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Structure–activity relationships for
2-anilino-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones as

inhibitors of the cellular checkpoint kinase Wee1
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Abstract—A series of 2-anilino-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones were synthesized and evaluated for their inhibitory
properties against the non-receptor kinase c-Src and the G2/M checkpoint kinase Wee1. Overall, the compounds were 10–100-fold
more potent inhibitors of c-Src than Wee1, and variation of substituents on the 6-phenyl ring did not markedly alter this preference.
Solubilizing substituents off the 2-anilino ring in many cases increased Wee1 activity, thus lowering this preference to about 10-fold.
5-Alkyl substituted analogs were generally Wee1 selective, but at the expense of absolute potency.
� 2005 Elsevier Ltd. All rights reserved.
The general class of 2-anilino-6-phenylpyrido[2,3-d]pyr-
imidin-7(8H)-ones are broad-spectrum inhibitors of a
number of tyrosine kinase enzymes, including the recep-
tor kinases EGFr (erbB1), PDGFr, FGFr, and non-
receptor kinases such as c-Src. For example, compound
1 is reported1 to have IC50 values for inhibition of sub-
strate phosphorylation by isolated enzymes as follows;
PDGFr = 79 nM, bFGFr = 43 nM, EGFr = 44 nM,
and c-Src = 9 nM, with some other analogs being
equally potent.2 The breadth of this �pan-kinase� activity
is likely due to their action as competitive inhibitors at
the ATP site,3 where they are proposed4 to form a key
bidentate H-bond between the 3-aza and 2-NH atoms
and a methionine residue (Met 341 in c-Src). Compound
1 also inhibited the formation of microcapillaries on
Matrigel-coated plastic at 10 nM concentrations, and
generated dose dependent inhibition of angiogenesis in
vivo in mice when given orally at doses between 1 and
25 mg/kg.5
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We identified 1 in a mass screen as a potent inhibitor
(IC50 = 0.16 lM) of the Wee1 kinase.6 This enzyme is in-
volved in the maintenance of the G2/M checkpoint in
the cell cycle, through its inhibitory phosphorylation
of Cdc2 on Tyr-15. Normal cells arrest at both the
G1/S and G2/M checkpoints in response to DNA dam-
age caused by cytotoxic drugs or radiation, to allow time
to either repair the DNA or to activate cell death path-
ways if this is not possible.7,8 In contrast, many cancer
cells lack a functional p53 gene, which means that the
G1/S checkpoint is not functional.8 Inhibitors of
Wee1, via their abrogation of the G2/M checkpoint,
were hypothesized to preferentially enhance the cyto-
toxic effects of DNA damaging agents on p53-negative
cells. This was confirmed for 1, which inhibited radia-
tion-induced phosphorylation of Cdc2 at Tyr-15, and
enhanced the effect of radiation selectively in p53-nega-
tive cells.6,9

In this paper we report the synthesis of a number of ana-
logs of 1, and the first SAR study of Wee1 inhibitors. A
main aim of the study was to improve their selectivity
for inhibition of Wee1 over c-Src, since inhibition of
the latter has so many other cellular effects. Previous
studies with related compounds showed that the selecti-
vity for different enzymes can be significantly altered by
the substituent pattern on the pendant 6-phenyl ring.
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For example, in the related urea series, the 2 0,6 0-dichloro
analog (2) is a potent inhibitor of both PDGFr (IC50

1.1 lM) and FGFr (IC50 0.13 lM), whereas the 3 0,5 0-
diOMe analog (3) is selective for FGFr (IC50s > 50
and 0.06 lM, respectively).10 In the analogous napthyr-
idine series,11 unsubstituted 3-phenyl analogs were non-
specific inhibitors of c-Src, FGFr and PDGFr tyrosine
kinases, whereas 2 0,6 0-dichloro analogs were most effec-
tive against c-Src and FGFr, and 3 0,5 0-dimethoxy deriv-
atives showed high selectivity for FGFr alone (e.g.,
IC50s 0.03 and >50 lM for 4 against FGFr and c-Src,
respectively).
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Most of the compounds were prepared from the
known12 2-(methylthio)pyrido[2,3-d]pyrimidin-7(1H)-
one (5) (Method 1, Scheme 1), or from 4-(methyl-
amino)-2-(methylsulfanyl)-5-pyrimidinecarbaldehyde (6)
by reaction with various phenylacetonitriles, followed
by oxidation of the methylsulfanyl group and subse-
quent displacement with anilines13 (Method 2). In Meth-
od 1, different bases were used in the Suzuki coupling,
depending on the reactivity of the arylboronic acid (i.
K2CO3; ii. Ba(OH)2; iii. CsF).

