α-Chloromercaptals from α-Chloroacetals and Thiols

Franco Bellesia, Monica Boni, Franco Ghelfi* and Ugo M. Pagnoni

Dipartimento di Chimica dell' Universita', Via Campi 183, I-41100, Modena (Italy)

(Received in UK 14 September 1992)

Key Words Acetals, \alpha-Chloroacetals, Thiols, \alpha-Chloromercaptals, Transdithioacetalization

Abstract: α -Chloromercaptals are prepared in good yields by a CoCl₃-trimethylchlorosilane catalysed transdithioacetalization of α -chloroacetals with thiols in acetonitrile.

INTRODUCTION

Recently, we developed a mild and efficient method for the α -halogenation of dimethylacetals with MnO₂-trimethylchlorosilane (TMCS) ¹ Owing to the possibility of the sulphur atom to employ the 3d orbitals, sulphur derivatives are generally much more versatile synthetic intermediates with respect to the corresponding oxygenated ones, ² we were therefore stimulated to develop a method for an easy transformation of α -haloacetals into the corresponding α -halomercaptals

Rothstein³ reported first the synthesis of α -halomercaptals *in situ* by transdithioacetalisation, however, all the subsequent attempts to prepare these derivatives failed, ^{4,5} mainly observing C-halogen bond cleavage and rearranged products. Like the parent carbonyl compounds, α -haloacetals, indeed, react with 1,2-ethanedithiol under acidic conditions, affording the biological active dihydro-1,4-dithiines ⁵ 2-(1-Haloalkyl)-1,3-dithiolanes (A) has been suggested as the intermediates (see Scheme) in the rearrangement to dihydro-1,4-dithiines (B) ⁵

We now report the easy preparation and isolation of the till now elusive 6 2-(1-chloroalkyl)-1,3-dithiolanes by a CoCl $_2$ -TMCS promoted transdithioacetalisation of α -chloroaldehyde dimethylacetals with 1,2-ethanedithiol; the reaction with other mercaptans gives the corresponding derivatives. The only reported example of isolated α -chloromercaptals is the preparation of the polychlorinated derivatives 2-dichloromethyl- and 2-trichloromethyl-1,3-dithiolane, by reaction of the ethanedithiol with dichloroacetaldehyde diethylacetal 7 or trichloroacetaldehyde, 8 respectively

RESULTS AND DISCUSSION

The acetal is a well-known protecting group for the carbonyl function under basic or neutral conditions, so that a nucleophilic attack requires an acid catalysis activation 9 An 1 1 mixture of α -chlorohexanal dimethylacetal and

1,2-ethanedithiol was thus tested using a number of Lewis acids (BF₃, Nafion-H, TMCS, ZnCl₂, SnCl₂, NiCl₂, MnCl₂, CoCl₂) in different solvents, in order to find out conditions mild enough to obtain satisfacory yields of α-chloromercaptal and to prevent the subsequent rearrangement

Scheme

The couple CoCl₂-TMCS was the most effective catalyst, the better performances being observed in acetonitrile as solvent. On using CoCl₂ or TMCS alone, however, only a partial conversion of the α-chloroacetal was obtained. The observed synergism may be rationalized by a Si-Cl bond loosening in consequence of a CoCl₂ complexation of the TMCS chlorine, so that the Si nucleus becomes electrophilic enough to activate the acetal group

A series of α -chlorodimethylacetals has been treated at room temperature with CoCl₂-TMCS and 1,2-ethanedithiol on obtaining the corresponding α -chloromercaptals in good yields (Table 1) ¹⁰ The reactions are very fast (10-30') and the final mixture must be immediately worked up, since α -chloromercaptals slowly rearrange, mainly giving dihydro-1,4-dithiines. This rearrangement should occur at a greater extent with α -bromomercaptals, owing to the easier bromide displacement by sulphur, ¹¹ on starting, indeed, from α -bromohexanal dimethylacetal, the main product is the dihydro-1,4-dithiine, even in the early stage of the reaction

Other mercaptans may be used (Table 2), mercaptoethanol (item 11) and 1,3-propanedithiol (item 9) afford in high yields 2-(1-chloroalkyl)-1,3-oxathiolane and 2-(1-chloroalkyl)-1,3-dithiane, respectively Non chelating mercaptans, like thiophenol (item 10) and ethyl mercaptan (item 12), give rise to a different behaviour, with the first one, probably owing to its size, the O,S acetal is the main product, while with the second a little amount of 1,1,2-trithioethoxyhexane (8 4%), formed during reaction work-up (GC monitoring), accompanies the expected α -chloromercaptal

TABLE 1. The preparation of α -chloromercaptals by reaction of α -chloroacetals with thiols.

