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Design and synthesis of N-alkyl oxindolylidene acetic acids
as a new class of potent Cdc25A inhibitors
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Abstract—The oxindolylidene acetic acids having long N-alkyl chains exhibited strong inhibitory activity toward dual specificity
phosphatase Cdc25A.
� 2008 Elsevier Ltd. All rights reserved.
Cdc25 phosphatases, dual specificity enzymes, which
can dephosphorylate both phospho-Ser/Thr and phos-
pho-Tyr residues, are essential regulators by dephospho-
rylation of Cdk/cyclin complexes. The Cdc25
homologues, Cdc25A, Cdc25B, and Cdc25C, are en-
coded by the human genome.1 Cdc25A is responsible
for regulating the G1-S cell cycle transition,2 while
Cdc25B and Cdc25C regulate the G2-M cell cycle tran-
sition.3 Cdc25A and B also have oncogenic properties.4

They are transcriptional targets of the c-Myc oncogene5

and overexpressed in many human tumors.6

Because of their important role in cell cycle regulation
and their correlation with a wide variety of cancers,
Cdc25A has been one of the attractive targets for drug
development.7 Although great efforts to find effective
Cdc25A inhibitors have been reported, most structures
developed so far are quinonoid-based compounds,7

and an efficient strategy to design nonquinone inhibitors
is in the process of being developed.7a,8

We thought that Cdc25A inhibitors could be created by
an appropriate combination of hydrophilic and hydro-
phobic moieties on the basis of the structure of dysidio-
lide (1), which was the first natural inhibitor of
Cdc25A.9 It has been suggested that the c-hydroxybute-
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nolide residue (hydrophilic substructure) of 1 serves as a
surrogate phosphate, and that the octahydronaphtha-
lene framework and side chain (hydrophobic substruc-
ture) occupy a hydrophobic binding pocket when the
molecule binds Cdc25A.9 Through biochemical evalua-
tion of synthetic dysidiolide and its analogs, it was
found that some unnatural diastereomers were more po-
tent inhibitors of Cdc25 than dysidiolide itself.10 There-
fore, the introduction of some hydrophilic residues into
hydrophobic framework might generate a new class of
potent inhibitors. In previous reports, we demonstrated
that perhydroindan framework, which is available from
vitamin D3 via Grundmann’s ketone, is useful to con-
struct a hydrophobic substructure of novel Cdc25A
inhibitors (2–4).11

In this letter, we describe the design, synthesis, and bio-
logical activity of N-alkyl oxindolylidene acetic acids 5
as Cdc25A inhibitors (Fig. 1). The introduction of N-
heterocyclic frameworks as a linker module between
hydrophobic and hydrophilic substructures may afford
a novel class of potent Cdc25A inhibitors.

For initial approach to design a new Cdc25A inhibitor,
we introduced a long alkyl chain, dodecanyl group, as a
hydrophobic framework. N-Dodecanyl substituted
derivatives with different hydrophilic motifs were syn-
thesized as shown in Scheme 1.

N-Dodecanyl isatin 7d was obtained through alkylation
of isatin 6 using sodium hydride. The unsaturated ester
8d was prepared by the Horner–Wadsworth–Emmons
reaction.12 This reaction was completely stereoselective,
the formation of the Z-isomer consistently not being
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Scheme 1. Reagents and conditions: (i) C12H25I, NaH, DMF, 88%; (ii) (CH3O)2POCH2CO2CH3, NaH, THF, 78%; (iii) NaOH, MeOH–H2O or

EtOH–H2O, (E)-5d (56%), 11 (81%); (iv) H2NOHÆHCl, CH3CO2Na, MeOH, 73%; (v) NaBH4, EtOH, 92%; (vi) C12H25I, NaH, DMF, 98%.
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observed. The hydrolysis of the unsaturated ester 8d
proceeded quickly to oxindolylidene acetic acid (E)-5d
as the E-isomer.12 Oxime 9 was synthesized by conden-
sation of 7d with hydroxylamine. The oxindole acetic
acid 11 was obtained by the borohydride reduction of
8d and the hydrolysis of 10. N-Alkylation of 12 gave
N-dodecanyl indole acetic acid 13.

