Photoinduced charge-separation using 10-methylacridinium ion loaded in zeolite Y as a photocatalyst with negligible back electron transfer across the zeolite-solution interface

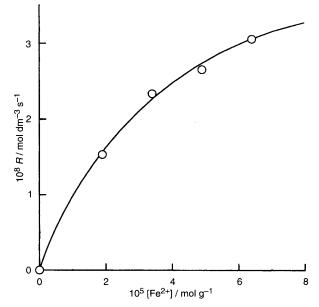
Shunichi Fukuzumi,* Tsutomu Urano and Tomoyoshi Suenobu

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan

Photoinduced electron transfer from Fe²⁺ loaded in zeolite Y to the singlet excited state of 10-methylacridinium ion in the zeolite occurs to give the acridinyl radical which reduces 7,7,8,8-tetracyanoquinodimethane in acetonitrile solution to yield the radical anion; the back electron transfer from the radical anion to Fe³⁺ across the zeolite–solution interface is shown to be negligibly slow.

Considerable efforts have so far been devoted to develop photocatalytic systems in which a back electron transfer following the initial photoinduced electron transfer can be retarded to achieve long-lived charge separation.1-7 The most remarkable result has recently been reported by Dutta et al.8,9 by encapsulation of Ru(bpy)₃²⁺ in the supercage of zeolite Y to retard the back electron transfer across the zeolite-solution interface. In fact, the radical anion of propylviologen sulfonate (PVS) formed by photoinduced electron transfer from Ru(bpy)₃²⁺ in the zeolite to PVS in solution persisted for hours.⁸ However, the absence of back electron transfer across the zeolite-solution interface has not been established experimentally. Moreover, it should be resolved as to why the back electron transfer between stable ground state molecules, which is thermodynamically a much more favoured process than the forward electron transfer, does not occur appreciably within hours although the forward electron transfer from the shortlived excited state of Ru(bpy)₃²⁺ to PVS occurs across the zeolite-solution interface within microseconds.

We report herein a photocatalytic system that achieves complete charge separation between Fe³⁺ in zeolite Y and an acceptor radical anion in solution by using 10-methylacridinium ion (AcrH+) loaded in the zeolite as a photocatalyst. The absence of the back electron transfer across the zeolite–solution interface has been confirmed experimentally.


Both Fe²⁺ $(1.9 \times 10^{-5} - 8.2 \times 10^{-5} \text{ mol g}^{-1}, 0.38 - 1.3)$ molecules per 10 supercages) and AcrH⁺ (1.4 \times 10⁻⁴ mol g⁻¹, 2.7 molecules per 10 supercages) were loaded into Na-Y zeolite by ion exchange with Fe(ClO₄)₂ and (AcrH)ClO₄ in acetonitrile (MeCN).† The visible absorption band of AcrH+ incorporated in the zeolite was observed at $\lambda_{max} = 362$ nm, which is significantly red-shifted compared with that in an MeCN solution ($\lambda_{\text{max}} = 358 \text{ nm}$). Photolysis of the ion-exchanged zeolite (20 mg) suspended in an MeCN solution of TCNQ (1.0 \times 10⁻³ mol dm⁻³) under irradiation of a mercury lamp through a Pyrex filter at 298 K leads to the appearance of TCNQ·- $(\lambda_{max}$ 842 nm, ϵ_{max} 4.33 \times 10⁴ dm³ mol⁻¹ cm⁻¹)¹¹ in solution. The absorption spectra of the suspended solution stirred with a magnetic stirrer were monitored using an integrating sphere attachment. The concentration of TCNQ·- after photolysis for 21 h was determined as 5.5×10^{-5} mol dm⁻³, which corresponds to 13% of the initial amount of Fe2+ loaded in the zeolite. The initial rate of formation of TCNO irradiation of the mercury lamp increases with an increase in the amount of Fe²⁺ loaded in the zeolite, [Fe²⁺], to reach a limiting value at higher concentrations as shown in Fig. 1. A standard actinometer (potassium ferrioxalate)12 was used for the quantum yield (Φ) determination. The Φ value for the formation of

TCNQ·- in the photolysis of the Fe²⁺-AcrH⁺-zeolite sample (10 mg, Fe²⁺ = 8.2×10^{-5} mol g⁻¹) suspended in MeCN containing TCNQ (1.0×10^{-4} mol dm⁻³) over a period of 40 min was estimated as 5.1×10^{-4} , which is compatible with the Φ value reported for the Ru(bpy)₃²⁺-zeolite system.⁸

Irradiation of the absorption band of AcrH⁺ (362 nm) of the Fe²⁺–AcrH⁺–zeolite suspended in MeCN causes fluorescence as shown in Fig 2. The fluorescence intensity (I) decreases with an increase in [Fe²⁺]. The fluorescence decay obeyed the first-order kinetics. The fluorescence lifetime (τ) also decreases with an increase in [Fe²⁺]. From the Stern–Volmer plot of I_0/I and τ_0/I τ vs. [Fe²⁺] are obtained the quenching constant K_q as 2.5×10^4 g mol⁻¹.

