## The effect of solvent on the $\alpha$ -effect: the MeCN-H<sub>2</sub>O solvent system<sup>†</sup>

## Ik-Hwan Um,<sup>a</sup> Young-Min Park<sup>a</sup> and Erwin Buncel\*<sup>b</sup>

<sup>a</sup> Department of Chemistry, Ewha Womans University, Seoul 120-750, Korea

<sup>b</sup> Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada. E-mail: buncele@chem.queensu.ca; Tel: 613-533-2635; Fax: 613-533-6669

Received (in Corvallis, OR, USA) 10th July 2000, Accepted 23rd August 2000 First published as an Advance Article on the web 18th September 2000

The increasing  $\alpha$ -effect observed in MeCN-H<sub>2</sub>O solvent mixtures, which contrasts with the previously found bell-shaped dependence on solvent composition in the DMSO-H<sub>2</sub>O system, is attributed to the differential solvent effect on basicities of the  $\alpha$ - and normal nucleophiles in the former case.

Among the possible causes of the  $\alpha$ -effect, that is the enhanced reactivity of nucleophiles having an unshared pair of electrons adjacent to the nucleophilic centre,<sup>1</sup> the effect of solvent has been particularly controversial.<sup>2–9</sup> As one possible approach to the problem, in 1986 we examined the reactivities of an  $\alpha$ nucleophile, butane-2,3-dione monoximate (Ox-), and a normal nucleophile, p-chlorophenoxide (ClPhO<sup>-</sup>) with p-nitrophenyl acetate (PNPA) in dimethyl sulfoxide (DMSO)-H2O mixtures,7a due to the unique properties of this solvent system.<sup>10</sup> Unexpectedly, we observed a bell-shaped profile for the dependence of the  $\alpha$ -effect on solvent composition, with a maximum at ca. 50 mol % DMSO.7a More recently, we observed a similar bell-shaped  $\alpha$ -effect trend for the corresponding reactions of *p*-nitrophenyl diphenyl phosphinate (PNPDPP).<sup>7b</sup> However, a contrary result was reported for the reaction of PNPA with O-iodosylbenzoate (IBO-) and ClPhO<sup>-</sup>: the  $\alpha$ -effect showed no maximum but decreased steadily as the DMSO content in the reaction medium increased.9 Clearly, more work is called for in order to understand the effect of solvent on the  $\alpha$ -effect.

We have now extended our study to a different solvent system, acetonitrile (MeCN)–H<sub>2</sub>O mixtures, and have found a new type of solvent effect on the  $\alpha$ -effect, namely an increasing  $\alpha$ -effect. A plausible cause of this trend for the reaction of PNPA with Ox<sup>-</sup> and ClPhO<sup>-</sup> (eqn. 1) in MeCN–H<sub>2</sub>O mixtures is herein presented.

 $\begin{array}{l} CH_{3}C(O)OC_{6}H_{4}NO_{2}\text{-}p + Nu^{-} \rightarrow \\ CH_{3}C(O)\text{-}Nu + p\text{-}NO_{2}C_{6}H_{4}O^{-} \\ Nu^{-} = CH_{3}C(O)C(CH_{3})\text{=}NO^{-} (Ox^{-}), \text{ an } \alpha\text{-}nucleophile \\ p\text{-}ClC_{6}H_{4}O^{-} (ClPhO^{-}), \text{ a normal nucleophile} \end{array}$ (1)

Kinetic studies were performed spectrophotometrically under pseudo-first-order conditions with the nucleophile in excess. Pseudo-first-order rate constants ( $k_{obs}$ ) were obtained from linear plots of ln ( $A_{\infty} - A_t$ ) vs. t. Second-order rate constants ( $k^{Ox-}$  and  $k^{CIPhO-}$ ) were calculated from the slope of the linear plot of  $k_{obs}$  vs. nucleophile concentration. As shown in Fig. 1, the magnitude of the  $\alpha$ -effect ( $k^{Ox-}/k^{CIPhO-}$ ) increases as the mol % MeCN in the medium increases, from *ca*. 100 in H<sub>2</sub>O to 500 in 90 mol % MeCN. Recently, we found a decreasing  $\alpha$ effect trend for the reaction of PNPA with hydroxamates in MeCN-H<sub>2</sub>O mixtures, and a shift in equilibrium from an OH acid to an NH acid upon addition of MeCN to H<sub>2</sub>O was attributed as responsible for the observed  $\alpha$ -effect trend.<sup>8b</sup>

