Convenient Syntheses of Thiazoles Incorporated with α -Dehydroamino Acid and Dehydropeptide Structures

Yutaka NAKAMURA, Chung-gi SHIN, * Kazuyuki UMEMURA, † and Juji YOSHIMURA †
Laboratory of Organic Chemistry, Faculty of Technology, Kanagawa University,
Kanagawa-ku, Yokohama 221

⁺College of Science and Engineering, Iwaki Meisei University, Chuodai, Iwaki 970

The convenient syntheses of various thiazole α -dehydro-amino acids, thiazole valine ethyl ester, and their dehydrodiand tripeptides, which are important moieties and segment of micrococcin P_1 and noshiheptide, macrocyclic peptide antibiotics, were first accomplished.

Micrococcin P₁ (1), ¹⁾ obtained from the culture of <u>Bacillus pumilus</u>, is a macrocyclic peptide antibiotic containing poly-thiazole ring and thiazole dehydropeptide segments comprised of 2-(1-aminoalkyl)thiazole-4-carboxylic acid (Thz) residue. The similar Thz dehydropeptide segment is

also present in an antibiotic nosiheptide. Particularly, the peptide (1) has a characteristic skeleton [-L-Thr-(Z)-(\Delta Abu) Thz-D-(Val) Thz-] (\Delta Abu=2-amino-2-butenoic acid residue), as shown in Fig. 1. The interesting structure and bioactivity of 1 prompted us to study the

Fig. 1.

synthesis and correlationship between the structure and the bioactivity. We here demonstrate the convenient syntheses of N, O-diprotected-Thr- (ΔAbu) Thz-OR (2: a; R=Et, b; R=H) and its dehydrotripeptide (4) coupled with H-D-(Val) Thz-OEt (3) as the C-terminal component.

At first, we studied in detail on the synthesis of N-benzyloxycarbonyl (Cbz)-(Δ Abu)Thz-OR (8a; R=Et, 9; R=H). The conversion of Cbz-(Z)- Δ Abu-NH₂ (6), 3) derived by the amidation of Cbz-(Z)- Δ Abu-OH (5) 4) with 28% NH₄OH in the presence of N-hydroxysuccinimide (HOSu) and dicyclohexylcarbodiimide (DCC), 5) with Lawesson's reagent gave the corresponding thioamide (7), 6) according to the method reported by Bredenkamp et al. 7) Subsequently, the

obtained 7 was cyclized with ethyl bromopyruvate in the presence of KHCO $_3$ in dimethoxyethane (DME) at room temperature (r. t.) for 10 min and then with (CF $_3$ CO) $_2$ O (TFAA)-pyridine under Ar gas at 0 °C for 1 h to give Cbz-(Δ Abu)-Thz-OEt (8a). The hydrolysis of 8a with 1 M-LiOH gave the corresponding acid 9. In addition, various kinds of α -dehydroamino acids { Δ AA: b; Δ Val, c; Δ Leu, d; Δ Phe, e; Δ Glu(OMe)} were similarly worked up to give the desired Cbz-(Δ AA)Thz-OEt (8b-e) in 58-91% yield, as summarized in Table 1.

Compound No.	Yield/% ^{a)}	Mp/°Cb)	1 H NMR, δ (CDCl ₃) ring-H -CH= (J _{Hz})
8a	67	127-128	8.01s 6.55q (7.3)
9	85	204-205	8.33s 6.54q (7.0)
8b	70	111-112	8.06s ——
8c	91	88-89	8.01s 6.41d (9.9)
8d	85	101-100	8.06s ——
8e	58	115-116	8.06s 6.52d (7.0)

Table 1. The synthesis of $Cbz-(\Delta AA)$ Thz-OEt (8)

- a) Calculated from the corresponding thioamide.
- b) Colorless needles from ethyl acetate-hexane.

