Enantioselective Reduction of C=O and C=N Compounds with NADH Model N,N,1,2,4-Pentamethyl-1,4-dihydronicotinamide

Jos P. Versleijen^{*}, Mireille S. Sanders-Hovens, Sylvia A. Vanhommerig, Jozef A. Vekemans and Emmo M. Meijer

Laboratory of Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received in UK 7 July 1993)

Abstract. The scope and mechanism of enantioselective hydride transfer from NADH model 4 to prochiral C=O and C=N compounds were investigated. Efficient chirality transfer from 4 to α -keto esters and α -methoxycarbonylimino esters was achieved. The resemblance in reactivity and stereochemistry of the prochiral C=O and C=N-CO₂Me functionalities in the hydride transfer reaction is attributed to the intervention of a similar Mg(ClO₄)₂-mediated ternary complex.

INTRODUCTION

The reversible and stereoselective hydride transfer from NADH to prochiral substrates under the influence of dehydrogenases has inspired many chemists to design NADH models useful as efficient enantioselective reducing agents.¹ Generally, magnesium or zinc perchlorate is used in vitro to enhance the reactivity and to create a well-organized transition state. One line of approach mimics the selective shielding of one of the diastereotopic C-4 hydrogens of NADH in the enzymic cavity by introducing a methyl substituent at C-4 of a 1,4-dihydronicotinamide, thus creating a stereocentre at the reaction centre, e.g., 1^2 , 2^3 and 3^4 . In our laboratory, efficient enantioselective hydride transfer has been achieved with N,N,1,2,4-pentamethyl-1,4-dihydronicotinamide (4).⁵

In contrast to most other C-4 methylated NADH models, 4 combines excellent stereoselectivity with high reactivity. Additionally, the stable axial chirality in the oxidized form 5 provides information about the mechanism of the hydride transfer. Hydride transfer from S-4 to methyl benzoylformate afforded NAD⁺ model M-5 and S-methyl mandelate in an optical yield \geq 95%. Only a transition state in which the migrating C-4 hydrogen and the amide carbonyl feature a syn-out-of-plane orientation may account for the observed stereochemistry.

The present paper deals with the scope and mechanism of hydride transfer reactions with NADH model 4. The reactivity of several carbonyl and imino compounds towards NADH model 4 and the efficiency of the chirality transfer were investigated. Based on experimental evidence, the exact nature of the ternary complex(es) rationalizing the observed stereoselectivity is discussed.

RESULTS AND DISCUSSION

Reactivity of C=O compounds. The synthetic utility of hydride transfer from NADH model 4 to the C=O bond was screened with several reactive carbonyl compounds, e.g., 4,5-dihydro-4,4dimethyl-2,3-furanedione (6b), ethyl 3-methyl-2-oxobutyrate (6c), 1-phenyl-1,2-propanedione (6d), 3methyl-1,2-cyclopentanedione (6e) and 1,2-cyclohexanedione (6f). While α -keto esters 6b and 6c were reduced selectively upon equimolecular reaction with 4 in 100 and 56% yield, respectively, dione 6d afforded a mixture of 2-hydroxy-1-phenyl-1-propanone and 1-hydroxy-1-phenyl-2propanone, and the cyclic diketones 6e and 6f were not reduced at all. The reluctancy of 6e and 6f to undergo hydride transfer from 4 may find its origin in their predominant existence in the enol form. Earlier work^{5,6} already showed that acetone doesn't react with 4 to an appreciable extent, but benzaldehyde does for ~60% and methyl pyruvate and benzoin do quantitatively.

Since NADH model 4 is not only capable of transferring a hydride to the carbonyl substrate but is also susceptible to autoxidoreduction in the presence of $Mg(ClO_4)_2$, many substrates are only partially or not at all reduced by NADH model 4. The rapid formation of a reactive ternary complex consisting of the substrate, the NADH model and Mg^{2+} seems essential for an effective hydride transfer. Apparently, the presence of an α -carboalkoxy and to a smaller extent an α hydroxyalkyl or an α -phenyl group in the carbonyl substrate facilitates the construction of a ternary complex, while steric crowding of bulky groups adjacent to the carbonyl bond strongly hampers its formation. In contrast to α -keto ester 6c, the rigid cisoid structure of lactone 6b overcomes the steric constraints imposed by the α -methyl substituent, rendering the reactivity of 6b comparable to that of methyl benzoylformate (6a). In conclusion, only carbonyl compounds carrying a polar α substituent and easily fitting in a ternary complex, are efficiently reduced by 4.

Reactivity of C=N compounds. With the objective of broadening the scope of hydride transfer reactions with NADH model 4, we also investigated the reduction of C=N substrates. Very few examples of enantioselective NADH model mediated reductions of C=N compounds have been reported up to now.^{7,8} The lack of such transformations may rely both on steric constraints imposed by N-substitution and on the intrinsic chemical reactivity and complexation ability of C=N compounds. When compared to ketones, imines are significantly less reactive towards nucleophilic species, whereas iminium compounds are considerably more reactive. Recently, we briefly reported the prerequisites for the occurrence of hydride transfer from 4 to the C=N bond.⁸ We found that

iminium compounds do not undergo hydride uptake from 4 but rather react with the enamine moiety of the dihydropyridine ring. We also found that only a strong activation of imino compounds, e.g., by introducing electron withdrawing carbomethoxy groups at both ends of the C=N bond, enables hydride transfer. Apparently, a high intrinsic reactivity together with the ability of the nitrogen lone pair to coordinate with Mg²⁺ is required for the hydride transfer reaction. Aiming at an enantioselective synthesis of α -amino acid derivatives, the reduction of α -methoxycarbonylimino esters was further investigated.

