

Sodium diethyldithiocarbamate reacts with 3 in a similar fashion to give the corresponding difluoromethyl ester in 74% yield.

$$Et_2NC(S)SNa + 3 \rightarrow Et_2NC(S)SCF_2H + HCF_3$$

10 11

Treatment of sodium benzenesulfinate with 3 in CH₃CN affords difluoromethyl phenyl sulfone, which was previously obtained by a two-step process from difluorochloromethane and benzenethiol.13

$$C_{6}H_{5}SO_{2}Na + 3 \rightarrow [C_{6}H_{5}S(O)OCF_{2}H] \rightarrow C_{6}H_{5}S(O_{2})CF_{2}H$$
13

The presumed intermediate, difluoromethyl phenylsulfinate, is known to rearrange to the sulfone $13.^{14}$

Reaction of potassium dialkoxyphosphate 14 with 3 at 60 °C for 0.5 h gave two products in 78% conversion by

^{(3) (}a) Chen, Q.-Y.; Zhu, S.-Z. Huaxue Xuebao 1986, 44, 92; Chem. Abstr. 1986, 105, 171794c. (b) Chen, Q.-Y.; Zhu, S.-Z Youji Huaxue 1984, 434; Chem. Abstr. 1984, 101, 191244u.

⁽⁴⁾ Chen, Q.-Y.; Zhu, S.-Z. Huaxue Xuebao 1986, 44, 742; Chem. Abstr. 1987, 106, 119250d.

⁽⁵⁾ Chen, Q.-Y.; Zhu, S.-Z. Scientia Sinica B 1987, 30, 561; Chem. Abstr. 1988, 108, 149873t.

⁽⁶⁾ Chen, Q.-Y.; Zhu, S.-Z. Huaxue Xuebao 1985, 43, 546; Chem. Abstr. 1986, 104, 185941q.
(7) Olah, G. A.; Tyer, P. S.; Surya, P. Synthesis 1986, 513.
(8) Chen, Q.-Y.; Zhu, S.-Z. Huaxue Xuebao 1986, 44, 812; Chem Abstr. 1987 106, 119251e.
(9) Cher Q. Y. Zhu, S. Z. Huaxue Xuebao 1986, 44, 812; Chem Abstr.

⁽⁹⁾ Chen, Q.-Y.; Zhu, S.-Z. Ibid. 1983, 41, 1044; Chem. Abstr. 1983, 98, 4256j

⁽¹⁰⁾ Chen, Q.-Y.; Zhu, R.-X.; Li, Z.-Z.; Wang, S.-D.; Huang, W.-Y. Huaxue Xuebao 1982, 40, 337; Chem. Abst. 1982, 97, 126983u

⁽¹¹⁾ Mitsch, R. A.; Robertson, L. E. J. Heterocycl. Chem. 1965, 2, 152.

⁽¹²⁾ Burton, D. J.; Wiemers, D. M. J. Am. Chem. Soc. 1985, 107, 5014.

Hine, J.; Porter, J. J. J. Am. Chem. Soc. 1960, 82, 6178.
 Hendrickson, J. B.; Bair, K. W. J. Org. Chem. 1977, 42, 3875.

Table II.	Reaction	of 3	with	RCO ₂ M ^a	(4) in	CH ₃ CN ^o	
-----------	----------	------	------	---------------------------------	--------	---------------------------------	--

					products (%)°		
salt	R	4:3	temp, °C	time, h	5	6	
4a	CH ₃	2.5	20	1	52	40	
4b	$n - C_6 H_{13}$	2.2	20	1.5	52	33	
4c	$n \cdot C_8 H_{17} CH = CH(CH_2)_7$	1.8	50	2	42	49	
4d	$C_6H_5CH_2$	2.0	20	1	64	30	
4e	C _s H ₅	2.5	20	1	54	20	
4f	p-CH ₂ OC ₆ H ₄	2.5	20	1	70	20	
4g	$p-CH_3C_6H_4$	2.6	40	1	49	40	
4 h	2-furyl	2.5	50	1	42	47	
4i	$p-FC_6H_4$	2.0	20	1.5	40	48	
4j	$p-IC_6H_4$	1.7	20	2	43	51	
4 k	p-NČC ₆ H ₄	2.3	20	2.5	50	42	
41	o-CH3CO6H4	2.4	20	1.5	44	42	
4m	o-FC ₆ H ₄	2.0	20	1.5	40	49	

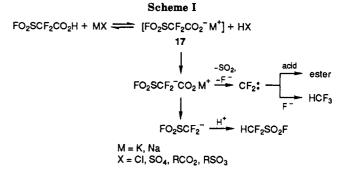
^a M = K or Na. ^b All reactions were run to 100% conversion. ^c Isolated yields.

