J.C.S. CHEM. COMM., 1981 263

Anodic Oxidation of Vinyl Sulphides. A Convenient Synthesis of α-Thiolated Aldehydes

By Akiteru Matsumoto, Kohji Suda, and Chino Yijima*

(Department of Chemistry, Meiji College of Pharmacy, Nozawa-1-35, Setagaya-ku, Tokyo, Japan)

Summary Anodic oxidation of vinyl sulphides in aqueous acetonitrile gives α-thiolated aldehydes in good yields.

 $\alpha\text{-Thiolated}$ aldehydes are valuable building blocks in organic synthesis, and many synthetic methods for these compounds have been developed.¹ All the methods, however, involve several steps or else require the use of reactive sulphenylating reagents under delicate conditions. We now report a new convenient electrochemical synthesis of $\alpha\text{-thiolated}$ aldehydes (2)† from vinyl sulphides (1).‡

R¹
R²
C=C
SR³

$$\frac{-2e^{-}}{+H_{2}O, -2H^{+}}$$
PhCHCHO
SR³

(1)

(2)

a; R¹ = H, R² = Ph, R³ = p-Bu^tC₆H₄
b; R¹ = Ph, R² = H, R³ = p-MeC₆H₄
c; R¹ = H, R² = Ph, R³ = p-MeC₆H₄
d; R¹ = Ph, R² = H, R³ = Ph
e; R¹ = H, R² = Ph, R³ = Buⁿ
f; R¹ = Ph, R² = H, R³ = p-ClC₆H₄

On single-sweep cyclic voltammetry in acetonitrile containing 2% water and 0.2 M sodium perchlorate at 25 °C, the first anodic peak of the compounds (1) was irreversible. Peak potentials were as follows (platinum disc electrode, sweep rate 100 mV s^{-1}): (1a), 1.15; (1b), 1.10; (1c), 1.22; (1d), 1.12; (1e), 1.15; and (1f), 1.27 V vs. S.C.E. (standard

calomel electrode). Controlled-potential electrolysis of the compounds (1) was carried out in the same solvent-electrolyte system as used in the cyclic voltammetry experiments at 1.20 or 1.30 V vs. S.C.E. at a platinum plate electrode in a divided cell. A coulometric n-value of ca. 2 F mol⁻¹ was obtained in every case (Table).

Table. Results of controlled-potential electrolysis of the vinyl sulphides (1).

Substratea conc./mm	Applied potential ^b	Coulometric n-value/F mol ⁻¹	Products and yields/%c
$(1a)(12 \cdot 0)$	$1 \cdot 20$	2.00	(2a)(62)
(1b)(14.6)	$1 \cdot 20$	1.95	(2b)(93)
(1c)(18.7)	$1 \cdot 20$	2.00	(2b)(93)
(1d)(18.9)	1.20	2.00	(2d)(88)
(1e) (20·0)	1.20	2.00	(2e) (50)
(1f) (12·4)	1.30	1.96	(2f) (89)

^a Electrolyses were performed with 25 ml of aqueous acetonitrile at 25 °C. ^b V vs. S.C.E. ^c Yields were determined by g.l.c.

The electrolysed solution was concentrated in vacuo and extracted with chloroform. α -Thiolated aldehydes (2) were obtained in good yields by appropriate treatment of the chloroform layer. This is a promising method for the synthesis of the α -thiolated aldehydes of type (2) because of the mild reaction conditions, simple manipulation, and the good yields.

(Received, 29th December 1980; Com. 1377.)

- † All products were satisfactorily characterized by ¹H n.m.r., i.r., and mass spectroscopy and elemental analyses.
- ‡ The compounds were prepared according to literature methods.² Compound (1a) was prepared according to the method used for (1b), m.p. 89.5 °C.
- § The use of NaClO₄ has proved safe during concentration but an Et₄NBF₄ supporting electrolyte may also be used to avoid any possibility of explosion.
- ¹ R. M. Coates, H. D. Pigott, and J. Ollinger, *Tetrahedron Lett.*, 1974, 3955; D. Groenewegen, H. Kallenberg, and A. van der Gen, *ibid.*, 1978, 2817; H. J. Bestman and J. Angerer, *Liebigs Ann. Chem.*, 1974, 2085; D. Seebach and M. Teschner, *Chem. Ber.*, 1976, 109, 1601; B. M. Trost, *Chem. Rev.*, 1978, 363.
- ² A. A. Oswald, K. Griesbaum, B. E. Hudson, Jr., and J. M. Bregman, J. Am. Chem. Soc., 1964, 86, 2877; E. P. Kohler and H. Potter, ibid., 1935, 57, 1316; W. E. Truce and J. A. Simms, ibid., 1956, 78, 2756.