In order to further apply and generalize the above synthetic method, the similar consecutive treatments of N-protected dehydropeptide ester were also tried successfully. That is, to obtain the starting material for the synthesis of 1, the useful one-pot coupling of N-carboxy 2-amino-2-butenoic acid anhydride (Δ Abu·NCA), derived from 5 and SOCl₂, ⁸⁾ with successive N-t-butoxycarbonyl (Boc)-N, O-isopropylidene-Thr-OH in the presence of DCC and dimethylaminopyridine (DMAP) in THF and 28% NH₄OH by the Δ NCA method ⁹⁾ was achieved to give N, O-diprotected-Thr- Δ Abu-NH₂ (10). ¹⁰⁾ The similar conversion of 10 with Lawesson's reagent gave the corresponding thioamide (11), ¹¹⁾ which was cyclized with ethyl bromopyruvate to give the expected 2a. ¹²⁾ Subsequent ester hydrolysis of 2a with 1 M-LiOH gave 2b¹²⁾ as the

C-component, according to Scheme 2.

Furthermore, the similar synthesis of Boc-D-(Val)Thz-OEt (12) was thoroughly examined, because the synthesis of 12 by this method has not been reported. Quite similarly as in the above cases, the successive amidation (76%), thioamidation (84%), and then thiazolation (73%) of Boc-D-Val-OH was carried out to give 12 {Mp 114-115 °C. $\left[\alpha\right]_D^{25}$ 39.28° (c 2.6, MeOH)}, 13) which was in accord with the compound synthesized by Shioiri's method. 14) After N-deprotecting 12 with CF $_3$ COOH by the usual method, the obtained 3 was utilized intact to the next condensation with 2b as shown in Scheme 3.

Fianlly, the obtained thiazole-dehydrodipeptide 2b (0.16 mmol) was coupled with 3 (0.16 mmol) in CH₃CN (10 ml) in the presence of benzotriazol-l-yl-oxy-tris(dimethylamino)phosphonium hexafluorophophate (BOP) (0.16 mmol) and (i-Pr)₂NEt (0.40 mmol) at r. t. for 3 h to give the expected N-Boc-N,O-isopropylidene-L-Thr-(Z)-(Δ Abu)Thz-D-(Val)Thz-OEt (4)¹⁵⁾ almost quantitatively.

$$2b + H_2N^{W} = \begin{cases} BOP \\ (i-Pr)_2NEt \\ CH_3CN \end{cases}$$

$$COOEt$$

$$Scheme 3.$$

References

- 1) P. Brookes, A. T. Fuler, and J. Walker, J. Chem. Soc., 1957, 689.
- 2) C. Pascard, A. Ducruix, J. Lunel, and T. Prange, J. Am. Chem. Soc., 99, 6418 (1977).
- 3) 6: 1 H NMR (CDCl₃): δ 6.51 (q, 1H, J=7.3 Hz), 6.47 (bs, 1H, NH), 5.92