Further derivatization of some substituted 6-phenyl
compounds, via standard synthetic methods, gave addi-
tional analogs (see footnotes to Table 1). Esters 48–50
were prepared from the acid 51 via activation with
SOCl2 and coupling with the appropriate alcohols
(Method 3). The 5-methyl analogs (Table 3) were pre-
pared as shown in Scheme 2 (Method 4). All compounds
had satisfactory analyses, or MS/HPLC purity >95%.
IC50 values for inhibition of Wee16 and c-Src1 were
determined by the published methods.

Table 1 gives data on the Wee1 and c-Src inhibitory
properties of a wide range of phenyl-substituted com-
pounds. The initial study was a comparison of various
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Scheme 1. Reagents: (i) NBS/DMF; (ii) Me2SO4/Cs2CO3; (iii) m-

CPBA, then excess PhNH2; (iv) ArB(OH)2/Pd(PPh3)4/AsPh3.
2 0,6 0-disubstituents against the 2 0,6 0-dichloro analog 7,
which is a moderate Wee1 inhibitor (IC50 2.6 lM) but
a much more potent c-Src inhibitor (IC50 0.024 lM).
A crystal structure of the related 2 0,6 0-dichloro urea ana-
log 2, which is substantially more potent than the unsub-
stituted compound, shows the phenyl ring essentially
orthogonal to the chromophore.10 Compounds 7–13 ex-
plore a range of symmetrically substituted compounds
using substituents of varied electronic and steric proper-
ties. There were no consistent correlations between
Wee1 or c-Src potencies, or Wee1/c-Src selectivity, and
various measures of substituent electronic (r), lipophilic
(p) or steric (MR) properties. Extending this analysis to
include the unsymmetrical 2 0,6 0-disubstituted com-
pounds (14–20) did not change the result.

Using the 2 0,6 0-dichloro motif to anchor the phenyl ring
orthogonal to the chromophore, compounds 21–41 ex-
plored SAR for a variety of additional substituents in
the 3 0- and 4 0-positions. The 2 0,6 0-dichloro motif was
chosen for ease of synthesis, and also because it was
one of the most active. A few examples using the 2 0,6 0-
diMe motif were also prepared, but these compounds
were generally less active; compare 39, 41 (Table 1)
and 1, 46 (Table 2). There were cases of improved com-
parative activity (10/7 and 40/38), but these pairs
showed much lower absolute potencies. Calculations
with the 3 0- and 4 0-substituted 2 0,6 0-dichloro analogs
again showed no correlations between kinase potency
or selectivity and measures of substituent lipophilic,
electronic, or steric properties. In the 3 0-substituted ser-
ies (21–30), the 3-OH compound 27 stood out as being
35-fold more potent than the next most active com-
pound against Wee1 (although it was also 10-fold more
potent as a c-Src inhibitor as well). The remarkable con-
trast with the 3-CH2OH and 3 0-OMe analogs 23 and 28
suggests the likely existence of a geometrically con-
strained H-bond acceptor in this region of the protein.
A similar but less striking pattern is shown by the
4 0-OH and 4 0-OMe analogs 32 and 34. This suggests
interaction with the same binding site, which is better
positioned for the 3 0- than the 4 0-OH group.

Despite these exceptions, varying the substituents on the
6-phenyl ring did not generally significantly alter the
selectivity of the compounds for Wee1 over c-Src. This



Table 1. 2-Anilino-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones: variation of 6-phenyl substituents

N

N N
Me

ON
H

Z3'
4'

5'
2'

6'

