

Bioorganic & Medicinal Chemistry Letters 12 (2002) 3471-3474

Synthesis of [Difluoro-(3-alkenylphenyl)-methyl]-phosphonic Acids on Non-crosslinked Polystyrene and Their Evaluation as Inhibitors of PTP1B

Gabriel Hum, Jason Lee and Scott D. Taylor*

Department of Chemistry, University of Waterloo, 200 University Avenue West, Ontario, Canada N2L 3G1

Received 29 May 2002; accepted 12 August 2002

Abstract—A series of [difluoro-(3-alkenylphenyl)-methyl]-phosphonates were prepared on non-crosslinked polystyrene, a soluble polymer support. After cleavage from the support, the resulting phosphonic acids were examined for inhibition with protein tyrosine phosphatase 1B. Compound **20**, bearing an α , β -unsaturated allyl ester moiety, was the most potent of this series of compounds, being a reversible, competitive inhibitor with a K_i of $8.0 \pm 1.4 \mu$ M. \bigcirc 2002 Elsevier Science Ltd. All rights reserved.

Recently, there has been considerable interest in the development of inhibitors of protein tyrosine phosphatase 1B (PTP1B).¹ This stems for the relatively recent discovery that PTP1B knock-out mice are insulin sensitive and are resistant to obesity.² These studies suggest that PTP1B is involved in the down regulation of insulin signaling and that inhibitors of PTP1B may be useful for the treatment of type II diabetes and obesity.² As part of our program on the development of non-peptidyl PTP1B inhibitors,³ we became interested in devising methods that would allow for the rapid synthesis of potential inhibitors bearing the difluoromethylenephosphonic acid group (DFMP), a highly effective nonhydrolyzable phosphate mimetic for obtaining PTP1B inhibtors.⁴ Towards this end we developed an approach to the synthesis of biaryl derivatives of type 1 on noncrosslinked polystyrene (NCPS), a soluble polymer support.^{5a,b} Biaryl derivatives were specifically targeted since we had previously demonstrated that substitution of 2 with a phenyl group at the meta position, 3 $(IC_{50} = 15 \ \mu M)$, significantly increased inhibitory potency by 17-fold compared to 2.^{3a} Quite recently, Shibuya et al. reported that the ethynyl compound 4 $(IC_{50} = 19 \ \mu M)$ was also a good inhibitor. These results indicate that certain unsaturated moieties at the meta position of 2 can significantly increase inhibitory

potency which suggests that the vinyl derivative **5** and compounds of type **6** might also be effective inhibitors. However, Shibuya reported that they were unable to construct compound **5** in pure form.⁶ Nevertheless, since the styryl derivative (**6**, R = Ph) was reported,⁶ we reasoned that other substituted vinyl derivatives of type **6** should be readily obtainable. Here we report the polymer-supported synthesis of alkenes of type **6** and their evaluation as inhibitors of PTP1B.

Our approach to compounds of type **6** involved a Wittig reaction between NCPS-bound aldehyde **7** and a series of phosphorus ylids (Scheme 1). Although compounds of type **6** could potentially be prepared using Stille couplings,⁶ we chose to use a Wittig reaction⁷ since a wide

Scheme 1. Proposed route to alkenes from polymer-bound 7.

^{*}Corresponding author. Tel.: +1-519-888-4567x3325; fax: +1-519-746-0435; e-mail: s5taylor@sciborg.uwaterloo.ca

⁰⁹⁶⁰⁻⁸⁹⁴X/02/\$ - see front matter \odot 2002 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(02)00768-0

variety of phosphonium salts are commercially available and these reactions could be performed at room temperature. Polymer-supported chemistry would facilitate the removal of triphenylphosphine oxide from the reaction mixtures. NCPS is soluble in many aprotic organic solvents yet is insoluble in polar protic solvents such as MeOH or water. This approach has certain advantages over the more conventional solid phase methodologies since reactions are carried out under homogeneous conditions, which results in faster reaction rates⁸ and facile monitoring of the reaction using conventional solution NMR. Pure polymer-bound product is obtained by precipitation followed by filtration.

Initially, we wished to prepare aldehyde 7 by lithiation of polymer bound aryl bromide 85a followed by formylation (Scheme 2). However, such reactions with model compound 9 in solution indicated that this would not be a suitable approach due to the formation of numerous impurities. An alternative approach was to prepare the aldehyde 10 (or its acetal equivalent), followed by attachment to functionalized polymer 11^{5a} by a Mitsonobu reaction (Scheme 2).^{5a} We initially examined this approach using the known aldehyde 12^9 as a model substrate. However, we were unable to attach this compound to polymer 11 cleanly and in good yield under a wide variety of conditions. Attempts to convert acetal derivatives of 12 to the acid chloride and attach them to 11 were also unsuccessful. Our third approach was by oxidizing a polymer-bound alcohol to the aldehyde. This involved first preparing the protected alcohol

Scheme 2. Potential routes to 7.

