metal-organic compounds

Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

(Acetonitrile)[2,6-bis(pyrazol-1-yl)-pyridine](isonicotinamide)copper(II)—tetrafluoroborate—acetonitrile (1/2/2)

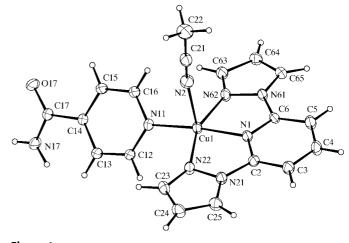
Gerhard Baum,^a Alexander J. Blake,^{b*} Dieter Fenske,^a Peter Hubberstey,^b Carine Julio^b and Matthew A. Withersby^b

^aInstitut für Anorganische Chemie, Universitat Karlsruhe, Engesserstraße, 76128 Karlsruhe, Germany, and ^bSchool of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England Correspondence e-mail: a.j.blake@nottingham.ac.uk

Received 19 September 2002 Accepted 2 October 2002 Online 22 October 2002

Molecules of the title compound, $[Cu(C_2H_3N)(C_{11}H_9N_5)-(C_6H_6N_2O)](BF_4)_2\cdot 2C_2H_3N$, comprise (acetonitrile)[2,6-bis-(pyrazol-1-yl)pyridine](isonicotinamide)copper(II) cations, tetrafluoroborate anions and lattice acetonitrile molecules. The cations have distorted square-pyramidal geometries in which the N₃-donor, viz. 2,6-bis(pyrazol-1-yl)pyridine, and the N-donor, viz. the isonicotinamide ligand, occupy the four basal positions, with the coordinated acetonitrile N-donor atom occupying the apical position. Pairs of cations are linked by N-H···F hydrogen bonds through tetrafluoroborate anions, forming centrosymmetric dimers, which are further linked by C-H···O hydrogen bonds into two-dimensional undulating sheets, three of which interpenetrate to generate a two-dimensional network.

Comment


The title compound, (I), comprises an (acetonitrile)[2,6bis(pyrazol-1-yl)pyridine](isonicotinamide)copper(II) cation (Fig. 1), two tetrafluoroborate anions and two lattice acetonitrile molecules. All four F atoms of both tetrafluoroborate anions are each disordered over two sites. The tridentate 2,6bis(pyrazol-1-yl)pyridine ligand occupies three of the four basal positions of a distorted square-pyramidal CuN₅ coordination sphere. The isonicotinamide ligand occupies the fourth basal position and the coordinated acetonitrile molecule occupies the apical position. Of the three ligating N atoms of the tridentate ligand, the pyrazole N-donor atoms form much longer Cu-N bonds [2.024 (3) and 2.026 (3) Å] than the pyridine N-donor atom [1.946 (2) Å], which forms a Cu···N contact similar to the isonicotinamide N-donor atom [1.964 (2) Å]. Typical of square-pyramidal Cu^{II} centres, the apical acetonitrile-N atom is somewhat more distant [2.316 (3) Å]. The magnitude of the distortion of the Cu^{II} coordination sphere (Fig. 1) can be quantified by the

geometric parameter τ [i.e. (171.42 - 156.94)/60] of 0.24 ($\tau = 0.0$ for $C_{4\nu}$ symmetry and $\tau = 1.0$ for D_{3h} symmetry; Addison et al., 1984). The conformation of the pyridine ring of the isonicotinamide ligand is such that it makes a dihedral angle of

47.8 (8)° with the pyridine ring of the tridentate ligand, which is effectively planar, with dihedral angles between the pyrazole and pyridine rings of 1.3 (2) and 6.3 (2)°.

The cations form centrosymmetrically related pairs (Fig. 2) linked through two tetrafluoroborate anions by an $R_4^4(12)$ hydrogen-bonding motif (Etter, 1990; Bernstein *et al.*, 1995).

