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Conformation–activity relationship on novel
4-pyridylmethylthio derivatives with antiangiogenic activity
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Abstract—We found 4-pyridylmethylthio derivative 1 to be very effective in using antiangiogenesis activity to prevent proliferation
of HUVECs (Human Umbilical Vein Endothelial Cells), which was induced by vascular endothelial growth factor (VEGF). Com-
pound 1 was equally effective in inhibiting VEGF receptor2 tyrosine kinase (KDR, IC50 = 26 nM). We deduced that the inhibition
was the result of binding the catalytic domain of VEGF receptor2 tyrosine kinase in a similar fashion to both phthalazine derivative
PTK787 2 and anthranylamide derivative AAL993 3. In this report, we will describe the conformational analyses, from ab initio MO
calculation and X-ray crystallographic analyses, of compound 1 and the analogs, which include non-active 9, all in comparison with
2 and 3. The conformation–activity relationships suggest that a nonbonded intramolecular interaction between the sulfur and the
carbonyl oxygen of 1 was very important in inhibiting KDR.
� 2008 Elsevier Ltd. All rights reserved.
Stimuli to the VEGF/VEGF-receptor signaling pathway
can result in angiogenesis, which is closely linked to the
development of cancer, rheumatoid arthritis and aged

macular degeneration. The clinical studies of AvastinTM,
a humanized anti-VEGF monoclonal antibody, revealed
that the VEGF/VEGF-receptor signaling inhibitor
could be used in treating cancer.1 A variety of VEGF
receptor tyrosine kinase (RTK) inhibitors of low molec-
ular weight have been developed in clinical trials. These
VEGF-RTK inhibitors can be classified into chemical
structure classes such as indolinones,2 quinazolines,3

and phthalazines.4 PTK787 2 is a phthalazine, which
has been under PIII clinical development for the treat-
ment of cancer.5 An anthranylamide derivative
AAL993 36 is a selective VEGF-RTK inhibitor of the
same chemical class as phthalazines.7 This compound
was identified by a database search with a substructure
query for 4 which listed phthalazines with an intramo-
lecular hydrogen bond.8 Although 4-pyridylmethylthio
derivative 1 does not have an intramolecular hydrogen
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bond, it has a structure that is similar, it is a member
of the same chemical class as phthalazines and may be
effective.9 Therefore, we synthesized it and found it to
have potent inhibitory activities in a cell-based angio-
genesis assay (IC50 = 250 nM) and in a KDR assay
(IC50 = 26 nM) (Table 1 and Fig. 1).

We have previously reported the syntheses and the bio-
logical activities of compounds 1 and 5–7 elsewhere.9

This time, in addition to compounds 1 and 5–7 reported
previously, compound 9 was obtained from 8 by revers-
ing the positions of sulfur in 7 (Scheme 1).10 Their bio-
logical activities are described in Table 1. The 4-
pyridylmethylamino derivative 5 had potent inhibitory
activities with KDR (IC50 = 20 nM) as did the 4-pyridyl-
ethyl derivative 6b (IC50 = 200 nM).11 Compounds 1
and 7, which are also members of the 4-pyridylmethyl-
thio group, showed similar potency against KDR. On
the other hand, neither compound 8 nor 9 displayed
such potent activity (Table 1). From these data, we be-
lieved that the stable conformations by the intramolecu-
lar nonbonded interaction of 1, 3, and compounds 5–7
were similar to those of phthalazine PTK787 2 (Fig. 2).

Compounds V–IX in Figure 3 are the models of 5–9,
respectively, used for the MO calculation at the RHF/
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Table 1. Inhibitory activities (IC50 value, nM)

Compound KDRa HUVECs

proliferationb

1 26 250

2 37 (Ref. 5) 6 (Ref. 5)

3 23 (Ref. 6) N.D.

5 20 (Ref. 8) N.D.

6b 200 (Ref. 11) N.D.