Table III. Effect of Temperature on the Reaction of 3 with 8c in CH₃CN

			products (%)	
temp, °C	time, h	conversn,ª %	9	6
-20	3	0	0	0
0	3	10	64	30
50	1	100	5 9	30
90	momentary	100	28	63

^{*d*} Determined by ¹⁹F NMR.

¹⁹F NMR spectroscopy, showing two doublets (+3.2 and +0.2 ppm) in a ratio of 5:1. From ¹H, ¹⁹F, MS, and IR data, the two products were identified as the phosphinic ester 15 and the phosphoryl fluoride 16.


$$(i-C_8H_{17}O)_2P(O)OK + 3 \rightarrow 14$$

 $(i-C_8H_{17}O)_2P(O)CF_2H + (i-C_8H_{17}O)_2P(O)F$
 15 16

When the reaction was carried out under the same conditions for 3 h, the signal at 3.2 ppm disappeared and that at 0.2 ppm increased, indicating that 15 is thermally unstable and decomposes to 16.

In the above reactions, potassium and sodium salts were prepared from the acids and aqueous alkali, followed by filtration and thorough drying. This inconvenience prompted us to try to use the acids directly. We found that both carboxylic and sulfonic acids react with 3 in the presence of sodium sulfate or potassium chloride to give the difluoromethyl esters in yields comparable to those obtained with the organic salts.

$$C_{6}H_{5}CO_{2}H + Na_{2}SO_{4} + 3 \rightarrow 5e + 6$$
$$CF_{3}SO_{3}H + Na_{2}SO_{4} + 3 \rightarrow 9d + 6$$
$$p-IC_{6}H_{4}CO_{2}H + KCl + 3 \rightarrow 5j + 6 + HCF_{2}Cl$$

The products of these reactions, difluoromethyl ester, fluoroform, and sometimes HCF₂SO₂F, seems to indicate

that the first step of the reaction involves the conversion of 3 to sodium or potassium fluorosulfonyldifluoroacetate (17) with either organic or inorganic salts. Compound 17 is quite unstable and decomposes readily to generate CF₂: with simultaneous elimination of SO₂ and F⁻ (Scheme I). This behavior is similar to that of FO₂SCF₂CO₂Li, obtained from the reaction system of FO₂SCF₂CO₂CH₃/LiCl in HMPA-THF at 0 °C.⁵ The resulting difluorocarbene either inserts into the acid to give the difluoromethyl ester or captures F⁻ to give CF₃⁻ and then CF₃H. The formation of HCF₂SO₂F in the presence of water-containing solvent can be rationalized as due to the presence of the relatively stable anion FSO₂CF₂⁻. A similar result is observed with FO₂SCF₂CO₂Me/LiCl in an aqueous organic solvent.⁵

Once small amounts of inorganic or organic acid are formed, the equilibrium shifts to right with formation of 17. The presence of CF_2 : intermediate was confirmed by a trapping experiment with 2,3-dimethyl-2-butene. Treatment of 3 with the olefin and sodium chloride in CH_3CN at 60 °C for 6 h gave the expected 1,1-difluoro-2,2,3,3-tetramethylcyclopropane.