No. Z Mp (�C) Ma IC50 (lM)b

Wee1 c-Src

7 2 0,6 0-DiCl Ref. 1 2.6 0.024

8 2 0,6 0-DiF 267–269 1ii 9.7 0.066

9 2 0,6 0-DiBr 230–232 2 0.41 0.047

10 2 0,6 0-DiMe 207–209 1i 0.99 0.014

11 2 0,6 0-DiCF3 246 2 41 8.1

12 2 0,6 0-DiOH 269–270 On 13c 27 0.72

13 2 0,6 0-DiOMe 264–266 1iii >50 0.98

14 2 0-Cl, 6 0-F 278–280 2 2.4 0.043

15 2 0-Cl, 6 0-Me 218–220 2 1.9 0.012

16 2 0-Cl, 6 0-CF3 234–236 2 >50 0.21

17 2 0-Cl, 6 0-OMe 235–237 1ii 3.4 0.12

18 2 0-Cl, 6 0-OH 268–270 On 17c 1.5 0.022

19 2 0-Me, 60-Br 224–228 On 9d 4.5 0.058

20 2 0-OMe, 60-OH 251 On 13e 11 0.05

21 2 0,6 0-DiCl, 30-Cl 232 2 >50 0.27

22 2 0,6 0-DiCl, 30-Me 243–244 2 50 2.8

23 2,6 0-DiCl, 30-CH2OH 250–252 2 3.5 0.039

24 2 0,6 0-DiCl, 30-CH2NH2 205–215 On 23f 31 0.062

25 2,6 0-DiCl, 30-CO2H 326–330 On 23g 3.2 0.28

26 2 0,6 0-DiCl, 30-CONH2 180–190 On 25h 8.6 0.13

27 2 0,6 0-DiCl, 30-OH 300–304 On 28i 0.074 0.009

28 2 0,6 0-DiCl, 30-OMe 268–270 2 >50 0.54

29 2 0,6 0-DiCl, 30-NH2 284 On 30j 2.6 0.09

30 2 0,6 0-DiCl, 30-NHAc 160–163 2 >50 0.78

31 2 0,6 0-DiCl, 40-Cl 239–241 2 8.6 0.33

32 2 0,6 0-DiCl, 40-OH 318–321 On 34c 0.22 0.073

33 2 0,6 0-DiMe, 40-OH 286–288 On 35c 0.58 0.017

34 2 0,6 0-DiCl, 40-OMe 244–246 2 >50 6.5

35 2 0,6 0-DiMe, 40-OMe 234 1i >50 0.25

36 2 0,6 0-DiCl, 40-NH2 281–283 On 37j 3.7 0.27

37 2 0,6 0-DiCl, 4-NHAc 313–315 2 36 1.5

38 2 0,6 0-DiCl, 30,5 0-diOMe 323–325 2 >50 >50

39 2 0,6 0-DiCl, 30,5 0-diOH 318–321 On 38k 0.14 0.011

40 2 0,6 0-DiMe, 30,50-diOMe 255–258 2 33 39

41 2 0,6 0-DiMe, 30,50-diOH 288–291 On 40k 1.0 0.11

aMethod of synthesis; see text.
b IC50 values were determined for both Wee16 and c-Src1 inhibition by the published methods cited. Values are the average of two or more

independent determinations, with a variance of ±20%.
c 6 equiv BBr3/DCM/reflux/16 h.
d (CH3)4Sn/Pd(PPh3)4/DMF/100 �C/3 h.
e 3 equiv BBr3/DCM/rt/2 h.
f (i) PPh3Cl2/Et3N/DCM/2 h, (ii) NH3(g)/i-PrOH/110 �C/18 h.
g Jones reagent/acetone/2 h.
h (i) SOCl2/cat. DMF/reflux/3 h, (ii) c. NH3/THF.
i PyridineÆHCl/200 �C/1 h.
j Concd HCl/reflux/1 h.
k PyridineÆHCl/200 �C/10 min.
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is evident from the overall relationship between these
two activities for the compounds of Table 1 for which
both IC50 values were available
log IC50 ðWee1Þ ¼ 0:75ð�0:14Þ log IC50 ðSrcÞ
þ 1:27ð�0:14Þ
½n ¼ 26; r ¼ 0:74; F ¼ 30�:
Work in related series of compounds10,11 has shown that
solubilizing substituents off the 2-anilino ring in many
cases provide substantial increases in potency, and this
was explored in the 6-phenylpyrido[2,3-d]pyrimidin-
7(8H)-ones with the compounds of Table 2 (ortho- and
meta- X-substituted compounds were also evaluated,
but were less active than the para-substituted com-
pounds reported; data not shown). Compounds 42–45
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Scheme 2. Reagents: (i) MeMgBr/THF; (ii) MnO2; (iii) (EtO)2-

P(O)CH2CO2Et/NaH; (iv) NBS/(PhCO2)2; (v) ArB(OH)2/Pd(PPh3)4/

AsPh3/Ba(OH)2; (vi) m-CPBA, then Ar 0NH2.