Due to their tendency to undergo cycloaddition, nucleophilic addition and polymerization, α -acylimino esters are not easily available.⁹ In particular α -acylimino esters derived from naturally occurring α -amino acids and their optical antipodes, which are provided with weakly acidic β -protons, tend to isomerize into the more stable enamine tautomers (eq. 1), which are unreactive towards NADH model 4. Enamine-tautomerization is avoided when the β -protons of the α -acylimino esters are masked by halogen atoms, as in 7c-e. After hydride transfer to these halogenated imines, the non-halogenated α -amino acid derivatives might be obtained by catalytic hydrogenation of the C-halogen bond.

 α -Methoxycarbonylimino esters **7a-c** were obtained from the corresponding α -keto esters via an aza-Wittig reaction with iminophosphorane **8** (eq. 2).^{10,11} However, the drastic reaction conditions needed in the aza-Wittig reaction limits its use for a general synthesis of α -acylimino esters. The β -bromo- α -imino esters **7d** and **7e** were prepared by a recently reported method involving N-bromosuccinimide (NBS) oxidation of the α,β -didehydroamino acid derivatives 11,¹² which derive from the corresponding protected racemic amino acids **10** (eq. 3).¹³

$$\begin{array}{c} \mathsf{R}' \\ \mathsf{CO}_2\mathsf{R}'' + \mathsf{Ph}_3\mathsf{P} = \mathsf{N} \\ \mathsf{CO}_2\mathsf{Me} \end{array} \xrightarrow{\mathsf{R}' \\ \mathsf{N} \\ \mathsf{MeO}_2\mathsf{C}} \\ \mathbf{8} \\ \mathbf{7a, b, c} \end{array} \xrightarrow{\mathsf{R}' \\ \mathsf{N} \\ \mathsf{N}$$

 $\textbf{a} : \textbf{R}' = \textbf{Ph}, \ \textbf{R}'' = \textbf{Me}; \quad \textbf{b} : \ \textbf{R}', \ \textbf{R}'' = \textbf{CMe}_2\textbf{CH}_2; \quad \textbf{c} : \ \textbf{R}' = \textbf{CCl}_3, \ \textbf{R}'' = \textbf{Me}$

J. P. VERSLEIJEN et al.

7796

¹H NMR monitoring of reactions at room temperature between equimolar amounts of imino substrates 7a-e and racemic hydride donor 4 revealed the instantaneous disappearance of imino substrate and hydride donor and the formation of pyridinium compound 5. Analysis of the organic fractions after aqueous workup indicated that imino substrates 7a and 7b had quantitatively been reduced into the corresponding α -amino acid derivatives, while imino substrates 7c-e afforded the unexpected $\alpha_{\alpha}\beta$ -didehydroamino acid derivatives 11c-e. In the latter three cases, the fast and quantitative conversion of 4 into 5 suggests that hydride transfer to the imino substrates had occurred indeed, but was followed immediately by elimination of a halide and rearrangement into the stable enamine derivatives 11 (eq. 4). Possibly, masking the β -protons of α -acylimino esters with weaker leaving groups, e.g., a dithioacetal, might afford a suitable hydride acceptor for NADH model 4, without concomitant elimination of the reduction product. However, the high activation of the imino bond required for efficient hydride uptake from 4 and the instability of such imino compounds seriously limits the synthetic utility of this NADH model mediated reduction.

Stereoselectivity and mechanism of the hydride transfer. The stereoselectivity of the hydride transfer reactions was investigated with optically active 4. Resolution of racemic 4 had previously been accomplished by medium pressure chromatography on a column packed with cellulose triacetate.⁵ On repetition of the chromatographic separation, ee values exceeding 90% could be reached. This rather tedious resolution was optimized with the aid of HPLC. In one run, the resolution of 50 mg of racemic 4 into chemically pure (R)-4 (ee > 95%) and (S)-4 (ee > 90%) was accomplished with an overall yield of 70%. The assignment of the absolute configuration of 4 and conformation of 5 has been described previously.⁵ Ee values of the reduction products were determined with the aid of ¹H- or ³¹P-NMR utilizing the chiral shift reagent tris[3-[(heptafluoropropyl)hydroxymethylene]-d-camphorato]-europium(III) ((+)-Eu(hfc)₃ (for compounds 9a,b and 10a), or the chiral derivatizing agents 2-chloro-(4R,5R)-dimethyl-2-oxo-1,3,2-dioxophospholane (for compound 9c) or (R)- α -methyl-benzylamine (for compound 10b).