ITEM	SUBSTRATE	PRODUCT	TIME(min)	YIELD(%)
1	OMe OMe Cl	S S	60	80
2	OMe OMe	S S	30	85
3	OMe OMe CI	S S CI	30	79
4	OMe OMe	S S S S S S S S S S S S S S S S S S S	60	92
5	OMe OMe Cl	CI CI	60	87
6	OMe OMe Cl	S	60	70
7	OMe OMe Cl	S S S	60	77
8	OMe C1 OMe	S Cl S	30	91

F. Bellesia et al.

TABLE 2. The reaction of 2-chlorohexanal dimethyl acetal with thiols.

ITEM	THIOL	PRODUCT	TIME(min)	YIELD(%)
9	нѕуѕн	S	60	88
10 ^{a)}	Ph SH	S Ph OMe	30	47
11	но	o N CI	240	66
12 ^{b)}	Et — SH	S Et S Et	15	68

- a) Substrate Ph-SH CoCl₂ TMCS= 1 1 1 1
- b) Substrate Et-SH CoCl₂ TMCS=1 3 1 1

Also on a large scale the yields are satisfactory (see Experimental), thus making this procedure very attractive for the preparation of these potentially useful synthetic intermediates α -Chlorodithioacetals are very sensible to acidic conditions, but are stable enough to be distilled and to be stored indefinitely at -10°C

EXPERIMENTAL PART

The 1 H NMR spectra have been recorded on a Bruker FP80 or on a Varian XL200 spectrometer. Mass spectra have been obtained on a HP 5989A MS Engine. Reagents and solvents are standard grade commercial products, and have been used without further purification. The α -chloroacetals have been prepared by chlorination of aldehyde dimethylacetals with MnO $_2$ -TMCS 1

General procedure for the preparation of α -chloromercaptals. To a solution of $CoCl_2(1 \text{ 1 mmoles})$ in acetonitrile (4 ml), α -chlorodimethylacetal (1 1 mmoles), 1,2-ethanedithiol (1 1 mmoles) and then TMCS (1 1 mmoles) are added under stirring at room temperature. The reaction is monitored by TLC, using ethyl ether/n-hexane (0 5 9 5) as

eluant. ¹² After the time reported in Table 1, the mixture is extracted with n-hexane (3 x 5 ml) and the extracts collected and washed with 5% NaHCO₃ (5 ml). To complete the extraction, the mother liquor is diluted with 5% NaHCO₃ (10 ml) and extracted with a further n-hexane (10 ml). The organic phases are collected, dried over Na₂SO₄, and evaporated The crude product is purified by preparative TLC or by bulb to bulb distillation in an air bath thermostat Yields are on isolated products.

Special cases.- a) In item 12, 3 3 mmoles of ethyl mercaptan are used, ¹³ b) The amount of thiophenol in item 10 is lowered to 1,1 mmoles since, also on a stoichiometrical ratio (2.2 mmoles), the O,S acetal is formed preferentially, probably owing to sterical hindrance.

Large scale preparation. Starting from hexanal dimethylacetal (14 4 g, 80 mmoles), 1,2-ethanedithiol (7.52 g, 80 mmoles), TMCS (8 72 g, 80 mmoles) and CoCl₂ (10 4 g, 80 mmoles) in CH₃CN (280 ml), the corresponding α-chlorodithioethyleneacetal is obtained in 92% yield

2-(1-chloropentyl)-1,3-dithiolane

B p 87-92°C /0 02 mmHg

 1 H NMR (CDCl₃). 0 95 (3H, t, CH₃-C), 1.08-1.92 (4H, m, C-(CH₂)₂-C); 1 94-2 40 (2H, m, C-CH₂-CCl); 3.22 (4H, m, -S(CH₂)₂S-); 3 92 (1H, m, -CHCl-); 4 75 (1H, d, S-CH-S).

m/z 210 (M⁺, 7), 105 (100)

Found: C, 45 7, H, 7 2, Cl, 16 6; S, 30 5 C₈H₁₅ClS₂ requires C, 45.71; H, 7.20; Cl, 16.65; S, 30 45%.

