Synthesis of Polyazaheterocycle's by Michael Addition of CH Acids to α,β -Unsaturated Nitriles. Synthesis of Pyrido[1,2-a]benzimidazole and Pyrimido[5',4':5,6]pyrido[1,2-a]benzimidazole Derivatives

Krystyna Bogdanowicz-Szwed and Agnieszka Czarny

Kraków/Poland, Jagiellonian University, Department of Organic Chemistry

Received March 27th, 1991 resp. January 24th, 1992

Abstract. Addition of 1H-benzimidazole-2-carbonitrile (1) to arylidenemalononitrile (2) gave 1-amino-3aryl pyrido[1,2-a]benzimidazole-2,4-dicarbonitrile (3), 2-aryl-benzimidazole (4) and 1H-benzimidazole-2-acetonitrile, α -(arylmethylene) (5). Compounds (3) reacted with formamide yielding 4-amino-5-aryl pyrimido[5',4':5,6]pyrido[1,2-a]benzimidazole (6).

The chemistry of pyrido[1,2-a]benzimidazole has been of increasing interest, since some of its derivatives have found application as chemoterapeutics [1]. On the other hand, various benzimidazoles themselves can act as tuberculostatic agents [2].

One of the routes for pyrido[1,2-a]benzimidazole skeleton synthesis is based on the condensation of 1H-benzimidazole-2-acetonitrile 1 with 1,3-dicarbonyl compounds. Ried et al. [3]. reported the synthesis of 1,3-dimethyl-pyrido[1,2-a]benzimidazole-4-carbonitrile using 1 and 2,4-pentandione. Kappe et al. [4, 5] claimed that the reaction of β -keto esters e.g. ethyl acetoacetate, ethyl benzoylacetate or 2-ethyl cyclopentanonecarboxylate in the presence of ammonium acetate gave 1-oxo-pyrido[1,2-a]benzimidazole-4-carbonitrile derivatives.

Continuing our study on the reaction of α , β -unsaturated nitriles with compounds containing active methylene groups [6, 7] we turned our attention on 1. Although compound 1 may act as bifunctional nucleophile, bearing nucleophilic center at the methylene carbon atom as well as at one of nitrogen atom of imidazole ring, various reactions showed that the methylene group is the stronger activated one, e.g. the acylation with arylisothiocyanate occurs at this position [8].

In this paper we report a one step synthesis of 1-amino-3-aryl-pyrido[1,2-a]benzimidazole-2,4-dicarbonitrile involving the reaction of 1 with substituted benzylidenemalononitriles 2a - e. Various substituted benzylidenemalononitriles were used to determine the influence of the substituents on yields and the type of obtained products. The reaction of 1 with 2a - e performed in boiling ethanolic solution in the presence of piperidine furnished a mixture of the desired pyrido[1,2-a]benzimidazole derivatives 3a - e in yields ranging from 15 % to 46 % and already reported 2-aryl-benzimidazoles 4a - e [9, 10] (Scheme 1).

To increase the yield of compounds 3 and to avoid the formation of undesired products, we carried out the reaction of 1 with 2 in acetonitrile with catalytic amounts of piperidine. These reactions led almost exclusively to compounds 3 in moderate to very good yields. The structure of obtained compounds 3a - ewere established on the basis of analytical and i.r, ¹H n.m.r. and m.s. spectral data. Compounds 3a - e are stable yellow crystalline products, with high m.p.s. and poor solubility in common organic solvents (Table 1).