The stereochemical outcome of reductions with optically active 4 is depicted in Table 1. All reductions were conducted at -25°C in CD₃CN in the presence of one mole equivalent Mg(ClO₄)₂. Reaction of optically active 4 with C=X compounds 6a-c and 7a,b afforded axially chiral NAD⁺ model 5 in \geq 95% optical yield, while the optical yields of the corresponding alcohols and amino derivatives ranged from 70 to \geq 95%. In all cases, the *R* configuration in NADH model 4 corresponds to the *R* configuration in the reduction products and to the *P* conformation in NAD⁺ model 5. Similarly, S-4 yields the S reduction products and M-5. The striking similarity in stereochemistry between the hydride transfer to the prochiral C=N-CO₂Me and C=O functionalities suggests a similar mechanism in both cases. The observed chirality transfer to both

the C=O and the C=N bond may be explained by the intervention of a short lived, strictly organized ternary complex (12a) as was postulated previously.⁵ In this complex Mg^{2+} coordinates with the carboxamide oxygen of the NADH model, thus enhancing the hydride donor ability of 4 by the out-of-plane rotation of the amide carbonyl dipole. Equally important, Mg^{2+} is responsible for activating the C=X substrate via Lewis acid complexation and for positioning the substrate in the ternary complex by chelation.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
NADH	NADH model 4 substrate		product				NAD ⁺ model 5			
conf	ee ^a %			conf	сс %	Y ^b %	conf	ee %	Y ^b %	
R ^c	96	OMe Ph	OMe Ph	R	92	95	P	93	97	
s	90	6a	н ^ он 9 а	\$	88	98	м	84	93	
R	95	X X	XL	R	59	62	Р	91	96	
s	90	́о 6b	н ^ж он 9 5	\$	68	76	м	87	97	
R	95	OB	OE	R	67	70	P	85	89	
s	90		н ^х он %				м	82	91	
R	93	OMe Ph	OMe Ph	R(-)	89	96	P	90	97	
S	55	MeO ₂ C 7a	H" NH 10a ^{CO} 2 ^{Me}	S(+)	50	91	м	53	96	
R	95	Xio	X	R(-) ^d	80	84	P	88	93	
s	90	MeO ₂ C 7b	HT NH CO2Me 10b	<i>S</i> (+) ^e	70	78	М	84	93	

Table 1 Chirality transfer from optically active 4 to imino and keto substrates

^a Enantiomeric excess determined by HPLC. ^b Optical yield corrected for ee of 4. ^c From reference 5. ^d $[\alpha]_{D}^{20}$ -34° (c=1, CHCl₃), *R*-configuration tentatively assigned to the (-)-enantiomer based on ¹H NMR-data. ^e $[\alpha]_{D}^{20}$ +24° (c=1, CHCl₃).

Assuming a hexavalent arrangement of Mg^{2+} in the ternary complex, coordination of Mg^{2+} with the lone pairs of three hetero atoms allows the formation of only 2 chelated complexes: one complex in which the C=X dipole is lying over the dihydropyridine ring and is orientated towards C-3 (12a, anti-parallel orientation of C=X and dihydropyridine dipoles), and one in which it points away from this ring (12b, parallel dipoles). Apparently, complex 12a, leading to the formation of the S-reduction product from S-4, is energetically favoured over complex 12b. MINDO/3 calculations on a ternary complex consisting of NADH model 4, Mg^{2+} and 2-oxo-3-butynoic acid also indicated a preference for an orientation of the C=O dipole in the direction of C-3 (difference in Δ H: 3 kcal. mol⁻¹).¹⁴

The importance of the formation of a chelated ternary complex during the hydride transfer is clearly demonstrated in the reaction of S-benzoin with racemic 4.⁶ Whereas R-4 and S-benzoin easily fit in a chelated ternary complex with Mg²⁺, thus enabling a fast hydride transfer reaction, S-4 is unable to form a productive ternary complex with S-benzoin and hence no hydride transfer takes place.

Results obtained with NADH models 13 and 14,¹⁵ which carry the same chiral auxiliary for stereodifferentiation of the diastereotopic C-4 hydrogens, support the relevance of a *syn*-out-ofplane orientation of the transferring hydrogen and the carboxamide dipole of the NADH model for an efficient chirality transfer. The much higher ee values obtained with 14 presumably arise from the incorporation of the carboxamide group in a cyclic structure, forcing the amide oxygen and one of the C-4 hydrogens into a *syn* orientation.

The intervention of two chelated ternary complexes offers an explanation for the lower ee values of **9b** and **9c** in comparison with **9a**. Van der Waals interaction of the α -methyl groups in the carbonyl compounds **6b** and **6c** with the dihydropyridine ring hampers to some extent the formation

To achieve chelation of the imino substrates in the ternary complex, the N-carbomethoxy group has to occupy a position remote from Mg^{2+} and hence the intermediacy of the *E* isomer of the imine is required. The single set of ¹H and ¹³C NMR signals observed for imino derivatives 7a and 7b reveals that either a fast *E-Z* isomerization takes place or that only one isomer exists in solution. The first option seems more likely,¹⁶ so that the *E* isomer is believed to be accommodated in the ternary complex, while the *Z* isomer, being unable to form a productive chelate, easily isomerizes into the *E* form.