The mechanism of Scheme I raises questions about our failure to obtain $R_FCO_2CF_2H$ from 3 and R_FCO_2M and the formation of HCF₃ in this reaction. We had not expected to obtain $R_FCO_2CF_2H$ by this method, because they should be similar to the fully fluorinated carboxylic ester

					products (%)°	
salt	R	8:3	temp, °C	time, h	9	6
8a.	p-CH ₃ C ₆ H ₄	2	50	2	59	32
8b	$m - O_2 NC_6 H_4$	2	60	2	52	37
8c	C ₆ H ₅	3	50	1.5	58	30
8d	CF ₃	3.5	100	2	42	47
8e	HCF,	2.2	50	1.5	44	42
8 f	$I(CF_2)_2O(CF_2)_2$	2	75	2	48	47
8g	dl-10-camphoryl	2	60	2	52	40
8 h	$n - C_{12}H_{25}$	2.5	50	2	51	40

Table IV. Reaction of 3 with RSO₃M^a (8) in CH₃CN^b

^aM = K, Na. ^bAll reactions were carried out to 100% conversion. ^cIsolated yields.

 $R_FCO_2CF_2R_F,$ which is known to be unstable in the presence of fluoride ion. 15

$$R_{F}CO_{2}K + 3 \longrightarrow [R_{F}CO_{2}CF_{2}H] \xrightarrow{F^{-}} R_{F}CO_{F} + HCFO$$
$$R_{F}CO_{2}K + HCF_{3}$$
$$R_{F} = CF_{3}, H(CF_{2})_{6}, C_{3}F_{7}OCF(CF_{3})$$

However, if the mechanism was operative, an acyl fluoride should be observed as in the reaction with sodium dialkylphosphate. The facts that the salt remained unchanged and HCFO was not detected, and that fluoroform was not formed in the absence of salt, seem to indicate the presence of $R_FCO_2CF_2H$. Subsequent attack by fluoride ion on the difluoromethoxy carbon, not the carbonyl carbon, could explain the formation of fluoroform. An alternative explanation is that the rate of insertion of CF₂: into the O-H of a polyfluoroalkanoic acid is much slower than that of capture by F^- leading to fluoroform; $R_FCO_2CF_2H$ would not be formed in this situation.

Nucleophiles react with difluoromethyl alkanoates by attack only on the carbonyl carbon to displace the CF_2H group.

$$\begin{aligned} &\text{RCO}_2\text{CF}_2\text{H} + \underset{18}{\text{Nu}^-} \rightarrow \underset{19}{\text{RCONu}} + \text{HCONu} + \text{F}^-\\ &\text{5} \end{aligned}$$
$$\begin{aligned} &\text{R} = p\text{-CH}_3\text{C}_6\text{H}_4 \ (\textbf{g}), \ o\text{-CH}_3\text{OC}_6\text{H}_4 \ (\textbf{l})\\ &\text{Nu} = \text{F} \ (\textbf{a}), \ \text{OH} \ (\textbf{b}), \ \text{OEt} \ (\textbf{c}), \ \text{CH}_3\text{CO}_2 \ (\textbf{d}) \end{aligned}$$

Experimental Section

Melting and boiling points are uncorrected. GC spectra were measured on a Shanghai Model 120 instrument packed with Porapak-Q. IR spectra were measured on a Shimadzu IR-440 spectrometer. NMR spectra were recorded on an EM-360 NMR spectrometer at 60 MHz. Chemical shifts are in parts per million from external TMS for ¹H and from external TFA for ¹⁹F, positive for upfield shifts. Mass spectra were taken on an MS-4021 spectrometer.

All solvents and reagents were purified and dried prior to use. Compound **3** was prepared according to the literature.¹⁶

Typical Procedure for Synthesis of a Difluoromethyl Alkanoate. Sodium benzoate (7.2 g, 50 mmol) and CH_3CN (30 mL) were placed in a 100-mL three-necked, round-bottomed flask fitted with a magnetic stirrer, dropping funnel, and reflux condenser connected to a dry-ice trap. Compound 3 (3.6 g, 20 mmol) was added with stirring at 20 °C, and the mixture was stirred for 1 h at this temperature. The ¹⁹F NMR spectrum showed that reaction was complete. The gas collected (550 mL) was passed into sodium hydroxide solution. HCF₃ (90 mL, 20%) was identified by GC-MS. Sulfur dioxide was collected in the cold trap and characterized by KMnO₄, I₂-starch, and Ba(OH)₂ tests. The reaction mixture was poured into water, the aqueous layer was extracted three times with ether, and the combined extracts were washed with water and dried over Na₂SO₄. After distillation of the ether, distillation in vacuo gave 5e (1.9 g, 54%): bp 82-86 °C/16 mm (lit.¹¹ bp 75 °C/15 mm); ¹H NMR δ 7.2-7.9 (m, 5 H), 7.01 (t, 1 H); ¹⁹F NMR δ 13.3 (d, $J_{\text{H-F}}$ = 71) (lit.¹¹ ¹⁹F NMR ϕ_{CFCl_3} 91.9, $J_{\text{H-F}} = 70.7$).