Transition-state stabilization is one possible cause of the  $\alpha$ -effect<sup>11</sup> and recently the bell-shaped  $\alpha$ -effect trend observed for

the reaction of PNPA in DMSO–H<sub>2</sub>O mixtures has been explained through a dissection of ground-state and transitionstate contributions.<sup>7c</sup> In that system the basicities of the  $\alpha$ -Nu (Ox<sup>-</sup>) and normal-Nu (ClPhO<sup>-</sup>) exhibit a parallel dependence on the DMSO–H<sub>2</sub>O composition.<sup>7</sup>

The addition of MeCN to  $H_2O$  could influence not only the reaction rate but also the basicity of the anionic nucleophiles. Although the  $pK_a$  values for some phenols, carboxylic acids and amines in pure MeCN are available, 12a,b very few pK<sub>a</sub> data have been reported for MeCN-H<sub>2</sub>O mixtures.<sup>8b</sup> Therefore, we have measured the relative basicity of Ox- and ClPhO- in MeCN-H<sub>2</sub>O mixtures using piperazine as a reference base. One can define  $\Delta p K_a$  as the  $p K_a$  difference between the conjugate acids of the nucleophile (Ox<sup>-</sup> or ClPhO<sup>-</sup>) and piperazine, *i.e.*  $\Delta pK_a$  $pK_a$  of the conjugate acid of the nucleophile (Ox<sup>-</sup> or  $ClPhO^{-}$ ) - pK<sub>a</sub> of the conjugate acid of the reference base (piperazine). Hence, the magnitude of  $\Delta p K_a$  represents the relative basicities of these nucleophiles. We determined  $\Delta p K_a$ values spectrophotometrically using the relationship:  $\Delta p K_a =$ log  $[H\dot{A}]_{eq}[B]_{eq}/[A^-]_{eq}^2$ , in which  $[HA]_{eq}$  represents the equilibrium concentration of the conjugate acid of the nucleophile, and [B]eq and [A-]eq represent the equilibrium concentration of the reference base (piperazine) and the nucleophile, respectively. The  $\Delta p K_a$  values thus determined in MeCN-H<sub>2</sub>O mixtures are summarized in Table 1. As shown in the table, the  $\Delta p K_a$  values of Ox<sup>-</sup> and ClPhO<sup>-</sup> in H<sub>2</sub>O are -0.38 and -0.44, respectively. The pK<sub>a</sub> values of the conjugate acids of  $Ox^{-}$ , ClPhO<sup>-</sup> and piperazine in H<sub>2</sub>O at 25 °C, have been reported to be 9.44,<sup>7b</sup> 9.38<sup>12c</sup> and 9.82,<sup>12c</sup> respectively, *i.e.* the  $\Delta p K_a$  data determined in H<sub>2</sub>O in the present study are identical to the literature values. It is also noted that Ox<sup>-</sup> and ClPhO<sup>-</sup> are less basic than piperazine in H<sub>2</sub>O but appear to be more basic upon addition of MeCN. This is consistent with the report that the increase in  $pK_a$  values upon changing medium from H<sub>2</sub>O to MeCN is more significant for phenols than for amines: the  $pK_a$ enhancements were reported to be 12–17 and 7–8 in  $pK_a$  units for phenols and for the conjugate acids of alicyclic secondary