CONCLUSION

Efficient enantioselective hydride transfer from NADH model 4 to α -keto esters and α -methoxycarbonylimino esters was achieved. The chirality transfer to both the C=O and the C=N bond may be explained by the intervention of a Mg(ClO₄)₂ mediated ternary complex in which the carboxamide dipole and the transferring hydrogen of the NADH model feature a *syn*-out-of-plane orientation and in which the substrate is positioned by chelation with Mg²⁺. The need for highly activated keto or imino substrates, however, seriously limits the application of NADH model 4 as a versatile chiral reducing agent. Important drawbacks of 4 are its autoxidoreduction in the presence of Mg²⁺ and its stoichiometric use. To obtain an efficient enantioselective hydride donor, which may be used catalytically, chirality at C-4 of the NADH model should be avoided. Therefore, efforts are being undertaken to exploit axial chirality induced by C-2 or C-3 substitution for efficient stereodifferentiation of the diastereotopic C-4 hydrogens.

EXPERIMENTAL

NMR spectra were recorded on a Bruker AC400 spectrometer (¹H NMR at 400.1 MHz, 13 C NMR at 100.6 MHz and 31 P NMR at 162.0 MHz). All reactions involving dihydronicotinamide 4 or imino compounds 7 were performed under an argon atmosphere.

N,N,1,2,4-Pentamethyl-1,4-dihydronicotinamide, 4. The synthesis of racemic 4 in 3 steps from N,Ndimethylacetoacetamide was outlined previously.⁵ Resolution of 4 (35 mg, dissolved in *n*-hexane/*i*-PrOH (4:1, 120 μ L)) was accomplished with HPLC (cellulose triacetate column, Merck 16362, 15-25 μ m, 30 g, 300 mm x 16 mm, 12 bar, 4 mL.min⁻¹). Elution with *n*-hexane/*i*-PrOH (7:3) afforded pure (*R*)-4 (10 mg, ee > 95%) and (*S*)-4 (15 mg, ee > 90%).

Methyl 2-Methoxycarbonylimino-phenylacetate, 7a.⁹ (Aza-Wittig reaction). A neat mixture of iminophosphorane 8 (1.65 g, 5 mmol) and methyl benzoylformate (6a, 0.83 g, 5 mmol) was heated at 150°C during 4 h. Et₂O (10 mL) was added to the cooled reaction mixture. After filtration to remove precipitated triphe-nylphosphinoxide, the filtrate was concentrated. In vacuo chromatography (silica gel, CH₂Cl₂), afforded 7a as a pale yellow oil (R_f 0.42, 0.31 g, 28%) contaminated with traces of 6a (R_f 0.64). ¹H NMR (CD₃CN): δ 3.84 (s, 3H, N-CO₂CH₃); 3.91 (s, 3H, C-CO₂CH₃); 7.51 (tr, J = 8 Hz, 2H, m-Ar H); 7.63 (tr, J = 8 Hz, 1H, p-Ar H); 7.88 (d, J = 8 Hz, 2H, o-Ar H). ¹³C NMR (CD₃CN): δ 54.0 and 54.7 (OCH₃); 129.9 (p-, m-Ar C); 132.9 (o-Ar C); 134.5 (ipso-Ar C); 163.0 (C=N); 164.0 and 164.2 (C=O).

4,5-Dihydro-4,4-dimethyl-3-methoxycarbonylimino-2-(3H)-furanone, 7b. Reaction of 4,5-dihydro-4,4-dimethyl-2,3-furanedione (6b) and iminophosphorane 8 under the conditions used for the synthesis of 7a afforded 7b as a pale yellow oil (0.34 g, 36%). ¹H NMR (CD₃CN): δ 1.31 (s, 6H, CH₃); 3.81 (s, 3H, OCH₃); 4.33 (s, 2H, CH₂). ¹³C NMR $(CDCl_3)$: δ 23.9 (CH₃); 39.1 (C-4); 53.6 (OCH₃); 77.7 (CH₂); 159.5 (C=N); 161.3 and 166.2 (C=O). Accurate mass calcd for C₈H₁₁NO₄: 185.069. Found: 185.069.

Methyl 2-Methoxycarbonylimino-3,3,3-trichloropropionate, 7c.¹⁷ A solution of methyl 3,3,3-trichloropyruvate¹⁸(4.11 g, 20 mmol) and iminophosphorane 8 (6.71 g, 20 mmol) in toluene (40 mL) was gently boiled under reflux during 4 h. The solvent was removed in vacuo and the residue taken up in hexane (20 mL). After removal of precipitated triphenylphosphinoxide, the filtrate was concentrated and distilled under reduced pressure affording 7c (2.50 g, 50%). Bp 93°C/1.0 mm Hg. ¹H NMR (CDCl₃): δ 3.94 and 3.97 (s, 3H, OCH₃). ¹³C NMR (CDCl₃): δ 54.0 and 54.3 (OCH₃); 91.8 (CCl₃); 155.9 (C=N); 157.4 and 159.2 (C=O).

