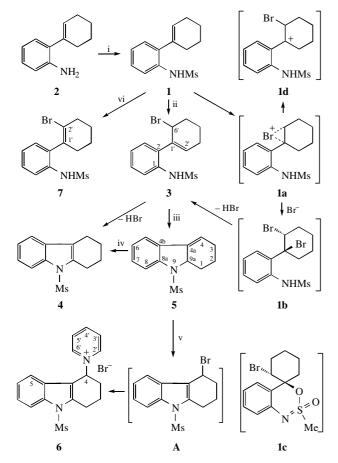
New synthesis of 9-methanesulfonyl-1,2,3,9a-tetrahydro- and 1,2,3,4-tetrahydrocarbazoles from *N*-methanesulfonyl-2-(cyclohex-1-enyl)aniline

Rail R. Gataullin,* Alexander M. Sotnikov, Ildus B. Abdrakhmanov and Genrikh A. Tolstikov


Institute of Organic Chemistry, Ufa Reseach Centre of the Russian Academy of Sciences, 450054 Ufa, Russian Federation. Fax: +7 3472 35 606; e-mail: chemorg@anrb.ru

10.1070/MC2003v013n05ABEH001699

The reaction of N-methanesulfonyl-2-(cyclohex-1-en-1-yl)aniline with Br_2 in the presence of NaHCO₃ in MeCN results in N-methanesulfonyl-2-(6-bromocyclohex-1-en-1-yl)aniline, which was cyclised to 9-methanesulfonyl-1,2,3,4-tetrahydrocarbazole, and the effect of NH₃ leads to 9-methanesulfonyl-1,2,3,9a-tetrahydrocarbazole. The reaction of the latter with molecular bromine in the presence of pyridine results in 1-(9-methanesulfonyl-1,2,3,4-tetrahydro-4-carbazolyl)pyridinium bromide in a good yield.

Tetrahydrocarbazoles are used in the synthesis of alkaloids^{1,2} or for medical purposes.³ The production of these heterocycles was reviewed in the literature.^{4,5} Here we propose a new method for the production of 1,2,3,9a- and 1,2,3,4-tetrahydrocarbazole *N*-mesylates from 2-(cyclohex-1-enyl)aniline *N*-mesylate **1**.

The interaction of amine 2^6 with MsCl in pyridine gives amide 1; its reaction with Br₂ in the presence of NaHCO₃ in MeCN leads to allyl bromide $3.^{\dagger}$ Compound 3 transforms spontaneously to tetrahydrocarbazole $4^{7,8}$ within ~5 days at room temperature practically in a quantitative yield.[‡] The interaction of bromide 3 with NH₃ in MeOH or MeCN yielded tetrahydrocarbazole $5.^{\$,8}$ Earlier,⁸ compound 5 was obtained in a mixture with isomer 4 using tributyltin hydride as a reagent for radical cyclization. This reagent cannot be used for medical purposes because of its toxicity and difficulties in the separation of by-products from a reaction mixture.⁹ The treatment of compound 5 with an HBr solution leads to heterocycle 4. A

Scheme 1 Reagents and conditions: i, MsCl, Py, 20 °C; ii, Br₂, NaHCO₃, MeCN, 20 °C; iii, NH₃/H₂O, MeCN or MeOH; iv, HBr, CH₂Cl₂; v, Br₂, Py, 20 °C; vi, NBS, MeCN or CH₂Cl₂, 20 °C or NBS, NaHCO₃, MeCN or CH₂Cl₂, 20 °C.

quaternary salt of 6^{T} was obtained from tetrahydrocarbazole 5 in the reaction with Br₂ in the presence of Py in MeCN in a 62.5% yield (Scheme 1). Probably, one of the key stages of this process is the formation of halide **A** with an extraordinarily mobile bromine atom (Scheme 1).

Probably, allyl bromide **3** is formed as a result of the *trans*addition of Br_2 to sulfonyl amide **1** leading to dibromide **1b**. Compound **1b** underwent *trans*-elimination according to Zaitsev's

N-*Methanesulfonyl-2-(cyclohex-1-en-1-yl)aniline* **1**. MsCl (1.71 g, 15 mmol) was added dropwise to a solution of compound **2**⁶ (1.73 g, 10 mmol) in Py (20 ml) and stirred. The reaction mixture was allowed to stand for 18 h at room temperature, diluted with 2 ml of H₂O and stirred for 1 h; the solvent was evaporated in a vacuum. The residue was dissolved in 100 ml of CH₂Cl₂, washed with water (2×10 ml), 5% HCl solution, and then with water (10 ml). The organic phase was dried with MgSO₄. The solvent was removed in a vacuum; the residue was recrystallised from EtOH. The yield of sulfonylamide **1** was 2.28 g (93%), mp 89–90 °C (EtOH). Found (%): C, 61.83; H, 6.48; N, 5.22; S, 12.34. Calc. for C₁₃H₁₇NO₂S (%): C, 62.12; H, 6.82; N, 5.57; S, 12.76.