2-(1-chloro-2-phenylethyl)-1,3-dithiolane

B p 155-160°C /0 05 mmHg

¹H NMR (CDCl₃) 3 06 (2H, m, Ph-C \underline{H}_2 -CCl), 3 32 (4H, m, -S(CH₂)₂S-), 4 18 (1H, m, -CHCl-), 4 76 (1H, d, S-CH-S); 7 28 (5H, m, -C₆H₅).

m/z. 244 (M⁺, 4), 105 (100).

Found C, 54 0, H, 5 4, Cl, 14 4, S, 26 2. C₁₁H₁₃ClS₂ requires C, 54 10, H, 5 37, Cl, 14.33, S, 26.21%

2-chloroethyl-1,3-dithiolane

B.p. 127-132°C /14-15 mmHg

¹H NMR (CDCl₃) 1 59 (3H, d, CH₃-CCl), 3 22 (4H, m, -S(CH₂)₂S-); 4 06 (1H, m, -CHCl-); 4 69 (1H, d, S-CH-S)

m/z 168 (M⁺, 17), 105 (100)

Found C, 35 8, H, 5.4, Cl, 20 8, S, 38.0 C₅H₉ClS₂ requires C, 35 72, H, 5 40; Cl, 20 82; S, 38 07%

2-(1-chloropropyl)-1,3-dithiolane

B p. 87-95°C /0 03 mmHg

¹H NMR (CDCl₃)·1 03 (3H, t, CH₃-C), 1 72 and 2 04 (2H, m, C-CH₂-CCl), 3 22 (4H, m, -S(CH₂)₂S-), 3 86 (1H, m, -CHCl-); 4 72 (1H, d, S-CH-S).

m/z: 182 (M⁺, 11); 105 (100)

Found. C, 39 5; H, 6 1, Cl, 19 2, S, 35.1 C₆H₁₁ClS₂ requires C, 39.56, H, 6.09; Cl, 19.21; S, 35.13%

2-(1-chloro-1-methylethyl)-1,3-dithiolane

Bp 109-114°C/01 mmHg

¹H NMR (CDCl₃): 1.66 (6H, s, 2x-CH₃); 3.22 (4H, m, -S(CH₂)₂S-), 4.88 (1H,s, S-CH-S)

m/z: 182 (M⁺, 11); 105 (100)

Found: C, 39.6; H, 6.1; Cl, 19.1; S, 35 1. C₆H₁₁ClS₂ requires C, 39 56; H, 6.09; Cl, 19.21, S, 35 13%.

2-(1-chlorocyclohexyl)-1,3-dithiolane

B.p.: 111-116°C / 0.03 mmHg

¹H NMR (CDCl₃): 0 96-1 98 (10H, m, -C₆H₁₀), 3.22 (4H, m, -S(CH₂)₂S-), 4.83 (1H, s, S-CH-S)

m/z: 222 (M⁺, 5); 105 (100)

Found. C, 48.6; H, 6.9; Cl, 15 7; S, 28 8. C₉H₁₅ClS₂ requires C, 48.64, H, 6 81; Cl, 15.75; S, 28 80%

2-(1-chlorohexyl)-1,3-dithiolane

B.p: 97-104°C / 0.02 mmHg

¹H NMR (CDCl₃) 0 85 (3H, t, CH₃-C); 1.08-2 03 (8H, m, C-(CH₂)₄-CCl), 3 22 (4H, m, -S(CH₂)₂S-); 3 90 (1H, m, -CHCl-); 4.71 (1H, d, S-CH-S).

m/z: 224 (M+, 6); 105 (100).

Found C, 48.2, H, 7 6; Cl, 15 6, S, 28 6 C₉H₁₇ClS₂ requires C, 48.20; H, 7.65; Cl, 15 61, S, 28 54%.