Methyl 3-Bromo-2-methoxycarbonylimino-3-methylbutyrate, 7d.¹² A solution of N-Bromosuccinimide (NBS, 0.90 g, 5 mmol) and enamine 11d (0.94 g, 5 mmol) in CH_2Cl_2 (25 mL) was stirred for 20 h at room temp. The solvent was evaporated and the residue taken up in boiling n-pentane. After cooling in an ice bath, the suspension was filtered and the filtrate concentrated to afford 7d (1.06 g, 80%). ¹H NMR (CDCl₃): δ 2.07 (s, 6H, CH₃); 3.86 (s, 3H, OCH₃); 3.88 (s, 3H, OCH₃). ¹³C NMR (CDCl₃): 31.3 (CH₃); 52.9 (OCH₃); 53.8 (OCH₃); 59.5 (CBr); 161.1 (C=O and C=N); 166.2 (C=O).

Methyl 3-Bromo-2-methoxycarbonylimino-3-phenylpropionate, 7e.¹² A solution of NBS (1.42 g, 8 mmol) and enamine 11e (1.88 g, 8 mmol) in CH₂Cl₂ (50 mL) was stirred for 36 h at room temp. The solvent was evaporated and the residue taken up in boiling n-pentane (25 mL). The cooled suspension was filtered and the filtrate concentrated to afford 7e (1.20 g, 48%). ¹H NMR (CDCl₃): δ 3.80 and 3.82 (s, 3H, OMe); 6.13 (s, 1H, CH); 7.30 - 7.40 (m, 3H, m- and p-Ar H); 7.47 (m, 2H, o-Ar H). ¹³C NMR (CDCl₃): δ 48.2 (CH); 53.5 (2 × OCH₃); 128.5 - 129.1 (o-, m- and p-Ar C); 134.6 (ipso-Ar C); 158.2 (C=N); 158.4 and 161.0 (C=O). Accurate mass calcd for C₁₂H₁₂⁷⁹BrNO₄: 312.995. Found: 312.995.

N-Carbomethoxy-triphenylphosphinimine, $\11 A solution of diethyl azodicarboxylate (3.48 g, 20 mmol) in dry THF (20 mL) was added dropwise within 30 min to a stirred and cooled (0°C) solution of triphenylphosphine (5.24 g, 20 mmol) and methyl carbamate (3.50 g, 20 mmol) in dry THF (40 mL). After additional stirring for 4 h at room temp, the reaction mixture was concentrated in vacuo. CHCl₃ (15 mL) was added, the solution cooled in an ice-bath for 15 min and the precipitated N,N°-dicarbethoxyhydrazine removed by filtration (1.80 g, 52%). The filtrate was concentrated and the resultant suspension crystallized from EtOAc/n-hexane (1 : 1, 10 mL) to afford pure phosphinimine \$ (3.68 g, 55%). Mp 134 - 136°C. ¹H NMR (CDCl₃): \$ 3.63 (s, 3H, OCH₃); 7.45 - 7.75 (m, 15H, Ar H). ¹³C NMR (CDCl₃): \$ 52.6 (d, $J_{P,C}$ = 4 Hz, OCH₃); 127.9 (d, $J_{P,C}$ = 100 Hz, ipso-Ar C); 128.5 (d, $J_{P,C}$ = 12 Hz, m-Ar C); 132.2 (d, $J_{P,C}$ = 3 Hz, NCO). ³¹P NMR (CDCl₃): \$ 21.6. Anal. calcd for C₂₀H₁₈NO₂P (MW 335.34): C, 71.63; H, 5.41; N, 4.18. Found: C, 71.77; H, 5.57; N, 4.15.

N-Carbomethoxy- α -amino acid esters. General procedure. To a stirred and cooled (0°C) solution of the amino acid ester hydrochloride¹⁹ (10 mmol) in H₂O (10 mL) were added dropwise aqueous Na₂CO₃ (1M, 11 mL) and ClCO₂Me (1.11 g, 12 mmol). Then the ice-bath was removed and the reaction mixture stirred at room temp for 3 h. Subsequent extraction with Et₂O (3 × 20 mL), drying (MgSO₄) and concentration of the organic layer gave the crude N-carbomethoxy- α -amino acid ester, which was purified by crystallization from EtOAc/n-hexane (1:2).

Methyl N-Carbomethoxyphenylglycinate, 10a. Yield 92%. Mp 89.5°C. ¹H NMR (CDCl₃): δ 3.67 (s, 3H, N-CO₂CH₃); 3.72 (s, 3H, C-CO₂CH₃); 5.37 (d, J = 7 Hz, 1H, CH); 5.80 (d, J = 7 Hz, 1H, NH); 7.34 (m, 5H, Ar H). ¹³C NMR (CDCl₃): δ 51.6 and 52.0 (OCH₃); 57.4 (CH); 126.7 (p-Ar C); 127.9 (o-Ar C); 128.3 (m-Ar C); 136.2 (ipso-Ar C) 155.9 (N-<u>CO₂Me</u>); 170.9 (C-<u>CO₂Me</u>). Anal. calcd for C₁₁H₁₃NO₄ (MW 223.23): C, 59.19; H, 5.87: N, 6.27. Found: C, 59.77; H, 6.03; N, 6.37.