The formation of Fe³⁺ inside the zeolite accompanied by the formation of TCNQ⁻⁻ in solution was confirmed by the EPR spectra. The EPR spectra of the Fe²⁺-AcrH⁺-zeolite sample after the photolysis for 20 h showed a very broad signal centred around $g \approx 2.0$ with a linewidth of ca. 1600 G together with a sharp signal at $g \approx 4.3$. The g values and linewidths of the EPR spectra agree with those reported for Fe³⁺ exchanged zeolites.¹³ A very sharp signal superimposed on the broad signal at $g \approx 2.0$ was also observed at $g \approx 2.004$ due to TCNQ⁻⁻ which remained on the surface of the zeolite. Thus, the actual electron source to reduce TCNQ to TCNQ⁻⁻ may be Fe²⁺ loaded in the zeolite, which is oxidized to Fe³⁺ accompanied by the formation of TCNQ⁻⁻.

In an MeCN solution, electron transfer from TCNQ⁻⁻ to Fe³⁺ occurs immediately upon mixing Fe(ClO₄)₃ and a sodium salt of

Fig. 1 Dependence of the initial rate of formation of TCNQ $^-$ on the amount of Fe²⁺ loaded in the zeolite, [Fe²⁺], for the photolysis of the Fe²⁺-AcrH $^-$ zeolite (20 mg) suspended in an MeCN solution of TCNQ (1.0 \times 10 $^{-3}$ mol dm $^{-3}$)

TCNQ- which was prepared independently, as expected from the low oxidation potential of TCNQ⁻⁻ (0.19 V vs. SCE).¹⁴ In order to examine the rate of back electron transfer from TCNQ⁻⁻ in solution to Fe³⁺ in the zeolite across the zeolitesolution interface, we prepared the Fe3+ exchanged zeolite Y. The rates of back electron transfer from TCNQ- in solution to Fe³⁺ in the zeolite were determined from a decrease in the absorption band of TCNQ⁻⁻ (λ_{max} 842 nm, ϵ_{max} 4.33 \times 10⁴ $dm^3 \ mol^{-1} \ cm^{-1}).^{11}$ The initial maximum rate of electron transfer from TCNQ $^-$ (1.5 imes 10⁻⁵ mol dm $^-$ 3) to Fe³⁺ (7.5 imes 10^{-6} mol g⁻¹) in the zeolite (20 mg) was only 1.5×10^{-10} dm⁻³ mol s⁻¹, which is orders of magnitude smaller than the rate of formation of TCNQ- in Fig. 1. When the amount of Fe³⁺ loaded in the zeolite was increased to 1.5×10^{-4} mol g⁻¹, the initial decay rate of TCNQ⁻⁻ was also increased to 2.1 × 10^{-8} dm⁻³ mol s⁻¹, which is still smaller than the initial rate of formation of TCNQ:- in the photolysis in Fig. 1. Thus, it has been confirmed that the back electron transfer from TCNO in solution to Fe³⁺ in the zeolite across the zeolite-solution interface is negligible over a timescale of hours.

The photocatalytic mechanism for the present charge separation system is shown in Scheme 1.

Upon irradiation, photoinduced electron transfer from Fe²⁺ to the singlet excited state of AcrH+ occurs inside the zeolite to yield Fe3+ and AcrH. The free energy change of electron transfer from AcrH· $(E^0_{ox} = -0.43 \text{ V } vs. \text{ SCE})^{15}$ to TCNQ $(E_{\text{red}}^0 = 0.19 \text{ V})^{14}$ is largely negative. Thus, electron transfer $(k_{\rm et})$ from AcrH· in the zeolite to TCNQ in solution may occur in competition with the back electron transfer (k_b) from AcrH

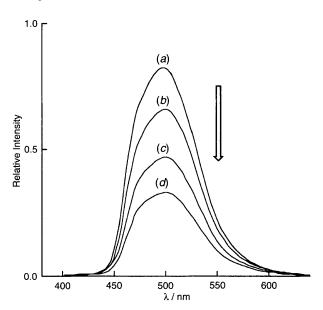
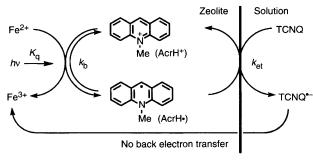



Fig. 2 Fluorescence spectra of the Fe $^{2+}$ -AcrH $^{+}$ -zeolite suspended in MeCN at 298 K; $[Fe^{2+}]/mol\ g^{-1} = (a)\ 1.9 \times 10^{-5}$, (b) 3.4×10^{-5} , (c) 6.4×10^{-5} , (d) 9.4×10^{-5} ; [AcrH+] / mol g⁻¹ = 1.4×10^{-4}