5c: bp 130–132 °C/2.0 mm. Found: C, 68.43; H, 10.50; F, 11.40. C₁₉H₃₄O₂F₂ requires C, 68.62; H, 10.32; F, 11.34. IR: ν_{max} (film) 3230, 2950, 1475, 1370, 1040–1160, 730, 670 cm⁻¹. MS: m/e (rel intensity) 332 (4.48), 307 (2.88), 265 (11.24), 57 (100.0), 51 (12.62), 43 (62.33). ¹H NMR: δ 6.91 (t, 1 H), 0.83–5.17 (m, 33 H). ¹⁹F NMR: δ 13.5 (d, $J_{H-F} = 72$).

5d: bp 64–66 °C/3.0 mm. Found: C, 57.78; H, 4.30; F, 20.47. C₉H₈O₂F₂ requires C, 58.06; H, 4.34; F, 20.41. IR: ν_{max} (film) 3050, 1740, 1620, 1470, 1225, 1040–1160, 770, 690 cm⁻¹. MS: m/e (rel

intensity) 186 (20.76), 118 (5.540), 91 (100), 51 (4.43). ¹H NMR: δ 7.11 (s, 5 H), 6.81 (t, 1 H), 3.46 (s, 2 H). ¹⁹F NMR: δ 13.5 (d, $J_{\rm H-F}$ = 71).

5f: bp 94 °C/2.0 mm. Found: C, 53.69; H, 4.00; F, 18.25. C₉H₈O₃F₂ requires C, 53.46; H, 4.00; F, 18.80. IR: ν_{max} (film) 3030, 1750, 1620, 1510, 1270, 1020–1150, 850 cm⁻¹. MS: m/e (rel intensity) 202 (48.09), 135 (100), 107 (9.50), 92 (17.48), 77 (16.11), 51 (10.75). ¹H NMR: δ 7.03 (t, 1 H), 7.22 (m, 4 H), 3.71 (s, 3 H). ¹⁹F NMR: δ 12.8 (d, J_{H-F} = 71).

5g: bp 70–72 °C/8.0 mm. Found: C, 58.26; H, 4.45; F, 19.79. C₉H₈O₂F₂ requires C, 58.06; H, 4.34; F, 20.41. IR: ν_{max} (film) 3020, 1750, 1610, 1510, 1260, 1040–1160, 840 cm⁻¹. MS: m/e (rel intensity) 186 (5.18), 120 (100), 91 (23.94), 76 (0.29), 51 (0.91). ¹H NMR: δ 7.13 (t, 1 H), 7.55 (m, 4 H), 2.33 (s, 3 H). ¹⁹F NMR: δ 12.5 (d, $J_{H-F} = 72$).

5h: bp 47-49 °C/1.5 mm. Found: C, 44.54; H, 20.49; F, 23.42. C₆H₄O₃F₂ requires C, 44.45; H, 2.49; F, 23.78. IR: ν_{max} (film) 3140, 1750, 1610, 1470, 1380, 1230, 1040–1180, 770 cm⁻¹. MS: m/e (rel intensity) 162 (37.06), 112 (5.44), 96 (100), 68 (4.82), 51 (2.35). ¹H NMR: δ 7.17 (t, 1 H), 6.51–7.65 (m, 3 H). ¹⁹F NMR: δ 12.6 (d, $J_{H-F} = 71$).

5i: bp 42 °C/8.0 mm. Found: C, 50.53; H, 2.53; F, 29.52. C₈H₅O₂F₃ requires C, 50.53; H, 2.66; F, 29.98. IR: ν_{max} (film) 3090, 1760, 1640, 1550, 1420, 1260, 1040–1160, 860 cm⁻¹. MS: m/e (rel intensity) 190 (34.18), 123 (100), 95 (32.21), 75 (17.28), 51 (20.65). ¹H NMR: δ 7.13 (t, 3 H), 7.03–7.95 (m, 3 H). ¹⁹F NMR: δ 13.2 (d, J_{H-F} = 70, 2 F), 23.9 (s, 1 F).