Pertinent structural parameters of the hydrogen-bonded contacts are collated in Table 2. The formation of this motif [Scheme 1(a)] was unexpected, the simpler $R_2^2(8)$ motif [see

Figure 1A view of the cation in (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

DOI: 10.1107/S0108270102018097

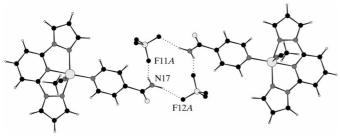


Figure 2

A view of the centrosymmetric hydrogen-bonded dinuclear construction generated by the $N-H\cdots F$ contacts of the hydrogen-bonded $R_4^4(12)$ motif. Only one set of F atoms (F11A, F12A, F13A and F14A) is shown for each tetrafluoroborate anion. (Key: Cu atoms are large pale-grey spheres, C are intermediate black spheres, N are intermediate dark-grey spheres, O are intermediate pale-grey spheres, B are small pale-grey spheres and F are intermediate black spheres.)

Scheme 1(b)] based on the amide functionalities being anticipated by analogy with the well known carboxylic acid-based $R_2^2(8)$ supramolecular synthon [Scheme 1(c)] (Desiraju, 1995, 2000). Presumably, despite the greater strength of the N-H···O=C hydrogen bond compared with the N-H···F-BF₃ hydrogen bond, the energy release associated with the formation of four of the latter is greater than that associated with the formation of two of the former. Two C-H···O hydrogen bonds, in the form of an $R_2^1(7)$ motif, link the dimers through the amide-O atom, generating an undulating sheet structure parallel to the (001) plane (Table 2 and Fig. 3). The periodicity of the undulation (24.5 Å) is such that the two-dimensional network comprises three interpenetrating sheets analogous to those observed in { $[Co_2(\mu-4,4'-azopyridine)_3-(NO_3)_4]_{l_R}$ (Withersby *et al.*, 1999, 2000).

Experimental

The ligand 2,6-bis(pyrazol-1-yl)pyridine was synthesized by heating at reflux for 72 h the mixture formed by adding 2,6-dichloropyridine (4.12 g, 27.8 mmol) to a solution of sodium pyrazolate previously prepared in tetrahydrofuran (100 ml) by reaction of pyrazole (3.80 g, 55.8 mmol) with excess NaH (60% dispersion in mineral oil; 2.80 g, 70 mmol). After cooling, the mixture was poured into iced water and the resulting precipitate recovered by filtration (yield: 5.10 g, 23.7 mmol, 85%). For the preparation of the title compound, (I), isonicotinamide (0.040 g, 0.33 mmol) was added to a mixture of 2,6-bis(pyrazol-1-yl)pyridine (0.068 g, 0.32 mmol) and hydrated $Cu(BF_4)_2 \cdot xH_2O$ (0.100 g, 0.32 mmol) in acetonitrile (25 ml). After stirring at ambient temperature for 24 h, the resulting green solution afforded a small crop of green plate-like crystals.

Crystal data

 $[Cu(C_2H_3N)(C_{11}H_9N_5)(C_6H_6 D_x = 1.560 \text{ Mg m}^{-3}$ $N_2O)](BF_4)_2 \cdot 2C_2H_3N$ Mo $K\alpha$ radiation $M_r = 693.68$ Cell parameters from 12 955 Orthorhombic, Phca reflections a = 8.1790 (16) Å $\theta = 2.5 - 25.5^{\circ}$ $\mu = 0.83~\mathrm{mm}^{-1}$ b = 22.747 (5) Åc = 31.752 (6) Å T = 193 (2) K $V = 5907 (2) \text{ Å}^3$ Plate, green $0.32 \times 0.08 \times 0.02 \text{ mm}$ Z = 8

Data collection

Stoe IPDS diffractometer 4385 reflections with $I > 2\sigma(I)$ Area detector scans $R_{\rm int} = 0.052$ Absorption correction: multi-scan (IPDS; Stoe & Cie, 1995) $h = -9 \rightarrow 9$ $T_{\rm min} = 0.84, T_{\rm max} = 0.95$ $k = -30 \rightarrow 25$ 19 461 measured reflections $l = -42 \rightarrow 29$ Intensity decay: none

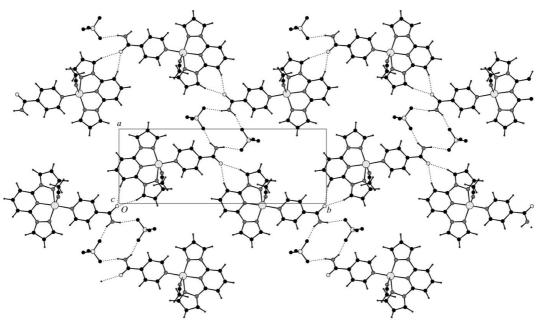


Figure 3

A projection of the structure of (I) on to the (001) plane, showing the two-dimensional sheet structure generated by the $C-H\cdots O$ contacts of the hydrogen-bonded $R_2^1(7)$ motif. The lattice acetonitrile molecules and tetrafluoroborate anions have been omitted for clarity. Only one set of F atoms (F11A, F12A, F13A and F14A) is shown for each tetrafluoroborate anion (atom types are as depicted in Fig. 2).

metal-organic compounds

 Table 1

 Selected geometric parameters (\mathring{A} , $^{\circ}$).