$ \begin{array}{c} \stackrel{6}{\longrightarrow} N_{1} \stackrel{4}{\longrightarrow} 3_{2} \\ \stackrel{9}{\longrightarrow} 1_{3} \stackrel{1}{\longrightarrow} 0_{2} \\ \stackrel{11}{\longrightarrow} N_{N} \stackrel{5}{\longrightarrow} 0_{2} \\ \stackrel{11}{\longrightarrow} N_{N} \stackrel{5}{\longrightarrow} 0_{2} \\ \stackrel{6}{\longrightarrow} 0_{2} \\ \stackrel{1}{\longrightarrow} 0_{2$								
No	Yield (%)	m.p. (°C) solvent	i.r. (cm ⁻¹)	¹ H NMR (δ ppm)	MS (m/z %)			
3 a	81 ^{a)} 15 ^{b)}	355 - 360 decomp. DMF-H ₂ O sublim.	$2208 C \equiv N$ 2224 $3240 NH_2$ 3320 3430	7.27 – 7.83 m 8H arom. 8.55 d 1H C9 8.64 s 2H NH ₂	308.8 100			
3 b	83 ^{a)} 21 ^{b)}	332–337 decomp. BuOH sublim.	$2218 C = N 3110 NH_2 3330 3420$	3.82 s 3H OCH ₃ 7.05 – 7.84 m 7H arom. 8.50 d 1H C9 8.58 s 2H NH ₂	338.9 100			
3 c	94 ^{a)} 46 ^{b)}	325 – 330 decomp. dioxane sublim.	$2200 C = N 3216 NH_2 3320 3430$	2.46 s 3H CH ₃ 7.38 – 7.94 m 7 H arom. 8.65 d 1H C9 8.73 s 2H NH ₂	323 20			
3 d	64 ^{a)} 32 ^{b)}	340 – 350 decomp. dioxane sublim.	$2200 C \equiv N 3200 NH_2 3310 3440$	7.46 – 7.95 m 7H arom. 8.65 d 1H C9 8.81 s 2H NH ₂	344 100			
3 e	37 ^{a)}	360 – 370 DMF	2216 C \equiv N 3390 NH ₂ 3480	7.38 – 8.65 m 8H arom. 8.83 s 2H NH ₂	354 100			
6a	92	350 – 354 decomp. DMF sublim.	2230 C \equiv N 3290 NH ₂ 3440	7.50 – 9.35 m 9H arom. 9.16 s 1H C2	335.6 100			
6 b	93	360 – 365 decomp. DMF	2224 C \equiv N 3290 NH ₂ 3450	4.05 s 3H OCH ₃ 7.20 – 9.50 m 8H arom. 9.25 s 1H C2	366.0 100			
6 c	93	350 – 355 decomp. DMF sublim.	2220 C \equiv N 3290 NH ₂ 3440	2.62 s 3H CH₃ 7.40 – 9.45 m 8H arom. 9.18 s 1H C2	349.6 100			
6 d	83	350 – 353 decomp. DMF	2225 C = N 3290 NH ₂ 3450	7.40 – 9.35 m 8H arom. 9.16 s 1H C2	370.3 100			

Table 1 Physical properties and spectral data of compounds obtained

6

The reaction of 1 with 2 leading to 3 ist assumed to proceed as shown in Scheme 1, and involves Michael addition. The resulting adduct may undergo cyclization in situ by nucleophilic attack of the nitrogen atom of imidazole ring at the cyano group to form the six membered ring which, on aromatization gives 3. The Michael adduct may also split into malononitrile and 1H-benzimidazole-2-acetonitrile, α -(arylmethylene) 5, [10, 11]. This course of reaction was observed when 1 and 2a - e reacted in acetonitrile without piperidine (Scheme 1). We have noticed that the way of transformation of the preliminary formed Michael adduct is strongly influenced by reaction medium as well as by the substituent in aryl moiety. Reaction of 1 with 2e containing m-NO₂- group led exclusively to 3ewhereas reaction of 1 with 2f containing p-(CH₃)₂Ngroup afforded under the investigated conditions compound 5f in quantitative yield (82 - 90%). The reaction course of 1 with 2 leading to 3 or/and 5 is similar to recently reported reactions of cyanomethyl derivatives of thiazole [12, 13] and pyrazole [14] with α , β unsaturated nitriles.