- (bs, 2H, NH₂), 5.15 (s, 2H).
- 4) C. Shin, N. Takahashi, and Y. Yonezawa, Chem. Pharm. Bull., 38, 2020 (1990).
- 5) Y. Yonezawa, N. Takefuji, N. Takahashi, and C. Shin, Bull. Chem. Soc. Jpn., **61**, 2687 (1988).
- 6) 7: 1 H NMR (CDCl₃): δ 7.56 (bs, 2H, NH₂), 6.78 (q, 1H, J=7.0 Hz), 6.46 (bs, 1H, NH), 5.16 (s, 2H).
- 7) M. W. Bredenkamp, C. W. Holzapfel, and W. Van Zyl, Synth. Commun., **20**, 2235 (1990).
- 8) C. Shin, Y. Yonezawa, and T. Yamada, Chem. Pharm. Bull., 32,3934 (1984).
- 9) C. Shin, T. Yamada, and Y. Yonezawa, Tetrahedron Lett., 24, 2175 (1983).
- 10) 10: $\left[\alpha\right]_{D}^{25}$ -42.7° (c 1.08, MeOH). ¹H NMR (DMSO-d₆): δ 9.13 (bs, 1H, NH), 6.91 (bs, 2H, NH₂), 6.43 (q, 1H, J=7.3 Hz), 4.25-3.90 (m, 2H), 1.63 (d, 3H, J=7.3 Hz), 1.52 and 1.51 (s x 2, 6H), 1.39 (s, 9H), 1.33 (d, 3H, J=5.9 Hz).
- 11) 11: $\left[\alpha\right]_{D}^{26}$ -41.5° (c 1.20, MeOH). ¹H NMR (C₆D₆ at 70 °C): δ 8.0-6.8 (m, 4H, NH₂, NH, CH=), 4.33 (dq, 1H, J=6.2 and 8.1 Hz), 3.69 (d, 1H, J=8.1 Hz), 1.66 and 1.60 (s x 2, 6H), 1.50 (d, 3H, J=7.7 Hz), 1.32 (s, 9H), 1.25 (d, 3H, J=6.2 Hz).
- 12) 2a: $\left[\alpha\right]_{D}^{24}$ -9.5° (c 1.0, MeOH). 1 H NMR (CDCl $_{3}$): δ 8.04 (s, 1H, Thz-H), 7.84 (bs, 1H, J=7.3 Hz), 4.38 (q, 2H, J=7.0 Hz), 4.34 (dq, 1H, J=7.3 and 7.7 Hz), 4.01 (d, 1H, J=7.7 Hz), 1.89 (d, 3H, J=7.3 Hz), 1.67 (s, 6H), 1.45 (s, 9H), 1.45 (t, 3H, J=7.0 Hz), 1.35 (d, 3H, J=7.3 Hz). 2b: $\left[\alpha\right]_{D}^{25}$ -8.3° (c 0.75, MeOH). 1 H NMR (CDCl $_{3}$): δ 8.54 (bs, 1H. COOH), 8.11 (s, 1H, Thz-H), 8.00 (bs, 1H. NH), 6.57 (q, 1H. J=7.5 Hz), 4.38 (dq, 1H, J=6.4 and 7.5 Hz), 4.05 (d, 1H, J=7.5 Hz), 1.88 (d, 3H, J=7.0 Hz), 1.65 (s, 6H), 1.49 (d, 3H, J=6.4 Hz), 1.46 (s, 9H). Found: C, 53.46; H, 6.45; N, 9.60%. Calcd for $C_{19}^{H}_{27}^{N}_{3}^{O}_{6}^{S}$: C, 53.63; H, 6.40; N, 9.88%.
- 13) 12: ¹H NMR (CDCl₃): δ 8.07 (s, 1H, Thz-H), 5.30 (bd, 1H, NH), 4.89 (dd, 1H, J=5.3 and 8.8 Hz), 4.42 (q, 2H, J=8.8 Hz), 2.45 (m, 1H), 1.44 (s, 9H), 1.40 (t, 3H, J=7.0 Hz), 0.98 and 0.91 (d x 2, 6H, J=6.6 and 6.8 Hz).
- 14) Y. Hamada, M. Shibata, T. Sugiura, S. Kato, and T. Shioiri, J. Org. Chem., 52, 1252 (1987).
- 15) 4: $\left[\alpha\right]_{D}^{25}$ -36.3° (c 0.84, MeOH). 1 H NMR (CDCl₃): δ 8.08 (s, 2H, Thz-H and NH), 8.03 (bd, 1H, NH), 8.02 (s, 1H, Thz-H), 6.61 (q, 1H, J=7.3 Hz), 5.33 (dd, 1H, J=6.6 and 9.0 Hz), 4.53-4.28 (m, 3H), 4.11 (d, 1H, J=7.3 Hz), 2.58 (m, 1H), 1.89 (d, 3H, J=7.3 Hz), 1.65 and 1.64 (s x 2, 6H), 1.47 (t, 3H, J=7.0 Hz), 1.43 (s, 9H), 1.35 (d, 3H, J=7.0 Hz), 1.03 and 1.00 (d x 2, 6H, J=6.6 and 6.8 Hz). Found: C, 55.09; H, 6.68; N, 10.77%. Calcd for $C_{29}H_{41}N_{5}O_{7}S$: C, 54.78; H, 6.50; N, 11.02%.

(Received February 15, 1992)