N-Carbomethoxypantoninelactone, (4,5-dihydro-4,4-dimethyl-3-carbomethoxyamino-2(3H)-furanone), 10b. Compound 10b was obtained from pantoninelactone hydrochloride²⁰ in 78% yield. Mp 122°C. ¹H NMR (CDCl₃): δ 1.05 and 1.25 (s, 3H, CH₃); 3.70 (s, 3H, OCH₃); 4.05 (s, 2H, OCH₂); 4.45 (d, J = 8.0 Hz, 1H, CH); 5.70 (d, J = 8.0 Hz, 1H, NH). ¹³C NMR (CDCl₃): δ 19.5 and 22.7 (CH₃); 40.5 (CMe₂); 52.3 (OCH₃); 59.6 (CH); 76.5 (OCH₂); 157.2 and 174.9 (C=O). Anal. calcd for C₈H₁₃NO₄ (MW 187.20): C, 51.33; H, 7.00; N, 7.48. Found: C, 51.86; H, 7.20; N, 7.50.

Methyl N-Carbomethoxyvalinate, 10d.²² Yield 90%. Mp 42°C (Lit.²² 40°C). ¹H NMR (CDCl₃): δ 0.91 and 0.97

(d, 3H, CH₃); 2.16 (m, 1H, CH); 3.69 (s, 3H, N-CO₂CH₃); 3.75 (s, 3H, C-CO₂CH₃); 4.29 (dd, 1H, CH); 5.54 (br d, 1H, NH). 13 C NMR (CDCl₃): δ 17.3 and 18.7 (CH₃); 31.0 (CH); 51.8 and 52.0 (OCH₃); 58.8 (CH); 156.7 and 172.5 (C=O).

Methyl N-Carbomethoxyphenylalaninate, 10e. Yield 89%. ¹H NMR (CDCl₃): δ 3.08 (ABX, 2H, CH₂Ph); 3.61 (s, 3H, N-CO₂CH₃); 3.68 (s, 3H, C-CO₂CH₃); 4.63 (m, 1H, CH); 5.51 (br d, 1H, NH); 7.13 (d, 2H, o-Ar H); 7.2-7.3 (m, 3H, m- and p-Ar H). ¹³C NMR (CDCl₃): δ 37.8 (CH₂); 52.0 (OCH₃); 54.6 (CH); 126.8-129.0 (o-, m- and p-Ar C); 135.7 (ipso-Ar C); 156.1 and 171.9 (C=O).

Methyl N-Carbomethoxy- $\alpha_{4}\beta$ -didehydrovalinate, 11d.^{13,23} To a stirred and cooled (0°C) solution of methyl Ncarbomethoxyvalinate (10d) (1.55 g, 8.0 mmol) in dry Et₂O (50 mL) were consecutively added t-BuOCl²¹ (1.40 g, 13 mmol) and a solution of NaOMe (0.7 g, 13 mmol) in MeOH (2 mL). After removal of the ice bath, the solution was stirred for 15 min and then the solvent was removed in vacuo. The residue was taken up in CHCl₃ (50 mL), washed with H₂O (2 × 5 mL) and dried over MgSO₄. Evaporation of the solvent afforded methyl N-carbomethoxy-Nchlorovalinate as a colourless oil (1.80 g, 100%). The crude oil (1.12 g, 5 mmol) was dissolved in Et₂O (50 mL), DBU (0.76 g, 5 mmol) was added and the solution was gently boiled under reflux during 2 h. After cooling in an ice bath, the precipitated DBU.HCl was filtered off and the filtrate was concentrated. The residue was taken up in CHCl₃ (40 mL), washed with diluted HCl (2 × 10 mL) and saturated NaHCO₃ (2 × 10 mL) and dried over MgSO₄. Evaporation of the solvent afforded 11d (0.87 g, 97%). Mp 66°C (Lit.²³ 67°C). ¹H NMR (CDCl₃): δ 1.89 (s, 3H, CH₃-syn); 2.16 (s, 3H, CH₃-anti); 3.71 (s, 3H, N-CO₂CH₃); 3.75 (s, 3H, C-CO₂CH₃); 6.17 (s, 1H, NH).

Methyl N-Carbomethoxy- $\alpha_s\beta$ -didehydrophenylalaninate, 11e.¹³ Compound 11e was prepared from 10e according to the procedure described for 11d, and was recrystallized from EtOAc/*n*-hexane (1 : 1). Yield 80%. Mp 88°C. ¹H NMR (CDCl₃): δ 3.66 (s, 3H, N-CO₂CH₃); 3.82 (s, 3H, C-CO₂CH₃); 6.57 (s, 1H, NH) 7.2 - 7.4 (m, 4H, vinylic H and m-, p-Ar H); 7.52 (d, 2H, o-Ar H). ¹³C NMR (CDCl₃): δ 52.4 (OCH₃); 52.6 (OCH₃); 124.3 (C- β); 128.4 - 129.6 (o-, m- and p-Ar C); 131.7 (C- α); 133.4 (ipso-Ar C); 154.5 (C=O); 165.6 (C=O). Anal. calcd for C₁₂H₁₃NO₄ (MW 235.24): C, 61.27; H, 5.57; N, 5.95. Found: C, 61.23; H, 5.27; N, 5.90.