2-(1-chloro-1-ethylpenthyl)-1,3-dithiolane

B.p. 88-95°C / 0 02 mmHg

 $^{1}\text{H NMR (CDCl}_{3}) \ 0 \ 87 \ (3\text{H, t, CH}_{3}\text{-C}), 0.96 \ (3\text{H, t, CH}_{3}\text{-C-CCl}), 1.16\text{-}1.47 \ (4\text{H, m, CH}_{3}\text{-}(\text{C}\underline{\text{H}}_{2})_{2}\text{-C}), 1.73\text{-}2 \ 10 \ (4\text{H, m, 2x-C-CH}_{2}\text{-CCl}), 3 \ 22 \ (4\text{H, m, -S(CH}_{2})_{2}\text{S-}), 4 \ 95 \ (1\text{H, s, S-CH-S})$

m/z.238 (M⁺, 6), 105 (100).

Found: C, 50.5; H, 8 0, Cl, 14 7, S, 26.8. C₁₀H₁₉ClS, requires C, 50 41, H, 8 04; Cl, 14.69, S, 26.86%.

2-(1-chloropenthyl)-1,3-dithiane

B p.. 106-110°C / 0 02 mmHg

 1 H NMR (CDCl₃) 0.85 (3H, t, CH₃-C), 1 14-1 86 (6H, m, C-(CH₂)₂-C), 1 86-2 32 (4H, m, C-CH₂-CCl and S-C-CH₂-C-S), 2 85 (4H, m, 2xS-CH₂), 4 06 (1H, m, -CHCl-), 4 29 (1H, d, S-CH-S).

m/z 224 (M⁺, 10); 119 (100)

Found. C, 48.2, H, 77; Cl, 15.7; S, 28 5 C_oH₁₇ClS₂ requires C, 48 20, H, 7 65, Cl, 15 61, S, 28 54%

2-(1-chloropenthyl)-1,3-oxathiolane

Bp 102-108°C/1 mmHg

¹H NMR (CDCl₃) 0 91 (3H, t, CH₃-C), 1 18-2 07 (6H, m, C-(CH₂)₃-CCl), 3 00 (2H, m, S-CH₂-C), 3 92 (2H, m, O-CH₂-C), 4 44 (1H, m, -CHCl-), 5 16 and 5 22 (1H, d, S-CH-O)

m/z 194 (M⁺, 5), 89 (100)

Found. C, 49 4, H, 7 8, Cl, 18 1, S, 16 5 C₈H₁₅ClOS requires C, 49 47, H, 7 79, Cl, 18 02, S, 16 48%

2-chlorohexanal diethyl mercaptal

Bp 108-112°C/15 mmHg

¹H NMR (CDCl₃) 0 90 (3H, t, CH₃-C), 1 17 (6H, t, 2xCH₃-C-S), 1.22-2 28 (6H, m, C-(CH₂)₃-CCl); 2.57 (4H, q,

2xCH₂S), 3.91 (1H, d, -CHCl-); 4.06 (1H, d, S-CH-S). m/z 240 (M⁺, 26), 204 (M⁺-36, 64), 179 (M⁺-61, 57); 135 (62); 81 (100). Found. C, 49.9; H, 8 8; Cl, 14.5, S, 26 6 C₁₀H₂₁ClS₂ requires C, 49.98; H, 8.82; Cl, 14.57, S, 26.63%

2-thioethoxyhexanal diethyl mercaptal

B p.: 120-125°C / 1 5 mmHg.

¹H NMR (CDCl₃).0 91 (3H, t, CH₃-C), 1 28 (9H, t, $3xCH_3$ -C-S), 1.35-2.03 (6H, m, C-(CH₂)₃-C), 2 45-2 81 (6H, m, 3xC-CH₂-S); 2.93 (1H, m, C-C<u>H</u>-SEt); 4.03 (1H, d, -C<u>H</u>(SEt)₂)

m/z: 266 (M⁺, 7), 135 (100)

Found C, 54 0; H, 9 9, S, 36 1 C₁₂H₂₆S₃ requires C, 54 11, H, 9.85; S, 36.04%.