N-*Methanesulfonyl-2-(6-bromocyclohex-1-en-1-yl)aniline* **3**. To a solution of sulfonylamide **1** (0.125 g, 0.5 mmol) and NaHCO₃ (0.42 g, 5 mmol) in 10 ml of MeCN a solution of Br₂ (0.08 g, 0.5 mmol) in 3 ml of the above solution was added with intense stirring. The reaction mixture was stirred for 3 h, the residue was filtered off, the solvent was evaporated in a vacuum. Transparent glassy compound **3** was obtained. The yield was 0.152 g (92%), amorphous mass, R_f 0.4 (C₆H₆–EtOAc, 4:1). ¹H NMR (CDCl₃) δ : 1.70–3.00 (m, 6H, 3CH₂), 3.05 (s, 3H, Me), 4.99–5.03 (m, 1H, H-6'), 5.88 (ddd, 1H, H-2', J₁ 0.8 Hz, J₂ 2.8 Hz, J₃ 4.8 Hz), 6.90 (s, 1H, NH), 7.10–7.14 (m, 2H, Ar), 7.28–7.35 (m, 1H, Ar), 7.68 (dt, 1H, Ar, J₁ 0.8 Hz, J₂ 8.2 Hz). ¹³C NMR (CDCl₃) δ : 16.6, 25.0, 32.7 (3CH₂), 39.5 (Me), 53.5 (CH–Br), 118.0, 123.8, 128.6, 134.0 (C-6, C-4, C-3, C-5), 129.0 (C-2'), 131.4, 134.5, 135.2 (C-2, C-1, C-1'). Found (%): C, 46.93; H, 4.47; Br, 24.02; N, 3.90; S, 9.44. Calc. for C₁₃H₁₆BrNO₂S (%): C, 47.28; H, 4.88; Br, 24.20; N, 4.24; S, 9.71.

9-Methanesulfonyl-1,2,3,4-tetrahydrocarbazole 4.

a. Amide **3** (0.16 g, 0.49 mmol) was left for 96 h at room temperature; resulting compound **4** was dissolved in CH_2Cl_2 (15 ml) and washed with 10% NaHCO₃ (15 ml). The organic phase was dried with Na₂SO₄, and the solvent was evaporated in a vacuum. The residue was subjected to silica gel column chromatography (0.5 g, CH_2Cl_2 as an eluent), which yielded 0.12 g (98%) of carbazole **4**.

b. Ā solution of AcBr (0.03 ml, 0.32 mmol) and (0.05 ml, 0.32 mmol) of H₂O in 1 ml of CH₂Cl₂ was added to a solution of **5** (0.04 g, 0.16 mmol) in 2 ml of CH₂Cl₂. After 72 h, the reaction mixture was diluted with 30 ml of CH₂Cl₂ and washed with 20 ml of a 10% NaHCO₃ solution. The organic phase was dried with Na₂SO₄; the solvent was evaporated in a vacuum. The yield of heterocycle 4 was 0.039 g (97.5%). $R_{\rm f}$ 0.75 (C₆H₆-EtOAc, 9:1). ¹H NMR (CDCl₃) δ : 1.25–2.75 (m, 8H, 4CH₂), 3.00 (s, 3H, Me), 7.15–8.20 (m, 4H, Ar). ¹³C NMR (CDCl₃) δ : C-8, C-5, C-6, C-7), 118.4, 130.2, 135.2, 135.8 (C-4a, C-4b, C-9a, C-8a). Found (%): C, 62.45; H, 6.03; N, 5.21; S, 12.59. Calc. for C₁₃H₁₅NO₂S (%): C, 62.63; H, 6.06; N, 5.62; S, 12.86.

[†] ¹H and ¹³C NMR spectra were recorded on a Bruker AM-300 spectrometer at 300.13 and 75.47 MHz, respectively (internal standard was TMS). IR spectra were recorded on a UR-20 spectrophotometer. Mass spectra were measured on a MX-1320 instrument (70 ev). Thin layer chromatography was carried out using Silufol UV 254 plates (Czech Republic) (CHCl₃ as an eluent).

rule. In this process, the participation of the methane sulfonyl group is possible with the formation, for example, of **1c** because like reactions are known.¹⁰ However, this supposition was not confirmed by the interaction of sulfonyl amide **1** with NBS, where the formation of cyclic **1c** can occur. In this case, only vinyl bromide $7^{\dagger\dagger}$ was obtained, which can be the stabilization product of carbocation **1d**.