Reduction of keto and imino compounds with racemic NADH model 4. General procedure. To a stirred and cooled (0°C) solution of $Mg(ClO_4)_2$ (45 mg, 0.2 mmol) in CD_3CN (0.4 mL) were consecutively added a solution of the keto or imino compound (0.2 mmol) in CD_3CN (0.3 mL) and a solution of racemic dihydropyridine 4 (40 mg, 0.2 mmol) in CD_3CN (0.3 mL). A ¹H NMR spectrum taken after 15 min showed that the reaction was complete (disappearance of vinylic proton signals of 4 (4.4 and 5.7 ppm); appearance of aromatic proton signals of 5 (7.7 and 8.5 ppm). Aqueous NH₄Cl (0.1 M, 4 mL) was added and the CD_3CN was evaporated. The residue was extracted with CH_2Cl_2 (2 × 8 mL). The organic layer was washed with H_2O (2 × 1 mL), dried over MgSO₄ and concentrated. The products were identified by ¹H NMR. Successful reductions (6b,c and 7a,b) were repeated with optically active 4.

Reduction reactions with optically active 4: To a stirred and cooled (-25°C) solution of Mg(ClO₄)₂ (45 mg, 0.20 mmol) in CD₃CN (0.2 mL) were consecutively added a solution of the keto or imino substrate (0.20 mmol) in CD₃CN (0.4 mL) and a solution of optically active 4 (40 mg, 0.20 mmol) in CD₃CN (0.4 mL). The stirred mixture was allowed to attain room temp within 1 h. Aqueous NH₄Cl (0.1 M 2 mL) was added and the CD₃CN evaporated below 30°C. The residue was partitioned between CH₂Cl₂ (8 mL) and H₂O (4 mL). The organic layer was dried (MgSO₄), concentrated and purified by column chromatography on silica gel. The combined aqueous layers were concentrated in vacuo below 30°C. The residue was suspended in CH₃CN, filtered and the filtrate concentrated to give pyridinium perchlorate 5. ¹H NMR (CD₃CN): δ 2.48 (s, 3H, C-4 Me); 2.60 (s, 3H, C-2 Me); 2.90 (s, 3H, *anti* N-Me); 3.20 (s, 3H, *syn* N-Me); 4.17 (s, 3H, N-1 Me); 7.65 (d, 1H, H-5); 8.55 (d, 1H, H-6). To a solution of 5 (20 mg) in CD₃CN (0.4 mL) was added (+)-Eu(hfc)₃ (100 mg) and the ee was calculated from the resolved *syn* N-Me ¹H NMR signals: δ 5.10 (*M*-5); 5.24 (*P*-5).

Ee determination of pantolactone, 9b. To a solution of 9b (22.4 mg, 0.17 mmol) in C_6D_6 (0.4 mL) was added (+)-Eu(hfc)₃ (12.8 mg, 0.01 mmol) and the ee was calculated from the resolved ¹H NMR signals: *R*-9b: δ 1.01 (s, 3H, anti C-4 Me); 1.42 (s, 3H, syn C-4 Me); 3.62 (d, 1H, anti H-5); 3.73 (d, 1H, syn H-5); 4.69 (s, 1H, H-1). S-9b : 0.98 (s, 3H, anti C-4 Me); 1.30 (s, 3H, syn C-4 Me); 3.57 (d, 1H, anti H-5); 3.68 (d, 1H, syn H-5); 4.64 (s, 1H, H-1).

Ee determination of ethyl 2-hydroxy-3-methylbutyrate, 9c.²⁴ To a solution of 9c (14.6 mg, 0.1 mmol) in C_6D_6 (0.5 mL) were added Et₃N (19 µL, 0.15 mmol), 4-dimethylamino-pyridine (2 mg, 0.01 mmol) and 2-chloro-(4R, 5R)-dimethyl-2-oxo-1,3,2-dioxaphospholane (13 µL, 0.1 mmol). The resultant suspension was filtered into an NMR tube

and the ee calculated from the ³¹P NMR signals of the diastereometric phosphates: *R*-butyrate: δ 14.86; *S*-butyrate: 14.80.

Ee determination of methyl N-carbomethoxyphenylglycinate, 10a. To a solution of 10a (8 mg) in C_6D_6 (0.4 mL) was added (+)-Eu(hfc)₃ (23 mg) and the ee was calculated from the resolved C-CO₂CH₃ ¹H NMR signals: S-10a: 3.49; R-10a 3.58.