Hammad et al. [15] have recently reported the synthesis of some pyrido[1,2-a]benzimidazoles, which seen to be isomeric with these prepared by us. The difference concerns the position of aryl and amino groups attached to the pyridine moiety of the molecule. The reported synthesis involved the reaction of 5 with malononitrile¹⁾. To compare the compounds 3, with those reported by Hammad, we repeated the reaction of 5a - b with malononitrile in the presence of piperidine (Scheme 1). The products obtained in these reactions were in all respects identical with samples 3a,b prepared by addition of 1 to 2a,b. Thus the structure of compounds obtained by Hammad is identical with the structure established by us.

Compounds 3 behave as typical o-amino nitriles. They reacted readily with formamide yielding pyrimidine derivative 6 in excellent yield (Scheme 1). Some of compounds 6 showed strong green-yellow fluorescence in organic solvents.

Experimental

Melting points were determined with a Boëtius apparatus and are corrected. The i.r. spectra were obtained on a IR-80 (Carl-Zeiss, Jena) spectrometer in nujol mulls. The ¹H n.m.r. spectra were recorded on a Tesla BS-567 A (100 MHz) spectrometer using DMSO-d₆ as solvent and Me₄Si as internal standard. The position of protons of NH₂ group in compounds **3** were established by deuteration. The spectra of **6** were measured in CF₃COOD. The m.s. spectra were taken on LKB-9000S and Jeol IMS-D100 instruments. Elemental analyses were performed on a Perkin Elmer Analyser Type 240.

Starting materials 1H-benzmidazole-2-acetonitrile 1 [16] and arylidenemalononitriles (2a - f) [17] were prepared according to literature procedures.

1-Amino-3-aryl-pyrido[1,2-a]benzimidazole-2,4-dicarbonitrile (3 a - e)

a) Reaction 1 with 2 in acetonitrile

A mixture of 1 (0.78 g, 5 mmol) and corresponding benzylidenemalononitrile 2 (0.94 g, 6 mmol, 2 a) was refluxed for 4 h in 40 ml of acetonitrile with few drops of piperidine. After cooling the precipitate was filtered off. Evaporation of acetonitrile under reduced pressure gave oily residue, which by treating with methylene chloride gave an additional portion of product 3. Compounds were crystallized from solvents given in Table 1. Some samples for analyses were purified by sublimation.

b) Reaction of 1 with 2 in ethanol

The mixture of 1 (1.57 g, 10 mmol) and 2 (1.69 g, 11 mmol, 2 a) was refluxed for 4 h in ethanol with catalytic amounts of piperidine. The precipitated solid of 3 was filtered off. The ethanolic solution was evaporated and the residue was treated with 10 ml of methylene chloride. The precipitate was filtered off and then treated with boiling ethanol. Insoluble in ethanol the product (3) was separated. Evaporation and cooling of ethanolic solution afforded compound 4 in yield 40 - 60 %.

c) Reaction of 5 with malononitrile

The mixture of 5 (0.51 g, 2 mmol 5 a) and of malononitrile (0.13 g, 2 mmol) was refluxed for 3 h in 15 ml of acetonitrile with few drops of piperidine. The solvent was evaporated under reduced pressure, and the semisolid product was treated with 10 ml of ethanol, filtered off and crystallized. Average yield 17 %. The identity of products 3 obtained by methods a, b and c was confirmed by comparison of m.p.s and i.r. spectra.

1-H Benzimidazole-2-acetonitrile, α -(arylmethylene) (5)

A solution of 1 (0.78 g, 5 mmol) and 2 (0.92 g, 6 mmol, 2 a) in 40 ml of acetonitrile was refluxed for 4 h. After cooling the precipitate was filtered off and crystallized from ethanol. The chemical and physical properties of obtained compounds 5a - f were consistent with those reported in ref. [11].

4-Amino-5-aryl-pyrimido[5',4':5,6]pyrido[1,2-a]benzimidazole (6 a – d)

1 g of 3 was refluxed in 20 ml of freshly distilled formamide for 2h. After cooling the precipitate was filtered off and crystallized from DMF.