Table 3. 2-Anilino-5-methyl-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones

N

N N
Me

ON
H

Z
2'

3'
4'

5'
6'

Me

X
5

No. X Z Mp (�C) Ma IC50 (lM)b

Wee1 c-Src

58 H H 250–253 4 >50 >50

59 H 2 0-Cl 258–262 4 0.41 >50

60 O(CH2)2NEt2 2 0-Cl 182–184 4 0.55 >50

61 H 2,6 0-DiMe 215–217 4 1.2 15

62 O(CH2)2NEt2 2 0,6 0-DiMe 155–159 4 0.54 0.36

a,b As for Table 1.
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use neutral amide side chains, and were about fivefold
more potent than 7 against Wee1 with little change in
c-Src potency, improving the ratio from about 100-fold
to only about 10-fold in favor of c-Src. Compounds 1,
46–50 explored cationic side chains of varying pKa,
but while in general these showed increased Wee1 po-
tency, c-Src activity also increased. The anionic analogs
51–53 showed better ratios, with the butyric acid 51
being equally potent toward both Wee1 and c-Src in
the enzyme inhibition assay. Compounds 54–57 incor-
porate a cationic or anionic side chain with the most po-
tent of the 6-phenyl ring substitution patterns, but
comparison of 54, 55 with 27, and 56, 57 with 33, sug-
gests the motifs are not additive.

Finally, in Table 3 we explore a limited series of 5-
methyl substituted compounds. Difficulties of synthesis
precluded the preparation of all but a few analogs
(2 0,6 0-dichloro compounds could not be obtained), but
for the 2 0-Cl series that could be prepared the 5-methyl
group clearly distinguishes in favor of Wee1 over
Table 2. 2-Anilino-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones: solubilizing s

N

NN
H

X

No. X Z

42 CH2CONH2 H

43 (CH2)2CONH2 H

44 (CH2)4CONH2 H

45 OCH2CONH2 H

1 O(CH2)2NEt2 H

46c O(CH2)2NEt2 Hc

47 O(CH2)3CO2H H

48 (CH2)3CO2(CH2)2Nmorph H

49 (CH2)3CO2(CH2)2NMe2 H

50 (CH2)3CO2(CH2)2Npip H

51 (CH2)3CO2H H

52 CH2CH(NH2)CO2H H

53 (CH2)3tetrazole H

54 O(CH2)2NEt2 3 0-OH
55 O(CH2)3CO2H 3 0-OH
56 O(CH2)2NEt2 4 0-OH
57 O(CH2)3CO2H 4 0-OH

a,b As for Table 1.
c 20,60-Dimethyl derivative.
c-Src. This is less clear in the 2 0,6 0-diMe series, but even
the cationic analog 62 has a Wee1/c-Src IC50 ratio of
1.5-fold, compared with 43-fold for the corresponding
5-H analog 46.

The primary finding from this study is that variation of
the substituents on the 6-phenyl ring does not signifi-
cantly improve the selectivity of the compounds for
Wee1 over c-Src, which was a primary goal. Solubilizing
substituents off the 2-anilino ring in many cases did pro-
vide substantial increases in potency for Wee1, with an
overall improvement of the Wee1/c-Src IC50 ratio to
about 10-fold, but few compounds were better than this.
5-Alkyl substitution did improve the ratio, but at the ex-
ubstituents

N
Me

O

Z3'
4'

5'

Cl

Cl

Ma Mp �C IC50 (lM)b

Wee1 c-Src

2 268–270 0.12 0.013

2 141–144 0.19 0.030

2 188–193 0.26 0.028

2 199–201 0.25 0.014

Ref. 1 0.165 0.007

2 122–125 0.99 0.023

2 146–149 0.086 0.004

3 152 0.095 0.004

3 143–146 0.124 0.007

3 147–149 0.142 0.011

2 231–237 0.032 0.032

2 242 0.09 0.009

2 178 0.069 0.025

2 180–186 0.15 0.006

2 185–192 0.04 0.099

2 220–228 0.08 0.008

2 210–212 0.04 0.006
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pense of overall lower potency. Selected representative
analogs also showed potent inhibition of other kinases,
including Chk1, PhosK, and PKC (data not shown).
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