The composition and structure of the compounds obtained were determined by NMR spectroscopy (two-dimensional HH-cosy, CH-corr) and JMOD and confirmed by elemental analysis. One-dimensional NOE studies show intramolecular Overhauser interaction between H-4, H-5 and H-4, H-2',6' as well as between H-5 and H-2',6', in the ¹H NMR spectrum of **6**. It was found that the saturation of the H-4 proton gives rise to an increase in the intensity of H-5 and H-2',6' bands by 5.4 and 17.0%, respectively. Similar irradiation of H-5 causes H-2',6' pattern intensity growth by 2.9%. These facts indicate the spatial proximity of the above protons.

a. 30 ml of a 1.5 N NH₃ solution in MeOH was added to 1.0 g (3.03 mmol) of **3** in 20 ml of MeOH. After 24 h, the solvent was evaporated in a vacuum; the residue was dissolved in 100 ml of CH_2Cl_2 and washed with H_2O (50 ml). The organic phase was dried with Na_2SO_4 . The solvent was evaporated in a vacuum. Recrystallization from EtOH yielded 0.6 g (79%) of compound **5**, mp 106–108 °C (EtOH).

b. To a solution of sulfonylamide 1 (0.8 g, 3.1 mmol) and NaHCO₃ (2.52 g, 31 mmol) in 30 ml of MeCN a solution of Br₂ (0.5 g, 3.1 mmol) in 10 ml of the above solution was added with intense stirring. Then, the reaction mixture was stirred for 3 h, and the precipitate was filtered off. This process was carried out two times with the same quantities of amide 1 and bromine. The filtrates were combined and evaporated to a volume of ~20 ml. The addition of 30 ml of an aqueous 25% NH₃ solution resulted in carbazole 5 in 20-30 min, which was filtered off, washed with 10 ml of water and dried in a vacuum. The yield was 1.97 g (85%), mp 106–108 °C. ¹H NMR (CDCl₃) δ: 1.55–2.75 (m, 6H, 3CH₂), 2.90 (s, 3H, Me), 4.35 (dq, 1H, H-9a, J₁ 3.6 Hz, J₂ 10.0 Hz), 5.98 (q, 1H, H-4, J 3.6 Hz), 7.06 (dt, 1H, H-7, J₁ 0.9 Hz, J₂ 7.5 Hz), 7.23 (dd, 1H, H-6, J_1 7.5 Hz, J_2 8.1 Hz), 7.38 (d, 1H, H-8, J 7.5 Hz), 7.51 (dd, 1H, H-5, J_1 0.6 Hz, J_2 8.1 Hz). ¹³C NMR (CDCl₃): 19.9, 24.4, 29.1 (3CH₂), 33.8 (Me), 64.7 (C-9a), 114.3 (C-8), 118.7 (C-6), 120.2 (C-5), 124.0 (C-4), 135.3 (C-7), 129.1, 129.3, 143.2 (C-4b, C-4a, C-8a). Found (%): C, 62.24; H, 5.81; N, 5.43; S, 12.43. Calc. for $C_{13}H_{15}NO_2S$ (%): C, 62.63; H, 6.06; N, 5.62; S, 12.86.

1-(9-Methanesulfonyl-1,2,3,4-tetrahydro-4-carbazolyl)pyridinium bromide 6. 0.96 g (5.9 mmol) of Br₂ in 10 ml of MeCN was added slowly to tetrahydrocarbazole 5 (1.47 g, 5.9 mmol) in 20 ml of MeCN and 1.5 g (18 mmol) of Py with intense stirring. After 1 h, the solvent was evaporated in a vacuum. The residue was dissolved in hot H₂O (10 ml), the solution was decanted and then cooled. The precipitated crystals of the quaternary salt of 7 were filtered off. The yield was 1.5 g (62.5%), mp 129–130 °C. ¹H NMR ([²H₆]DMSO) δ: 1.85–3.37 (m, 6H, 3CH₂), 3.52 (s, 3H, Me), 6.48 (t, 1H, H-4, J 4.7 Hz), 6.98 (d, 1H, H-5, J 7.7 Hz), 7.15 (t, 1H, H-6, J 7.7 Hz), 7.35 (dt, 1H, H-7, J_1 1.0 Hz, J_2 8.4 Hz), 7.95 (d, 1H, H-8, J 8.4 Hz), 8.18 (t, 2H, H-3', H-5', J 7.5 Hz), 8.70 (t, 1H, H-4', J 7.7 Hz), 9.31 (dd, 2H, H-2', H-6', J1 1.0 Hz, J2 5.2 Hz). ¹³C NMR ([²H₆]DMSO) δ: 17.9, 23.4, 30.6 (3CH₂), 41.60 (Me), 63.9 (C-4), 109.9 (C-4a), 113.6 (C-8), 117.9 (C-5), 123.5 (C-6), 124.6 (C-7), 126.3 (C-4b), 128.2 (C-3', C-5'), 135.4 (C-8a), 142.3 (C-9a), 143.9 (C-2', C-6'), 146.3 (C-4'). Found (%): C, 52.91; H, 4.53; Br, 19.27; N, 6.41; S, 7.49. Calc. for C₁₈H₁₉BrN₂O₂S (%): C, 53.08; H, 4.70; Br, 19.62; N, 6.88; S, 7.87.