The synthesized compounds (E)-5d, 7d, 8d, 9, 11, and 13
were tested for Cdc25A-inhibitory activity in an assay
system utilizing the dephosphorylation of O-methylfluo-
rescein monophosphate (Table 1).13 The carboxylic acid
derivative 2, a potent Cdc25A inhibitor, was employed
as a positive reference compound.11a The compound
(E)-5d showed the strongest Cdc25A-inhibitory activity
in the investigated compounds, and hence we changed
Table 1. Cdc25A inhibition assay results for compounds 2, (E)-5d, 7d,

8d, 9,11, and 13

Compound Cdc25A inhibition IC50, lM (SD)

2 12(±4)

(E)-5d 2.6(±0.4)

7d 15(±2)

8d 37(±3)

9 33(±2)

11 50(±8)

13 8.0(±0.4)
N-alkyl group of oxindolylidene acetic acid 5 to investi-
gate the effect of hydrophobic substructures.

As shown in Scheme 2, we synthesized compounds (E)-
5a–h in the same way as the compound (E)-5d in Scheme
1. The isomeric acids (E)-5a–f were thermally converted
to (Z)-5a–f.12 Heating the E-isomers at 85–120 �C gave
a glassy mixture of the E-isomers and the Z-isomers,
which were easily isolated by column chromatogra-
phy.14–17

Cdc25A-inhibitory activity of the compounds (E)-5a–h
and (Z)-5a–f is shown in Table 2.

The strength of the inhibitory activity depended on the
length of the alkyl chains at the N position of an indo-
line ring. The compounds bearing the longer hydropho-
bic chains showed the stronger inhibitory activity. The
acids having N-dodecanyl or above length N-alkyl
group ((E)-5d–f and (Z)-5d–f) showed higher inhibition
than the positive reference compound 2. Their inhibitory
activities were not much different between the E-isomers
and the Z-isomers. The substitution of phenylpropyl
((E)-5g) or ether ((E)-5h) group for alkyl groups greatly
decreased the inhibition.

In conclusion, we designed and synthesized novel N-al-
kyl oxindolylidene acetic acids ((E)-5d– f and (Z)-5d– f)
having high-Cdc25A-inhibitory activity. These findings
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Scheme 2. Reagents and conditions: (i) R–I (a– d, f) or R–Br (e, g, h), NaH, DMF; (ii) (CH3O)2POCH2CO2CH3, NaH, THF; (iii) NaOH,

MeOH–H2O or EtOH–H2O; (iv) neat, 85–120 �C; aobtained through the reagents and condition (iii) without (iv). bE/Z=4:1.

Table 2. Cdc25A inhibition assay results for compounds (E)-5 and
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Cdc25A inhibition IC50, lM (SD) Compound

N
O

R

OH

O

(E)-5

N
O

R

HO

O
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a: R = C6H13 >100 >100

b: R = C8H17 78(±13) 39(±4)

c: R = C10H21 13(±0.1) 12(±0.3)

d: R = C12H25 2.6(±0.4) 2.9(±0.3)

e: R = C14H29 2.3(±0.2) 1.7(±0.0)

f: R = C16H33 1.9(±0.1) 1.6(±0.2)

g: R = (CH2)3Ph >100 —

h: R = (CH2CH2O)3 CH2CH3 >100a —

a The mixture of E- and Z-form (E/Z = 4/1).
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on the structure–activity relationship should be helpful
for the design of novel Cdc25A inhibitors. We would
like to investigate isoform selectivity, because Cdc25B
and C inhibitory activities of those compounds have
not been tested. Design and synthesis of further isatin
analogs as candidate for potent inhibitors of Cdc25 fam-
ily members are in progress.
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