1-methoxy-1-thiophenoxy-2-chlorohexane

B p 105-108°C / 0 01 mmHg

¹H NMR (CDCl₃) 0 90 (3H, t, CH₃-C), 1 18-2 17 (6H, m, C-(CH₂)₃-CCl), 3 52 (3H, s, C-OCH₃); 4 02 (1H, m, -CHCl), 4 64 and 4 74 (1H, d, S-CH-S), 7.15-7 61 (5H, m, -C₆H₅)

m/z 258 (M⁺, 13), 222 (M⁺-36, 18), 153 (7), 149 (M⁺-109, 64); 113 (98), 81 (100)

Found C, 60 5; H, 7 4, Cl, 13 6, S, 12 3 C₁₃H₁₉ClOS requires C, 60 45, H, 7 42, Cl, 13 55, S, 12 39%

Acknowledgements - We thank the C N R (Rome) and the Ministero della Universita' e della Ricerca Scientifica e Tecnologica (MURST) for financial assistance

REFERENCES AND NOTES

- 1. Bellesia, F, Boni, M., Ghelfi, F, Grandi, R, Pagnoni, UM, Pinetti, A Tetrahedron, 1992, 48, 4579-4587
- Rothstein, E. J. Chem. Soc., 1953, 3991-3994 Oae, S; Tagaki, W, Ohno, A Tetrahedron, 1964, 20, 417-425. Price, C C and Oae, S. Sulfur Bonding, The Ronald Press Company. New York, 1962, pp. 1-7 Oae, S in "Organic Sulfur Chemistry", Bernardi, F, Csizmadia, I G, and Mangini, A Eds.; Elsevier Amsterdam, 1985, pp. 1-4
- 3. Rothstein, E J. Chem. Soc., 1940, 1553-1558 Rothstein, E, Whitely, R J. Chem. Soc., 1953, 4012-4018
- 4 Parham, W E, Heberling, J, Wynberg, H J. Am. Chem. Soc., 1955, 77, 1169-1174 Volger, H C, Arens, J F Rec. Trav. Chim. Pays Bass, 1957, 76, 847-859 Schneider, H J, Bagnell, J J, Murdoch, G C J. Org. Chem., 1961, 26, 1987
- 5 Rubinstein, H, Wuerthele, M J. Org. Chem., 1969, 34, 2762-2763 Massingill, J H, Reinecke, M G, Hodgkins, J E J. Org. Chem., 1970, 35, 823-825 Giusti, G, Schembri, G Comptes rendus, 1978, 287, serie C, 213-216 Giusti, G, Ambrosio, M, Faure, R, Schembri, G, Vincent, E J, Feugeas, C. Comptes rendus, 1979, 288, serie C, 441-444 Ramazanov, E. A, Kerimov, F. F., Mursakulov, I G, Moissenkov, A Azerb. Khim. Zh., 1984, 52-54. Nevalainen, V, Pohjala, E Finn. Chem. Lett., 1987, 14, 63-69. Meyer, J C, Schneider, D F. S. Afr. J. Chem., 1988, 41, 127-130 See also the interesting discussion on strategies for dihydro-1,4-oxathiines synthesis Nevalainen, V, Pohjala, E, Malconen, P, Hukkanen, H Acta Chem. Scan., 1990, 44, 591-602
- 6 E J Corey and D Seebach obtain (unpublished results, see Synthesis, 1969, p 17) 2-(1-chlorocyclohexyl)-

206 F. Bellesia et al.

- 1,3-dithiane by reaction of corresponding hydroxyadduct with thionyl chloride
- 7 Eugene, G. US Patent 4,451,280 (1982), C. A., 1984, 101, 67795k
- 8 Jones, R. J., Lukes, G. E., Bashour, J. T. US Patent 2,690,988 (1982), C. A., 1955, 49, 9868d
- 9. Schmitz, E and Eichhorn, I Acetals and Hemiacetals in "The Chemistry of the Ether Linkage", Patai, S. Ed, John Wiley and Son London, 1967, p 329
- 10. Also the parent α-chloroaldehydes are successfully transformed, α-chlorohexanal, for example, gives the ethylendithioacetal derivative in 86% yield. Differently, starting from some α-chloroketones we were not able to isolate the mercaptals, owing to their rapid rearrangement; 3-chloro-2-octanone affords mainly the dihydro-1,4-dithiine derivative (63%).
- 11. Mattay, J.; Dittmer C J. Org. Chem., 1986, 51, 1894-1897.
- 12 On GC monitoring, special care must be applied towards a clean glass-liner, with an injector temperature around 150 °C Some rearrangement of the α-chloromercaptals is, however, sometimes observed.
- 13. On using a large excess of ethyl mercaptan (1 ml), 1,1,2-trithioethoxyhexane is obtained in 66% yield