7 46 530

8 >1000 (54% inhibit. at 10lM) >2000

9 >1000 (0% inhibit. at 10lM) N.D.

a IC50 of a KDR assay was measured with a kinase assay development

kit purchased from CARNA BIOSCIENCE Co. Ltd.12

b IC50 of HUVECs proliferation inhibitory assay was determined by

the method described in Ref. 13.
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Figure 1. Structures of 4-pyridylmethylthio derivative 1, PTK787 2,

and anthranylamides 3, 4.
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Figure 2. Structures of compounds 5–9.
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6-31G* level. Relative potential energies (DE) to the
conformation (v = 0�) of the compound were obtained
for structures whose torsional angle, C1–C2–C3–Y was
rotated at +30� intervals from 0� to 180� (Fig. 3).
Figure 4 shows the energy profiles.14 The most stable
conformations of compounds V and VI were con-
formers C (v = 30�), being structurally similar to
PTK787 (2), which would be caused by an intramo-
lecular hydrogen bond between either NH or CH2

and carbonyl oxygen. In compound VII, although
conformer C (v = 30�) was again a major component
in the conformation, conformer B (v = 180�) was
slightly more stable (5 kJ/mol). In compounds VIII
and IX, conformer B (v = 180�) and conformer D
(v = 150�) were found to be the most stable confor-
mations. These results suggest that the stable confor-
mations of compounds 5 and 6 are different from
those of 8 and 9, and that compound 7 has two sta-
ble conformers.
We assumed a relevance between the stable conforma-
tion and the inhibition of KDR among compounds 1–
3 and 5–9, and this was consistent with the results of
ab initio MO calculations. We, then, carried out X-ray
crystallographic analyses of compounds 1 (monohy-
drate) and 9.15 Analysis of compound 1 (monohy-
drate) revealed that the torsion angle of C1–C2–C3–
O moiety (v) was 35�, and that the S–O distance
(2.82 Å) was shorter than the sum (3.32 Å) of van
der Waals radii of sulfur and oxygen,16 thus suggest-
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Figure 4. Relative potential energy (DE) versus torsion angle (v) of
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Table 2. Summary of X-ray crystallographic analyses of compounds 1

(monohydrate) and 9

1 (monohydrate) 9

Formula C18H16ClN3O2S C19H15ClN2OS

Formula weight 373.86 354.85

Crystal color, habit Brown, platelet Yellow, prism

Crystal system Triclinic Monoclinic

Space group P�1 (#2) P21/c (#14)

Lattice constants

a (Å) 7.561(5) 9.655(5)

b (Å) 9.586(6) 12.530(4)

c (Å) 13.363(10) 14.799(7)

a (�) 98.73(3)

b (�) 95.74(3) 102.832(20)

c (�) 110.10(2)

Volume (Å3) 886.8(10) 1745.6(13)

Z 2 4

Density (calcd) (g/cm3) 1.400 1.350

Residual R, Rw 0.0425, 0.0499 0.0360, 0.1123
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ing an intramolecular nonbonded S–O interaction.17

Compound 1 had a conformation similar to PTK787
2 and AAL993 3 with the same interaction. On the
other hand, such S–O close contact was not observed
in compound 9 (the torsion angle of the C1–C2–C3–S:
108�, S–O distance 3.79 Å). Thus the most stable con-
formation of 9 would be different from that of 1.
These results suggest that a conformation, which
forms a pseudobicyclic ring through intramolecular
nonbonded interaction,18 such as hydrogen bonding
or nonbonded S–O interaction, is necessary to exert
inhibition of KDR (Fig. 5).

In summary, we analyzed novel 4-pyridylmethyl deriv-
atives 1–9 and evaluated their KDR inhibitory activi-
ties to investigate the relationship with conformation–
activity. The IC50 of 1 and 7 was approximately 10�7

nM, which is comparable to anthranylamide deriva-
tives 2 or 5. The conformational analysis of the model
und 1 (monohydrate) (S–O; 2.82 Å, v = 35�); right, ORTEP drawing of
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compounds V–IX of 4-pyridylmethyl derivatives 5–9
suggests that the major conformations of the active
derivatives 5–7, apparently shaped pseudobicyclic rings
through intramolecular hydrogen bonding/S–O non-
bonded interaction, were similar to each other, and
thus to PTK787 2. This conformation was found in
the crystal of 1 monohydrate, in which an intramolec-
ular nonbonded S–O interaction was indicated. X-ray
crystallography of an inactive 9 crystal revealed that
the conformation was very different from that of 1.
An intramolecular nonbonded interaction, such as
hydrogen bonding or S–O interaction, is a critical
structural property for compounds in this class for
the inhibition of KDR (Table 2).
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