5j: mp 74–76 °C. Found: C, 54.51; H, 2.42; N, 6.88; F, 19.32. C₉H₅NO₂F₂ requires C, 54.82; H, 2.56; N, 7.10; F, 19.2. IR: ν_{max} (film) 3080, 2250, 1770, 1620, 1420, 1270, 1040–1120, 880 cm⁻¹. MS: m/e (rel intensity) 197 (45.84), 131 (100), 102 (27.58), 75 (14.99), 51 (30.77). ¹H NMR: δ 7.25 (t, 1 H), 7.92 (m, 4 H). ¹⁹F NMR: δ 12.7 (d, $J_{H-F} = 70$). **5**k: bp 94–96 °C/5 mm. Found: C, 53.55; H, 3.94; F, 18.61.

5k: bp 94–96 °C/5 mm. Found: C, 53.55; H, 3.94; F, 18.61. C₉H₈O₃F₂ requires C, 53.33; H, 4.00; F, 18.80. IR: ν_{max} (film) 3035, 1760, 1605, 1490, 1260, 1040–1140, 760 cm⁻¹. MS: m/e (rel intensity) 202 (26.70), 135 (100), 105 (12.92), 77 (11.38), 51 (10.79). ¹H NMR: δ 7.45 (t, 1 H), 6.68–7.73 (m, 4 H), 3.85 (s, 3 H). ¹⁹F NMR: δ 13.0 (d, $J_{H-F} = 71$).

51: bp 52–54 °C/2 mm. Found: C, 50.69; H, 2.61; F, 29.62. C₈H₅O₂F₃ requires C, 50.53; H, 2.66; F, 29.98. IR: ν_{max} (film) 3050, 1760, 1610, 1490, 1240, 1020–1160, 760. MS: m/e (rel intensity) 190 (34.32), 123 (100), 95 (25.21), 75 (13.13), 51 (16.16). ¹H NMR: δ 7.13 (t, 3 H), 6.83–7.95 (m, 4 H). ¹⁹F NMR: δ 13.1 (d, J_{H-F} = 71, 2 F), 26.9 (s, 1 F).

Reaction of 3 with 4e in Aqueous CH₃CN. 4e (7.2 g, 0.04 mol), CH₃CN (50 mL), and H₂O (1.5 g, 0.083 mol) were placed in a 100-mL three-necked round-bottomed flask fitted with a magnetic stirrer, a dropping funnel, and a reflux condenser connected with a dry-ice trap. **3** (3.6 g, 0.02 mol) was added with stirring for 2 h at room temperature. ¹⁹F NMR showed that the reaction was complete. **5e** (0.4 g, 12%), HCF₂SO₂F (0.38 g, 14%, identified by ¹H and ¹⁹F NMR^{3b}), and **6** (28 mL, 54%) were obtained. In the absence of water under the same reaction conditions, the yield of **5e** was 54%.

Reaction of 3 with 7a. The procedure was similar to the above. The mixture of 3 (3.6 g, 0.02 mol) and **7a** (7.7 g, 0.02 mol) in CH_3CN (50 mL) was heated at 40 °C for 2 h. ¹⁹F NMR showed that the reaction was complete. Sulfur dioxide (0.8 g, 64%) was obtained in the cold trap. The gas mixture was passed into the solution of sodium hydroxide. After elimination of CO_2 , the gas remaining was identified as HCF₃ (394 mL, 88%) by GC-MS spectroscopy. **7a** was recovered completely. Similar procedures for the reactions of **3** with **7b** and **7c** gave fluoroform in 90% and 82% yields, respectively.