17 as outlined in Scheme 3. Thus, α, α' -dibromo-*meta*xylene was reacted with allyl alcohol in the presence of NaH and 15-C-5 to give a mixture of the mono and diallylated compounds 13 and 14. These compounds were not separated but instead were subjected to excess triethylphosphite in refluxing benzene to give the phosphonate 15 in 54% yield (two steps). Electrophilic fluorination¹⁰ using *N*-fluorobenzenesulfonimide (NFSi) gave compound 16 in 80% yield. Basic hydrolysis followed by acidification gave acid 17 in 97% yield.

Compound **17** was attached to polymer **11** (0.4 mmol alcohol moiety/gram of polymer)^{5a} in quantitative yields (as determined by NMR) by a Mitsonobu reaction (Scheme 4).^{5a} Pure polymer-bound **18** was obtained by addition of the reaction mixture to MeOH–water (9:1) followed by filtration. Polymer recovery was approximately 97%. Using the conditions developed by Honda et al.¹¹ for removal of allyl groups, polymer bound alcohol **19** was obtained in near quantitative yields as determined by ¹⁹F NMR. By subjecting **19** to the Dess–Martin periodane in methylene chloride at room temperature for 2 h, aldehyde **7** was obtained in quantitative yields as determined by ¹⁹F NMR with the only loss of material being due to the precipitation/filtration step (3% for the deprotection and oxidation).

Wittig reactions using 400 mg of 7 were performed at room temperature using an excess of phosphorus ylid

Scheme 4. Synthesis of alkenes 20-39.

Scheme 3. Synthesis of 17.

R

(generated from commercially available phosphonium salts and KH) in the presence of 20 mol% 18-C-6 in THF (Scheme 4). The reactions were quenched by adding the reaction mixture to a stirred 9:1 MeOH–water solution followed by filtration. With these smaller scale reactions, recovery of the polymer ranged from 80 to 95%. Simultaneous cleavage from the support and phosphonate deprotection was achieved using TMSBr.^{5a} The reactions were concentrated by rotary evaporation and the residue redissolved in methylene chloride which was then added to a 9:1 solution of

MeOH and water and stirred for 12 h. The polymer was removed by filtration and the filtrate concentrated to give the phosphonic acids. The acids were applied to an LC-NH₂ weak anion exchange resin¹² and washed with THF, MeOH and water. The compounds were removed from the column as their diammonium salts by elution with 0.5 M NH₄OH followed by repeated lyophilization. 20 different alkenes were constructed (**20–39**, Table 1). Compounds were characterized by ¹H, ³¹P, ¹⁹F NMR and negative FABMS.¹³ Yields ranged from 28 to 83%. The purities for the majority of the compounds were

Table 1. Yields and purities of alkenes 20-39

Table 2. Percent Inhibition of PTP1B with 50 μ M compounds 20–26

R	% Inhibition	R	% Inhibition
≈~°,	84	\sim°	53
20		24	
	71	N≡C→	45
21		25	
	70		23
22		26	
23	60		

greater than 85% as judged by ¹⁹F and ³¹P NMR and HPLC (Table 1). The exceptions to this were compounds **26**, **36** and **39** which were obtained in purities of 80%, 65 and 72% as judged by HPLC. ¹⁹F and ³¹P NMR of these three compounds suggested that their purity was considerably greater than that determined by HPLC.

A rapid screen of 20-39 for PTP1B inhibition was performed by determining the percent inhibition in the presence of 50 µM 20-39 and using fluorescein diphosphate as substrate at $K_{\rm m}$ concentration (20 μ M) at pH 6.5.¹⁴ Compounds 20–26 were the most potent inhibitors (Table 2). Compounds 35–39 showed no inhibition. Compounds 27–34 showed little or no inhibition and these results are consistent with the studies of Shibuya et al. who reported that the styryl derivative (6, R = -Ph) was a weak inhibitor $(IC_{50} = 386 \ \mu M)$.⁶ Interestingly, compound 22, which has an additional double bond exhibited 70% inhibition (Table 2) while its more saturated analogue, 38, showed no inhibition. The data in Table 2 reveals that an α,β -unsaturated ester moiety aids inhibition and that an unsaturated group in the alcohol portion of the ester further enhance inhibition. The IC_{50} of the most potent inhibitor, 20, was determined to be $12.2 \pm 1.0 \ \mu M$ indicating that it is slightly more potent than compounds 3 and 4. Further kinetic studies revealed that 20 was a reversible competitive inhibitor with a K_i of 8.0±1.4 µM. We also prepared 20 in solution from difluoro-(3-formylphenyl)-methyl]phosphonic acid diethyl ester¹⁵ using the room temperature Wittig coupling conditions of Belluci et al.¹⁶ which are known to give exclusively the E isomer. This compound exhibited identical ¹⁹F, ³¹P and ¹H NMR spectra to that prepared on the polymer which is consistent with the product being formed from a stabilized ylid. The compound prepared in solution also exhibited identical inhibition properties. Recent theoretical studies on compound 3 and PTP1B suggest that the metaphenyl ring increases potency by pi-cation interaction