Scheme 1

to Fe³⁺ in the zeolite. Once TCNQ⁻⁻ is formed in solution, the radical anion may be electrostatically repelled by the negatively charged surface of the zeolite, resulting in essentially no back electron transfer across the zeolite-solution interface.⁶ By applying the steady-state approximation to the reactive species ¹AcrH+* and [AcrH·Fe³⁺] in Scheme 1, the dependence of the rate of formation of TCNQ \cdot - (R) on [Fe²⁺] can be derived as given by eqn. (1), where I_a is the light intensity absorbed by Acr H^+ , K_q is the quenching constant

$$R = \{k_{et}[TCNQ]_a/(k_b + k_{et}[TCNQ]_a)\}\{I_aK_q[Fe^{2+}]/(1 + K_q[Fe^{2+}])\}$$
 (1)

of the singlet excited state of AcrH+ by Fe2+ in the zeolite, and [TCNQ]_a is the concentration of TCNQ adsorbed on the zeolite. From eqn. (1) a linear correlation between R^{-1} and $[Fe^{2+}]^{-1}$ is obtained. In fact, a linear correlation is observed in a plot of R^{-1} vs. [Fe²⁺] using the data in Fig. 1. From the intercept and the slope a K_q value of 2.2×10^4 mol⁻¹ g was obtained, in accord with the value $(2.5 \times 10^4 \, \text{mol}^{-1} \, \text{g})$ obtained independently from the fluorescence quenching of AcrH+ by Fe²⁺ in the zeolite. Such an agreement indicates the validity of Scheme 1.

This work was partially supported by a Grant-in-Aid from the Ministry of Education, Science, and Culture, Japan.

Footnote

† The total amount of Fe²⁺ in Fe²⁺-AcrH⁺-zeolite is taken as the sum of the amount of Fe²⁺ contained originally $(1.9 \times 10^{-5} \text{ mol g}^{-1})$ and that loaded by the ion exchange.

References

- 1 K. Kalyansundaram, Photochemistry in Microheterogeneous Systems, Academic, Orlando, 1987; M. Gratzel, Heterogeneous Photochemical Electron Transfer, CRC, Boca Raton, FL, 1989; V. Ramamurthy, Photochemistry in Organized and Constrained Media, VCH, New York, 1991; K. B. Yoon, Chem. Rev., 1993, 93, 321.
- 2 I. Willner, W. E. Ford, J. W. Otvos and M. Calvin, Nature, 1979, 280, 830; I. Willner, J.-M. Yang, C. Laane, J. W. Otvos and M. Calvin, J. Phys. Chem., 1981, 85, 3277; Y. Degani and I. Willner, J. Am. Chem. Soc., 1983, 105, 6228; I. Willner and Y. Eichen, J. Am. Chem. Soc.,
- 3 A. Slama-Schwork, M. Ottolenghi and D. Avnir, Nature, 1992, 355,
- 4 J. Rabani, in Photoinduced Electron Transfer, ed. M. A. Fox and M. Chanon, Elsevier, Amsterdam, 1988, part B, p. 642; R. E. Sassoon, S. Gershuni and J. Rabani, J. Phys. Chem., 1992, 96, 4692.
- 5 J. K. Hurst, D. H. P. Thompson and J. S. Connolly, J. Am. Chem. Soc., 1987, 109, 507
- 6 J. S. Krueger, J. E. Mayer and T. E. Mallouk, J. Am. Chem. Soc., 1988, 110, 8232; Y. I. Kim and T. E. Mallouk, J. Phys. Chem., 1992, 96, 2879; E. H. Yonemoto, G. B. Saupe, R. H. Schmehl, S. M. Hubig, R. L. Riley, B. L. Iverson and T. E. Mallouk, J. Am. Chem. Soc., 1994, 116, 4786.
- 7 S. Sankararaman, K. B. Yoon, T. Yabe and J. K. Kochi, J. Am. Chem. Soc., 1991, 113, 1419; K. B. Yoon, S. M. Hubig and J. K. Kochi, J. Phys. Chem., 1994, 98, 3865.
- 8 M. Borja and P. K. Dutta, Nature, 1993, 362, 43.
- P. K. Dutta and W. Turbeville, J. Phys. Chem., 1992, 96, 9410; P. K. Dutta and M. Borja, J. Chem. Soc., Chem. Commun., 1993, 1568; M. Ledney and P. K. Dutta, J. Am. Chem. Soc., 1995, 117, 7687
- 10 S. Fukuzumi and T. Tanaka, in Photoinduced Electron Transfer, ed. M. A. Fox and M. Chanon, Elsevier, Amsterdam, 1988, part C, p. 578; S. Fukuzumi, M. Fujita and J. Otera, J. Chem. Soc., Chem. Commun.,
- 11 L. R. Melby, R. J. Harder, W. R. Hertler, W. Mahler, R. E. Benson, and W. E. Mochel, J. Am. Chem. Soc., 1962, 84, 3374.
- 12 C. G. Hatchard and C. A. Parker, Proc. R. Soc. London, Ser. A, 1956,
- 13 N. P. Evmiridis, Inorg. Chem., 1986, 25, 4362.
- 14 S. Fukuzumi and Y. Tokuda, J. Phys. Chem., 1992, 96, 8409.
- 15 S. Fukuzumi, S. Koumitsu, K. Hironaka and T. Tanaka, J. Am. Chem. Soc., 1987, 109, 305.

Received, 2nd October 1995; Com. 5/06452J