Synthesis of Difluoromethyl Alkanesulfonate. Typical Procedure. 8a (9.2 g, 0.04 mol) and CH₃CN (30 mL) were placed in a 100-mL three-necked round-bottomed flask fitted with a magnetic stirrer, a dropping funnel, and a refluxing condenser. 3 (3 g, 0.02 mol) was added with stirring at 50 °C. After addition, the mixture was further stirred for 2 h at this temperature. ¹⁹F NMR showed that the reaction was complete. The reaction mixture was poured into water. The aqueous layer was extracted with ether three times. The combined extracts were washed with water and dried over Na₂SO₄, and ether was distilled off. Distillation in vacuo gave 9a (2.6 g, 59%): bp 68-70 °C/0.2 mm.

⁽¹⁵⁾ Tari, I.; DesMarteau, D. D. J. Org. Chem. 1980, 45, 1214 and references therein.

^{(16) (}a) England, D. C.; Dietrich, M. A.; Lindsey, R. V. Jr. J. Am. Chem. Soc. 1960, 82, 6181. (b) Dimitriev, M. A.; Sokolski, G. A.; Knunyants, I. L. Izv. Akad. Nauk SSSR, Ser. Khim. 1960, 1227.

Found: C, 42.76; H, 3.71; F, 17.00; S, 14.12. $C_8H_8O_3F_2S$ requires C, 43.20; H, 3.64; F, 17.10; S, 14.40. IR: ν_{max} (film) 3010, 1600, 1400, 1010–1070, 820 cm⁻¹. MS: m/e (rel intensity) 222 (40.99), 172 (10.40), 155 (100), 91 (87.44), 51 (15.58). ¹H NMR: δ 6.67 (t, 1 H), 7.47) (m, 4 H), 2.42 (s, 3 H). ¹⁹F NMR: δ 5.8 (d, $J_{H-F} = 71$).

9b. bp 74-76 °C/0.6 mm. Found: C, 33.12; H, 1.92; N, 5.76; F, 14.78; S, 12.84. C₇H₅NO₅F₂S requires C, 33.24; H, 1.99; N, 5.53; F, 15.03; S, 12.64. IR: ν_{max} (film) 3038, 1605, 1540, 1400, 1010-1160, 880 cm⁻¹. MS: m/e (rel intensity) 253 (94.60), 207 (18.32), 186 (100), 139 (7.26), 122 (16.81), 51 (52.76). ¹H NMR: δ 7.70-8.71 (m, 4 H), 6.90 (t, 1 H). ¹⁹F NMR: δ 5.8 (d, J_{H-F} = 71).

9c: bp 74–76 °C/1 mm. Found: C, 40.44; H, 2.87; F, 18.45; S, 15.68. C₇H₆O₃F₂S requires C, 40.39; H, 2.91; F, 18.26; S, 15.38. IR: ν_{max} (film) 3080, 1590, 1450, 1400, 1200, 1000–1060, 850 cm⁻¹. MS: m/e (rel intensity) 208 (52.99), 141 (100), 77 (91.95), 51 (50.95). ¹H NMR: δ 6.75 (t, 1 H), 7.47–7.96 (m, 5 H). ¹⁹F NMR: δ 5.7 (d, $J_{H-F} = 71$).

9g: bp 127 °C/1 mm. Found: C, 47.10; H, 5.76; F, 12.95; S, 11.50. $C_{11}H_{16}O_4F_2S$ requires C, 46.76; H, 5.72; F, 13.46; S, 11.36. IR: ν_{max} (film) 2940, 1745, 1390, 1050 cm⁻¹. MS: m/e (rel intensity) 282 (5.40), 151 (54.49), 123 (41.96), 109 (100), 51 (12.91). ¹H NMR: δ 6.85 (t, 15 H), 1.03–3.95 (m, 15 H). ¹⁹F NMR: δ 5.7 (d, $J_{H-F} = 72$).

9h. bp 128 °C/2 mm. Found: C, 52.30; H, 8.89; F, 11.97; S, 11.34. $C_{13}H_{26}O_3F_2S$ requires C, 51.98; H, 8.74; F, 12.65; S, 10.76. IR: ν_{max} (film) 2970 (s), 1410 (s), 1000–1070 (s). MS: m/e (rel intensity) 299 (1.36), 203 (42.50), 168 (100), 51 (0.69). ¹H NMR: δ 6.73 (t, 1 H), 0.84–3.17 (m, 25 H). ¹⁹F NMR: δ 5.7 (d, $J_{H-F} = 72$).