**Fig. 1** Plots showing the effect of solvent on the α-effect  $(k^{\alpha-Nu/k\text{normal}-Nu})$ for the reaction of PNPA at 25.0 °C:  $k^{\text{Ox}-/k\text{ClPhO}-}$  in MeCN-H<sub>2</sub>O ( $\textcircled{\bullet}$ );  $k^{\text{Ox}-/k\text{ClPhO}-}$  in DMSO-H<sub>2</sub>O ( $\bigcirc$ );<sup>7b</sup>  $k^{\text{IBO}-/k\text{ClPhO}-}$  in DMSO-H<sub>2</sub>O ( $\square$ ).<sup>9</sup>

 $<sup>\</sup>dagger$  Electronic supplementary information (ESI) is available: second-order rate constants for the reaction of *p*-nitrophenyl acetate with butane-2,3-dione monoximate and *p*-chlorophenoxide in MeCN-H<sub>2</sub>O mixtures at 25 °C. See http://www.rsc.org/suppdata/cc/b0/b005610n/

**Table 1** Summary of the relative basicity of the nucleophile ( $\Delta pK_a = pK_a$  of the conjugate acid of the nucleophile— $pK_a$  of the conjugate acid of the reference base, piperazine) in MeCN–H<sub>2</sub>O mixtures of varying compositions at 25.0 ± 0.1 °C<sup>*a*</sup>

| Mol % MeCN | $\Delta p K_a$ (Ox <sup>-</sup> ) | $\Delta p K_a$ (ClPhO <sup>-</sup> ) | $\Delta \Delta p K_{a}{}^{b}$ |
|------------|-----------------------------------|--------------------------------------|-------------------------------|
| 0          | -0.38                             | -0.44                                | 0.06                          |
| 10         | 0.58                              | 0.43                                 | 0.15                          |
| 20         | 1.17                              | 0.90                                 | 0.27                          |
| 30         | 1.80                              | 1.44                                 | 0.36                          |
| 40         | 2.32                              | 1.89                                 | 0.43                          |
| 50         | 2.69                              | 2.19                                 | 0.50                          |
| 60         | 3.43                              | 2.84                                 | 0.59                          |
| 70         | 3.90                              | 3.20                                 | 0.70                          |
| 80         | 4.96                              | 4.18                                 | 0.78                          |
| 90         | 5.85                              | 4.90                                 | 0.95                          |
|            |                                   |                                      | 1 0.00 17                     |

<sup>*a*</sup> The uncertainty in  $\Delta pK_a$  values is estimated to be less than ±0.03 p $K_a$  units. <sup>*b*</sup>  $\Delta \Delta pK_a = \Delta pK_a$  (Ox<sup>-</sup>) –  $\Delta pK_a$  (ClPhO<sup>-</sup>).

amines (*e.g.* piperidine and morpholine), respectively, upon solvent change from  $H_2O$  to MeCN.<sup>12*a,b*</sup>

The difference in the relative basicity between  $Ox^-$  and ClPhO<sup>-</sup> can be expressed as  $\Delta\Delta pK_a$ , *i.e.*  $\Delta\Delta pK_a = \Delta pK_a(Ox^-) - \Delta pK_a$  (ClPhO<sup>-</sup>). As shown in Table 1,  $\Delta\Delta pK_a$  increases as the mol % MeCN in the medium increases, *i.e.*  $Ox^-$  is more basic than ClPhO<sup>-</sup> by 0.06, 0.50 and 0.95  $pK_a$  units in H<sub>2</sub>O, 50 and 90 mol % MeCN, respectively, which contrasts with the situation, noted above, for DMSO-H<sub>2</sub>O mixtures. We



Fig. 2 Plot of log  $k^{Ox-}/k^{CIPhO-}$  vs.  $\Delta\Delta p K_a$  for the reaction of PNPA with Ox<sup>-</sup> and CIPhO<sup>-</sup> in MeCN-H<sub>2</sub>O mixtures at 25.0 ± 0.1 °C.

propose therefore, that the differential solvent effect on the basicity of these nucleophiles is the cause of the contrasting  $\alpha$ -effect trends observed for the reaction of PNPA with Ox<sup>-</sup> and ClPhO<sup>-</sup> in DMSO-H<sub>2</sub>O and in MeCN-H<sub>2</sub>O mixtures.