Ee determination of N-carbomethoxypantoninelactone, 10b.²⁵ To a stirred and cooled (0°C) suspension of AlCl₃ (9.0 mg, 0.07 mmol) in ClCH₂CH₂Cl (0.1 mL) was added Et₃N (12.5 μ L, 0.09 mmol). A solution of lactone 10b (11.0 mg, 0.06 mmol) and R-(+)- α -methylbenzylamine (10 μ L, 0.08 mmol) in ClCH₂CH₂Cl (0.1 mL) was added and the mixture was stirred at room temp for 20 h. Ice-water (1 mL) was added and, after filtration, the filtrate was extracted with ClCH₂CH₂Cl (2 × 2 mL). The organic layer was dried (MgSO₄) and concentrated affording an oil (8 mg, 43%). The ee was calculated from the ¹H NMR signals of the diastereomeric amides in C₆D₆: (-,+)-diastereomer: δ 0.78 (s, 3H, CH₃); 0.90 (s, 3H, CH₃); 1.20 (d, 3H, CH₃); 3.30 (s, 3H, OCH₃); 3.40 (br d, 2H, CH₂); 4.40 (d, 1H, CH); 5.25 (m, 1H, CH); 6.19 (d, 1H, NH); 6.62 (d, 1H, NH); 7.0 - 7.3 (m, 5H, Ph). (+,+)-diastereomeric δ 0.92 (s, 3H, CH₃); 1.08 (s, 3H, CH₃); 1.22 (d, 3H, CH₃); 3.25 (s, 3H, OCH₃); 3.50 (d, 2H, CH₂); 4.40 (d, 1H, CH); 5.25 (m, 1H, CH); 6.52 (d, 1H, NH); 7.0 - 7.3 (m, 5H, Ph).

REFERENCES

- For recent reviews, see: (a) Inouye, Y.; Oda, J. and Baba, N. in "Asymmetric Synthesis", Academic Press, New York, 1983, Vol. 2, 91; (b) Ohno, A.; Ushido, S. in "Mechanistic Models of Asymmetric Reductions", Springer Verlag, Heidelberg, 1986; (c) Burgess, V.A.; Davies, S.G.; Skerlj, R.T. Tetrahedron: Asymmetry, 1991, 2, 299.
- 2. Ohno, A.; Ikeguchi, M.; Kimura, T.; Oka, S. J. Am. Chem. Soc., 1979, 101, 7036.
- 3. Ohno, A.; Kashiwagi, M.; Ishihara, Y.; Ushida, S.; Oka, S. Tetrahedron, 1986, 42, 961.
- 4. Meyers, A.I.; Oppenlaender, T. J. Am. Chem. Soc., 1986, 108, 1989.
- De Kok, P.M.T.; Bastiaansen, L.A.M.; Van Lier, P.M.; Vekemans, J.A.J.M.; Buck, H.M. J. Org. Chem., 1989, 54, 1313.
- 6. Beijer, N.A.; Vekemans, J.A.J.M.; Buck, H.M. Recl. Trav. Chim. Pays Bas, 1990, 109, 434.
- 7. Meyers, A.I.; Brown, J.B. Tetrahedron Lett., 1988, 29, 5617.
- 8. Vekemans, J.A.J.M.; Versleijen, J.P.G.; Buck, H.M. Tetrahedron: Asymmetry, 1991, 2, 949.
- 9. Malassa, I.; Matthies, D. Chemiker Ztg., 1987, 111, 181 and 253.
- (a) Plieninger, H.; Vor der Brück, D. Tetrahedron Lett., 1968, 4371; (b) Vor der Brück, D.; Bühler, R.; Plieninger, H. Tetrahedron, 1972, 28, 791.
- 11. Bittner, S.; Assaf, Y.; Krief, P.; Pomerantz, M.; Ziemnicka, B.; Smith, C.G. J. Org. Chem., 1985, 50, 1712.
- 12. Danion-Bougot, R.; Danion, D.; Francis, G. Tetrahedron Letters, 1990, 31, 3739.
- 13. (a) Kolar, A.J.; Olsen, R.K. Synthesis, 1977, 457; (b) Poisel, H.; Schmidt, U. Angew. Chemie, 1976, 88, 295.
- 14. Schiepers, R.C.J. unpublished results, T.U.Eindhoven, 1986.
- (a) Combret, Y.; Torché, J.J.; Binay, P.; Dupas, G.; Bourguignon, J.; Quéguiner, G. Chem. Lett., 1991, 125; (b) Combret, Y.; Torché, J.J.; Plé, N.; Duflos, J.; Dupas, G.; Bourguignon, J.; Quéguiner, G. Tetrahedron, 1991, 47, 9369.
- 16. Alimann, R.; Kupfer, R.; Nagel, M.; Würthwein, E.-U. Chem. Ber. 1984, 117, 1597.
- 17. Matthies, D.; Malassa, I. Synthesis, 1985, 177.
- 18 Bowman, R.E.; Closier, M.D.; Islip, P.J. J. Chem. Soc., 1964, 3841.
- Houben-Weyl, "Methoden der Organischen Chemie", Band XV/1, ed. Wunsch, E.; Georg Thieme Verlag, Stuttgart, 1974, ch. 33, 317.
- 20. Holly, F.W.; Barnes, R.A.; Koninszy, F.R.; Folkers, K. J. Am. Chem. Soc., 1948, 70, 3088.
- 21. Mintz, M.J.; Walling, C. Org. Synth. Coll. Vol. V, 1973, 184.
- 22. Effenberger, F.; Drauz, K.; Förster, S.; Müller, W. Chem. Ber. 1981, 114, 173.
- 23. Reck, R. and Jochims, J.C. Chem. Ber. 1982, 115, 860.
- 24. Bigg D.C.H.; Lesimple, P. Synthesis, 1992, 277.
- 25. Anderson, R.C.; Shapiro, M.J. J. Org. Chem., 1984, 49, 1304.