Table 2Analytical data of compounds 3a - e and 6a - d

No	Molecular formula	Analyse	Analyses		
	(molecular weight)	Calcd/F	Calcd/Found %		
		С	Н	N	
3 a	C ₁₉ H ₁₁ N ₅	73.77	3.58	22.64	
	(309.32)	73.56	3.50	22.05	
3 b	C ₂₀ H ₁₃ N ₅ O	70.78	3.86	20.64	
	(339.34)	70.55	3.89	20.69	
3 c	C ₂₀ H ₁₃ N ₅	74.29	4.05	21.66	
	(323.34)	73.99	4.10	21.61	
3 d	$C_{19}H_{10}ClN_5$	66.68	2.93	20.37	
	(343.77)	66.15	2.90	20.38	
3 e	$C_{19}H_{10}N_6O_2$	64.40	2.84	23.72	
	(354.32)	64.16	2.75	24.24	
6 a	$C_{20}H_{12}N_6$	71.41	3.59	24.99	
	(336.34)	71.08	3.51	24.97	
6 b	C ₂₁ H ₁₄ N ₆ O	68.84	3.85	22.94	
	(366.37)	68.54	3.90	22.90	
6 c	$C_{21}H_{14}N_6$	71.98	4.03	23.99	
	(350.37)	71.90	4.03	23.73	
6 d	C ₂₀ H ₁₁ ClN ₆	64.78	2.99	22.67	
	(370.79)	64.48	2.97	22.73	

¹⁾ In the abstract of ref. [15] instead of $R'CH_2CN$ there is $R'C_2CN$ (R' = CN).

References

- H.W. Wagner, E. Winkelmann, Arzneimittel-Forsch. 19 (1969) 715
- [2] A. Fujita, J. Arotomo, Sh. Minami, H. Takamotsu, Yakugaku Zashi 86 (1966) 427; Chem. Abstr. 65 (1966), 3870c
- [3] W. Ried, A. Akyuz, Chemiker-Ztg. 112 (1988) 241
- [4] S.M. Rida, F.S. Soliman, E. Badawey, T. Kappe, J. Heterocycl. Chem. 25 (1988) 1725
- [5] E. Badawey, S.M. Rida, F.S. Soliman, T. Kappe, Monatsh. Chem. 120 (1989) 73
- [6] K. Bogdanowicz-Szwed, M. Lipowska, Chemica Scripta 28 (1988) 319
- [7] K. Bogdanowicz-Szwed, M. Lipowska, B. Rys, Justus Liebigs Ann. 1990, 1147
- [8] B. Milczarska, J. Sawlewicz, W. Manowska, Pol. J. Pharmacol. Pharm. 28 (1976) 521
- [9] E.L. Holljes, E.C. Wagner, J. Org. Chem. 9 (1944) 31
- [10] M.A. Hammad, M.M. Kamel, M.M. Abbasi, M.T. El-Wassini, H.N. Hassan: Pharmazie 41 (1986) 141
- [11] J. Sawlewicz, B. Milczarska, W. Manowska, Pol. J. Pharmacol. Pharm. 27 (1975) 187

- [12] S.A.M. Osman, G.E.H. Elgemeie, G.A.M. Nawar, M.H. Elnagdi, Monatsh. Chem. 117 (1986) 105
- [13] A.H.H. Elghandour, M.R.H. Elmoghayar, J. Prakt. Chem. 330 (1987) 657
- [14] G.E.H. Elgemeie, F.A.E. Maksoud Abd El Aal, Heterocycles 24 (1986) 349
- [15] M.A. Hammad, M.S. Abdel, M.M. El-Anani, N. Shafik, Egypt. J. Chem. 29 (1986) 549; Chem. Abstr. 111 (1989) 7287t
- [16] J. Buchi, H. Zwicky, A. Aebi, Arch. Pharm. 293 (1960) 758
- [17] A.J. Vogel, Textbook of Practical Organic Chemistry, London (1978)

Address for correspondence:

Prof. Dr. Krystyna Bogdanowicz-Szwed

Department of Organic Chemistry Jagiellonian University Karasia 3

PL-30 060 Kraków, Poland