Reaction of 3 with 10. The procedure was similar to the above. Mixing 3 (3.6 g, 0.02 mol) with 10 (6.9 g, 0.04 mol) in CH_3CN (30 mL) at room temperature for 1 h gave 11 (2.94 g, 74%).

11: bp 145 °C/2.5 mm. Found: C, 36.20; H, 5.81; N, 7.20; F, 19.78; S, 31.61. C₆H₁₁NF₂S₂ requires C, 36.16; H, 5.58; N, 7.03; F, 19.10; S, 32.16. IR: ν_{max} (film) 2980, 1480, 1430, 1060–1090. MS: m/e (rel intensity) 199 (100), 148 (46.63), 72 (53.67), 51 (17.58). ¹H NMR: δ 7.53 (t, 1 H), 3.47 (q, 4 H), 1.1 (t, 6 H). ¹⁹F NMR: δ 21 (d, $J_{H-F} = 51$).

Reaction of 3 with 12. To a solution of 12 (7.9 g, 0.04 mol) and CH₃CN (30 mL) was added 3 (3.6 g, 0.02 mol) at room temperature for 1 h. ¹⁹F NMR showed that the conversion was complete. 13 (2.5 g, 65%) was obtained.

13: bp 118–12 °C/7 mm (lit.¹³ bp 115–120 °C/7 mm). ¹H NMR: δ 7.56–8.14 (m, 5 H), 6.15 (t, 1 H). ¹⁹F NMR: δ 43.0 (d, J_{H-F} = 61).

Reaction of 3 with 14. A mixture of **3** (3.6 g, 0.02 mol) and **14** (10 g, 0.03 mol) in CH₃CN (50 mL) was heated at 60 °C for 0.5 h. ¹⁹F NMR showed that the conversion was 78%. **16** (0.5 g, 10%) and **15** (2.78 g, 50%) were obtained. If the contents were further stirred for 3 h at 60 °C, ¹⁹F NMR showed that the conversion was complete and only **16** (3.9 g, 60%) was obtained.

15: ¹H NMR: δ 6.52 (t, 1 H), 3.88 (q, 4 H), 0.90–1.4 (m, 30 H). ¹⁹F NMR: δ 3.2 (d, $J_{\text{H-F}}$ = 72).

16: bp 148–150 °C/1.5 mm. Found: C, 58.88; H, 11.10; F, 5.65. C₁₆H₃₄O₃FP requires C, 59.21; H, 10.58; F, 5.86. IR: ν_{max} (film) 2700–2950, 1450, 1290–1320. MS: m/e (rel intensity) 325 (8.66), 257 (0.59), 213 (27.70), 113 (100), 101 (36.43), 59 (94.74). ¹H NMR: δ 4.0 (t, 4 H), 0.95–1.35 (m, 30 H). ¹⁹F NMR: δ 0.20 (d, J_{P-F} = 936).

Reaction of 3 with 4e (M = H) in the Presence of Na_2SO_4 . To a mixture of Na_2SO_4 (2.8 g, 0.02 mol), 4e (M = H) (4.9 g, 0.04 mol), and CH₃CN (30 mL) was added 3 (3.6 g, 0.02 mol) at 60 °C for 2 h. ¹⁹F NMR showed that the conversion was complete. The reaction mixture was poured into water, the aqueous layer was extracted with ether three times, the combined extracts were washed with water and dried over Na₂SO₄, and ether was distilled off. Distillation in vacuo gave 5e (1.88 g, 56%).

Reaction of 3 with 4j (M = H) in the Presence of KCl. KCl (1.5 g, 0.04 mol), 4j (M = H) (8.5 g, 0.034 mol), and CH₃CN (50 mL) were placed in a 100-mL three-necked round-bottomed flask fitted with a magnetic stirrer, a dropping funnel, and a refluxing condenser connected with a dry-ice trap. 3 (3.6 g, 0.02 mol) was added with stirring at 50 °C for 2.5 h. ¹⁸F NMR showed that the reaction was complete. 5j (2.7 g, 45%) was obtained. Sulfur dioxide and HCF₂Cl were collected in the cold trap and characterized by GC-MS spectroscopy. At the end of the trap a gas mixture was passed into AgNO₃ solution, and white deposition (4.3 g) was obtained. After acidification with dilute HNO₃, AgCl (2.1 g, 74%) was obtained.