Furthermore, it is found that a plot of log  $k^{Ox-/k^{ClPhO-}}$  against  $\Delta\Delta pK_a$  is linear with a slope of 0.85 (Fig. 2). This provides evidence that the increase in the  $\Delta\Delta pK_a$  values is almost fully reflected in the increase in the  $\alpha$ -effect for the reaction of PNPA with Ox<sup>-</sup> and ClPhO<sup>-</sup> upon addition of MeCN into the reaction medium.

I. H. U. is grateful for financial support from KOSEF of Korea (1999-2-123-003-5). E. B. thanks NSERC of Canada for a research grant.

## Notes and references

- 1 J. O. Edwards and R. G. Pearson, J. Am. Chem. Soc., 1962, 84, 16.
- Reviews: (a) E. Buncel and S. Hoz, Isr. J. Chem., 1985, 26, 313;
   (b) A. P. Grekov and V. Y. Veselov, Usp. Khim., 1978, 47, 1200;
   (c) N. J. Fina and J. O. Edwards, Int. Chem. Kinet., 1973, 5, 1.
- 3 (a) C. F. Bernasconi and C. Murray, J. Am. Chem. Soc., 1986, 108, 5251;
   (b) D. J. Palling and W. P. Jencks, J. Am. Chem. Soc., 1984, 106, 4869.
- 4 (a) G. Moutiers, E. Guevel, L. Villien and F. Terrier, J. Chem. Soc., Perkin Trans. 2, 1997, 710; (b) F. Terrier, G. Moutiers, L. Xiao, E. Guevel and F. Guir, J. Org. Chem., 1995, 60, 1748.
- 5 (a) I. H. Um, J. S. Lee and S. M. Yuk, J. Org. Chem., 1998, 63, 9152; (b) K. R. Fountain, T. W. Dunkin and K. D. Patal, J. Org. Chem., 1997, 62, 2738; (c) E. Buncel, C. Chuaqui and H. Wilson, J. Am. Chem. Soc., 1982, 104, 4896.
- 6 W. L. Jorgensen, J. Am. Chem. Soc., 1987, 109, 2349.
- 7 (a) E. Buncel and I. H. Um, J. Chem. Soc., Chem. Commun., 1986, 595;
  (b) R. M. Tarkka and E. Buncel, J. Am. Chem. Soc., 1995, 117, 1503; (c)
  I. H. Um and E. Buncel, J. Org. Chem., 2000, 65, 577.
- 8 (a) I. H. Um, D. S. Kwon and G. J. Lee, *Bull. Korean Chem. Soc.*, 1989, 10, 620; (b) I. H. Um, H. W. Yoon, J. S. Lee and H. J. Moon, *J. Org. Chem.*, 1997, 62, 5939.
- 9 R. A. Moss, S. Swarup and S. Ganguli, J. Chem. Soc., Chem. Commun., 1987, 860.
- 10 E. Buncel and H. Wilson, Adv. Phys. Org. Chem., 1977, 14, 133.
- 11 (a) E. Buncel and S. Hoz, *Tetrahedron Lett.*, 1983, **24**, 4777; (b) S. Hoz and E. Buncel, *Tetrahedron Lett.*, 1984, **25**, 3411; (c) K. R. Fountain, D. B. Tad-y, T. W. Paul and M. V. Golynskiy, *J. Org. Chem.*, 1999, **64**, 6547; (d) K. R. Fountain and K. D. Patel, *J. Org. Chem.*, 1997, **62**, 4795.
- 12 (a) M. K. Chantooni and I. M. Kolthoff, J. Phys. Chem., 1976, 80, 1306; (b) J. F. Coetzee and G. R. Padmanabhan, J. Am. Chem. Soc., 1965, 87, 5005; (c) W. P. Jencks and J. Regenstein, in Handbook of Biochemistry. Selected Data for Molecular Biology, ed. H. A. Sober, The Chemical Rubber Co., Cleveland, OH, 1968.