^{††}N-Methanesulfonyl-2-(2-bromocyclohex-1-en-1-yl)aniline 7. The mixture of mesilate 1 (0.25 g, 1 mmol) with NBS (0.53 g, 3 mmol) in 20 ml of CH₂Cl₂ was stirred in the presence of NaHCO₃ (1 g) for 4 h. Then, the reaction mixture was added to a 12% Na2SO3 solution (10 ml), stirred for 10 min and extracted with 50 ml of CH₂Cl₂. The organic phase was washed with water (10 ml) and dried over Na₂SO₄. The solvent was evaporated in a vacuum; the residue was recrystallised from ethanol, the yield of compound 7 was 0.3 g (91%), mp 148–150 $^{\circ}\text{C}$ (EtOH). IR (ν/cm⁻¹): 490, 514, 530 (C-Br), 3262 (NH). ¹H NMR (CDCl₃) δ: 1.75-1.95 (m, 4H, 2CH₂), 2.25-2.40 (m, 2H, CH₂), 2.60-2.80 (m, 2H, CH₂), 3.10 (s, 3H, SO₂Me), 6.40 (s, 1H, NH), 7.06 (dd, 1H, H-6, J₁ 1.6 Hz, J₂ 7.6 Hz), 7.15–7.35 (m, 2H, H-4, H-5), 7.60 (d, 1H, H-3, J 8.1 Hz). ¹³C NMR (CDCl₃) δ: 22.4, 24.4, 33.5, 36.2 (C-3', C-4', C-5', C-6'), 39.9 (Me), 118.5, 124.8, 128.6, 128.7 (C-3, C-4, C-5, C-6), 131.6, 133.2, 133.6, 134.3 (C-1, C-1', C-2, C-2'). Found (%): C, 46.84; H, 4.45; Br, 23.82; N, 3.81; S, 9.29. Calc. for C13H16BrNO2S (%): C, 47.28; H, 4.88; Br, 24.20; N, 4.24; S, 9.71.

References

- 1 J.-C. Gramain, H.-P. Husso and Y. Troin, J. Org. Chem., 1985, 50, 5517.
- 2 A. G. Mustafin, I. N. Khalilov, I. B. Abdrakhmanov and G. A. Tolstikov, *Khim. Prir. Soedin.*, 1989, 816 [*Chem. Nat. Compd. (Engl. Transl.*), 1989, 693].
- 3 N. I. Andreeva, G. A. Bogdanova, A. I. Bokanov, P. Yu. Ivanov, M. D. Mashkovski and V. I. Shvedov, *Khim.-Farm. Zh.*, 1992, 4 (in Russian).
- 4 G. W. Gribble, J. Chem, Soc., Perkin Trans. 1, 2000, 1045
- 5 Comprehensive Organic Chemistry, eds. D. Barton and W. D. Ollis, Pergamon Press, Oxford–New York–Toronto–Sydney–Paris–Frankfurt, 1979, p. 8.
- 6 R. R. Gataullin, I. S. Afon'kin, A. A. Fatykhov, L. V. Spirikhin and I. B. Abdrakhmanov, *Izv. Akad. Nauk, Ser. Khim.*, 2000, 118 (*Russ. Chem. Bull., Int. Ed.*, 2000, **49**, 122).
- 7 M. Kizil, C. Lampard and J. R. Murphy, *Tetrahedron Lett.*, 1996, **37**, 2511.
- 8 J. A. Murphy, K. A. Scot, R. S. Sinclan and N. Lewis, *Tetrahedron Lett.*, 1997, **38**, 7295.
- 9 B. Patro, M. C. Merret, S. D. Makin, J. A. Murphy and K. E. B. Parkes, *Tetrahedron Lett.*, 2000, **41**, 421.
 - 10 J. I. G. Cadogan, D. K. Cameron, I. Gosney, R. M. Highcock and S. F. Newlands, J. Chem. Soc., Chem. Commun., 1986, 10, 766.

Received: 18th December 2002; Com. 02/2025

^{§ 9-}Methanesulfonyl-1,2,3,9a-tetrahydrocarbazole 5.8