with Lys 116 and Lys 120.¹⁷ It is possible that similar interactions are occurring with some of the compounds reported here.

In summary, polymer-supported organic synthesis was used to prepare a series of alkenes of type **6**. Inhibition studies reveal that an α , β -unsaturated allyl ester at the *meta*-position on the aryl ring significantly increases potency in that compound **20** is a 76-fold more potent inhibitor than the parent compound **2**. Further studies to increase compound diversity by utilizing other reactions on polymer bound aldehyde **7**, as well as alcohol **19**, and their *para* analogues, are in progress.

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada and MerckFrosst for financial support and for PTP1B.

References and Notes

- 1. Ripka, W. C. Ann. Rep. Med. Chem. 2000, 35, 231.
- 2. Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy, A. L.; Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C. C.; Ramachandran, C.; Gresser, M. J.;
- Tremblay, M. L.; Kennedy, B. P. *Science* **1999**, *283*, 1544. 3. (a) Taylor, S. D.; Kotoris, C. C.; Dinaut, A. N.; Wang, Q.; Ramachandran, C.; Huang, Z. *Bioorg. Med. Chem.* **1998**, *6*,
- Hamachandran, C., Huang, Z. Bloog. Incu. Chem. Dis, 6, 1457. (b) Wang, Q.; Huang, Z.; Ramachandran, C.; Dinaut, A. N.; Taylor, S. D. Bioorg. Med. Chem. Lett. **1998**, 8, 345. (c) Jia, Z.; Ye, Q.; Dinaut, A. N.; Wang, Q.; Waddleton, D.; Payette, P.; Ramachandran, C.; Kennedy, B.; Hum, G.; Taylor, S. D. J. Med. Chem. **2001**, 44, 4584.
- 4. Burke, T. R.; Kole, H. K.; Roller, P. P. Biochem. Biophys. Res. Commun. **1994**, 204, 129.
- 5. Hum, G.; Grzyb, J.; Taylor, S. D. *J. Combi. Chem.* **2000**, *2*, 234. (b) Leung, C.; Grzyb, J.; Lee, J.; Meyer, N.; Hum, G.; Jia,
- C.; Liu, S.; Taylor, S. *Bioorg. Med. Chem.* **2002**, *10*, 2309.
- 6. Yokomatsu, T.; Murano, T.; Umesue, I.; Soeda, S.; Shimeno, H.; Shibuya, S. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 529.
- 7. For some examples of Wittig reactions on polymer-bound aldehydes see: Vagner, J.; Krchnak, V.; Lebl, M.; Barany, G.
- Collect. Czech. Chem. Commun. 1996, 61, 1697. 8. For a review of soluble polymer-supported synthesis:
- Gravert, D. J.; Janda, K. D. Chem. Rev. **1997**, 97, 489.

9. Chetyrkina, S.; Estieu-Gionnet, K.; Lain, G.; Bayle, M.; Deleris, G. *Tetrahedron Lett.* **2000**, *41*, 1923.

10. Taylor, S. D.; Dinaut, A. N.; Thadini, A.; Huang, Z. Tetrahedron Lett. 1996, 45, 8089.

11. Honda, M.; Morita, H.; Nagakura, I. J. Org. Chem. 1997, 62, 8932.

12. Available from Supelco.

13. No attempt was made to identify the proportions of geometric isomers formed.

14. Specific assay conditions were: 0.2 µg/mL PTP1B in 50 mM Bis–Tris (pH 6.5), 2 mM EDTA, 5 mM DTT, 0.01% triton X-100 and 5% DMSO. Assays were carried out in 96-well plates using a SPECTRAmax (Molecular Devices) microplate spectrofluorometer, (excitation at 485 nm, emission at 538 nm).

15. Prepared from 16 by alcohol deprotection and oxidation followed by reaction with TMSBr.

16. Bellucci, G.; Chiappe, C.; Lo Moro, G. *Tetrahedron Lett.* **1996**, *37*, 4225.

17. Murthy, V. S.; Kulkarni, V. M. Bioorg. Med. Chem. 2002, 10, 897.