

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 18 (2008) 2939-2943

Conformation—activity relationship on novel **4-pyridylmethylthio derivatives with antiangiogenic activity**

Takahiro Honda,^{a,b,*} Hisashi Tajima,^a Yasushi Kaneko,^b Masakazu Ban,^{a,b} Takaaki Inaba,^a Yuriko Takeno,^a Kazuyoshi Okamoto^a and Hiroyuki Aono^{a,b}

^aResearch and Development Center, Santen Pharmaceutical Co. Ltd, 8916-16 Takayama-cho Ikoma-shi, Nara 630-0101, Japan ^bGraduate School of Materials Sciences, Nara Institute of Science and Technology,

8916-5 Takayama-cho Ikoma-shi, Nara 630-0192, Japan

Received 18 January 2008; revised 6 March 2008; accepted 25 March 2008 Available online 29 March 2008

Abstract—We found 4-pyridylmethylthio derivative 1 to be very effective in using antiangiogenesis activity to prevent proliferation of HUVECs (Human Umbilical Vein Endothelial Cells), which was induced by vascular endothelial growth factor (VEGF). Compound 1 was equally effective in inhibiting VEGF receptor2 tyrosine kinase (KDR, $IC_{50} = 26$ nM). We deduced that the inhibition was the result of binding the catalytic domain of VEGF receptor2 tyrosine kinase in a similar fashion to both phthalazine derivative PTK787 2 and anthranylamide derivative AAL993 3. In this report, we will describe the conformational analyses, from ab initio MO calculation and X-ray crystallographic analyses, of compound 1 and the analogs, which include non-active 9, all in comparison with 2 and 3. The conformation–activity relationships suggest that a nonbonded intramolecular interaction between the sulfur and the carbonyl oxygen of 1 was very important in inhibiting KDR. © 2008 Elsevier Ltd. All rights reserved.

Stimuli to the VEGF/VEGF-receptor signaling pathway can result in angiogenesis, which is closely linked to the development of cancer, rheumatoid arthritis and aged macular degeneration. The clinical studies of AvastinTM. a humanized anti-VEGF monoclonal antibody, revealed that the VEGF/VEGF-receptor signaling inhibitor could be used in treating cancer.¹ A variety of VEGF receptor tyrosine kinase (RTK) inhibitors of low molecular weight have been developed in clinical trials. These VEGF-RTK inhibitors can be classified into chemical structure classes such as indolinones,² quinazolines,³ and phthalazines.⁴ PTK787 2 is a phthalazine, which has been under PIII clinical development for the treatment of cancer.⁵ An anthranylamide derivative AAL993 3⁶ is a selective VEGF-RTK inhibitor of the same chemical class as phthalazines.⁷ This compound was identified by a database search with a substructure query for 4 which listed phthalazines with an intramolecular hydrogen bond.⁸ Although 4-pyridylmethylthio derivative 1 does not have an intramolecular hydrogen bond, it has a structure that is similar, it is a member of the same chemical class as phthalazines and may be effective.⁹ Therefore, we synthesized it and found it to have potent inhibitory activities in a cell-based angiogenesis assay ($IC_{50} = 250 \text{ nM}$) and in a KDR assay ($IC_{50} = 26 \text{ nM}$) (Table 1 and Fig. 1).

We have previously reported the syntheses and the biological activities of compounds 1 and 5–7 elsewhere.⁹ This time, in addition to compounds 1 and 5–7 reported previously, compound 9 was obtained from 8 by reversing the positions of sulfur in 7 (Scheme 1).¹⁰ Their biological activities are described in Table 1. The 4pyridylmethylamino derivative 5 had potent inhibitory activities with KDR (IC₅₀ = 20 nM) as did the 4-pyridylethyl derivative 6b (IC₅₀ = 200 nM).¹¹ Compounds 1 and 7, which are also members of the 4-pyridylmethylthio group, showed similar potency against KDR. On the other hand, neither compound 8 nor 9 displayed such potent activity (Table 1). From these data, we believed that the stable conformations by the intramolecular nonbonded interaction of 1, 3, and compounds 5–7 were similar to those of phthalazine PTK 787 2 (Fig. 2).