Cu1-N1	1.945 (3)	Cu1-N22	2.024(3)
Cu1-N2	2.316 (3)	Cu1-N62	2.026(3)
Cu1-N11	1.964 (3)		` ,
N1-Cu1-N2	93.41 (12)	N2-Cu1-N22	93.70 (14)
N1-Cu1-N11	171.42 (13)	N2-Cu1-N62	93.29 (14)
N1-Cu1-N22	78.87 (12)	N11-Cu1-N22	101.55 (12)
N1-Cu1-N62	78.80 (11)	N11-Cu1-N62	99.67 (12)
N2-Cu1-N11	95.12 (12)	N22-Cu1-N62	156.94 (11)

 Table 2

 Hydrogen-bonding geometry (\mathring{A} , °).

$D-\mathrm{H}\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D $ H$ $\cdot \cdot \cdot A$
N17−H17 <i>A</i> ···F11 <i>A</i> ⁱ	0.88	2.60	3.334 (6)	142
$N17-H17B\cdots F11A^{ii}$	0.88	2.09	2.900 (6)	152
$N17-H17B\cdots F11B^{ii}$	0.88	2.01	2.866 (7)	163
$N17-H17A\cdots F12A^{i}$	0.88	2.12	2.971 (5)	163
$N17-H17A\cdots F12B^{i}$	0.88	2.03	2.885 (7)	163
C5-H5···O17 ⁱⁱⁱ	0.95	2.22	3.140 (5)	162
$C65-H65\cdots O17^{iii}$	0.95	2.36	3.221 (4)	151

Symmetry codes: (i) 1 - x, -y, -z; (ii) 1 + x, y, z; (iii) $\frac{1}{2} - x$, $\frac{1}{2} + y$, z.

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.059$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.115P)^{2}]$
$wR(F^2) = 0.175$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\text{max}} = 0.002$
6613 reflections	$\Delta \rho_{\text{max}} = 0.88 \text{ e Å}^{-3}$
401 parameters	$\Delta \rho_{\min} = -0.74 \text{ e Å}^{-3}$

The tetrafluoroborate anions are affected by disorder; this was modelled by allowing alternative positions for each F atom, with extensive restraints applied to B-F distances and F-B-F angles. Around atom B1, the major and minor orientations refined to occupancies of 0.57 (2) and 0.43 (2), respectively, while the corre-

sponding occupancies around atom B2 converged to 0.60 (1) and 0.40 (1). Aromatic and amide H atoms, after location from ΔF syntheses, were placed geometrically and refined with a riding model, for which the C—H and N—H distances were constrained to be 0.95 and 0.88 Å, respectively, and $U_{\rm iso}({\rm H})=1.2 U_{\rm eq}({\rm C,N})$. Methyl H atoms were located and treated similarly, with C—H distances constrained to be 0.98 Å and $U_{\rm iso}({\rm H})=1.5 U_{\rm eq}({\rm C})$

Data collection: *IPDS* (Stoe & Cie, 1995); cell refinement: *IPDS*; data reduction: *IPDS*; program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *SHELXL*97 and *PLATON* (Spek, 2002).

The authors thank the University of Nottingham for financial support (to MAW).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1141). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Nageswara Rao, T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). *J. Appl. Cryst.* 27, 435.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.

Desiraju, G. R. (2000). J. Chem. Soc. Dalton Trans. pp. 3745-3751.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands.

Stoe & Cie (1995). IPDS. Stoe & Cie, Darmstadt, Germany.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

Withersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P., Realf, A. L., Teat, S. J. & Schröder, M. (2000). *J. Chem. Soc. Dalton Trans.* pp. 3261–3268.

Withersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P. & Schröder, M. (1999). New J. Chem. 23, 573–575.