Reaction of 3 with 2,3-Dimethyl-2-butene in the Presence of Na₂SO₄. To a mixture of Na₂SO₄ (2.8 g, 0.02 mol), 2,3-dimethyl-2-butene (6.8 g, 0.08 mol), and CH₃CN (30 mL) was added 3 (3.6 g, 0.02 mol) at 60 °C for 2 h. ¹⁹F NMR showed that the conversion was complete. 1,1-Difluoro-2,2,3,3-tetramethylcyclopropane (1.4 g, 53%) was obtained: bp 90–92 °C (lit.¹⁷ bp 90–91 °C). ¹⁹F NMR: δ 71.0 (m). ¹H NMR: δ 1.0 (t).

Reaction of 5g with 18a. A solution of KF (0.6 g, 0.01 mol) and **5g** (0.04 g, 2.2×10^{-3} mol) in dioxane (5 mL) was heated at 110 °C for 10 h. ¹⁹F NMR showed that the conversion was 85%. The gas (38 mL, 83%) was collected and was identified as HC(O)F by GC-MS spectroscopy. **19a** (0.25 g, 96%) was obtained. Similar reactions were carried out for **5g** or **5l** with **18b**, **18c**, and **18d** to give **19b**, **19c**, and **19d** in 95%, 85%, and 100% yields, respectively.

Acknowledgment. We thank Professor Wei-Yuan Huang for his encouragement of this work and the National Natural Science Foundation of China for financial support.

Registry No. 3, 1717-59-5; 4a (M = Na), 127-09-3; 4b (M = Na), 10051-45-3; 4c (M = Na), 16558-02-4; 4d (M = Na), 114-70-5; 4e (M = Na), 532-32-1; 4e (M = H), 65-85-0; 4f (M = Na), 536-45-8; 4g (M = Na), 17264-54-9; 4h (M = Na), 57273-36-6; 4i (M = Na),499-90-1; 4j (M = Na), 1005-30-7; 4j (M = H), 619-58-9; 4k (M = Na), 17264-66-3; 41 (M = Na), 17264-78-7; 4m (M = Na), 490-97-1; 5a, 105198-13-8; 5b, 120608-81-3; 5c, 120608-82-4; 5d, 120608-83-5; 5e, 1885-09-2; 5f, 120608-84-6; 5g, 120608-85-7; 5h, 14001-27-5; 5i, 120608-86-8; 5j, 120608-87-9; 5k, 120608-88-0; 5l, 120608-89-1; 5m, 120608-90-4; 6, 75-46-7; 7a (M = Na), 2264-25-7; 7b (M = Na), 2923-18-4; 7c (M = Na), 67963-75-1; 8a (M = Na), 657-84-1; 8b (M = Na), 127-68-4; 8c (M = Na), 515-42-4; 8d (M = Na), 2926-30-9; 8e (M = Na), 2795-52-0; 8f (M = Na), 89740-21-6; 8g (M = Na), 34850-66-3; 8h (M = Na), 2386-53-0; 9a, 14277-20-4; 9b, 120608-91-5; 9c, 120608-92-6; 9d, 1885-46-7; 9e, 101817-80-5; 9f, 101817-81-6; 9g, 120608-93-7; 9h, 120608-94-8; 10, 148-18-5; 11, 120608-95-9; 12, 515-42-4; 13, 1535-65-5; 14, 27708-64-1; 15, 120636-82-0; 16, 120608-96-0; 19a, 1493-02-3; 19b, 64-18-6; 19c, 109-94-4; 19d, 922-68-9; CF2**, 2154-59-8; Na2SO4, 7757-82-6; KCl, 7447-40-7; sulfur dioxide, 7446-09-5; 2,3-dimethyl-2-butene, 563-79-1; 1,1-difluoro-2,2,3,3-tetramethylcyclopropane, 823-25-6.

(17) Wheaton, G. A.; Burton, D. J. J. Fluorine Chem. 1977, 25, 9; J. Org. Chem. 1978, 43, 2643.