Compounds V-IX in Figure 3 are the models of 5-9, respectively, used for the MO calculation at the RHF/

Keywords: 4-Pyridylmethylthio derivative; VEGF receptor2 tyrosine kinase; A nonbonded intramolecular interaction.

^{*} Corresponding author. Tel./fax: +81 743 72 6145; e-mail: hondat@ms.naist.jp

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2008.03.068

Compound	KDR ^a	HUVECs proliferation ^b
1	26	250
2	37 (Ref. 5)	6 (Ref. 5)
3	23 (Ref. 6)	N.D.
5	20 (Ref. 8)	N.D.
6b	200 (Ref. 11)	N.D.
7	46	530
8	>1000 (54% inhibit. at 10µM)	>2000
9	>1000 (0% inhibit. at 10µM)	N.D.

Table 1. Inhibitory activities (IC50 value, nM)

^a IC₅₀ of a KDR assay was measured with a kinase assay development kit purchased from CARNA BIOSCIENCE Co. Ltd.¹²

 $^{\rm b}$ IC₅₀ of HUVECs proliferation inhibitory assay was determined by the method described in Ref. 13.

Figure 1. Structures of 4-pyridylmethylthio derivative 1, PTK787 2, and anthranylamides 3, 4.

6-31G* level. Relative potential energies (ΔE) to the conformation ($\chi = 0^{\circ}$) of the compound were obtained for structures whose torsional angle, C1-C2-C3-Y was rotated at $+30^{\circ}$ intervals from 0° to 180° (Fig. 3). Figure 4 shows the energy profiles.¹⁴ The most stable conformations of compounds V and VI were conformers C ($\chi = 30^{\circ}$), being structurally similar to PTK787 (2), which would be caused by an intramolecular hydrogen bond between either NH or CH₂ and carbonyl oxygen. In compound VII, although conformer C ($\chi = 30^\circ$) was again a major component in the conformation, conformer **B** ($\chi = 180^\circ$) was slightly more stable (5 kJ/mol). In compounds VIII and IX, conformer **B** ($\chi = 180^\circ$) and conformer **D** $(\gamma = 150^{\circ})$ were found to be the most stable conformations. These results suggest that the stable conformations of compounds 5 and 6 are different from those of 8 and 9, and that compound 7 has two stable conformers.

Scheme 1. Reagents and conditions: (a) 4-chloromethylpyridine hydrochloride, K_2CO_3 , DMF, rt; (b) 1 M NaOH aq, THF, rt; (c) *p*-chloroaniline, HCTU, DIEA, DMF, rt (d) P_2S_5 , chlorobenzene, reflux.

Figure 2. Structures of compounds 5-9.

We assumed a relevance between the stable conformation and the inhibition of KDR among compounds 1– **3** and **5–9**, and this was consistent with the results of ab initio MO calculations. We, then, carried out X-ray crystallographic analyses of compounds 1 (monohydrate) and **9**.¹⁵ Analysis of compound 1 (monohydrate) revealed that the torsion angle of C1–C2–C3– O moiety (χ) was 35°, and that the S–O distance (2.82 Å) was shorter than the sum (3.32 Å) of van der Waals radii of sulfur and oxygen,¹⁶ thus suggest-

Figure 3. Various conformers of compounds V–IX.

Figure 4. Relative potential energy (ΔE) versus torsion angle (χ) of C1–C2–C3–Y moiety.

Table 2. Summary of X-ray crystallographic analyses of compounds	1
(monohydrate) and 9	

	1 (monohydrate)	9
Formula	C ₁₈ H ₁₆ ClN ₃ O ₂ S	C ₁₉ H ₁₅ ClN ₂ OS
Formula weight	373.86	354.85
Crystal color, habit	Brown, platelet	Yellow, prism
Crystal system	Triclinic	Monoclinic
Space group	P - 1 (#2)	$P2_1/c$ (#14)
Lattice constants		
a (Å)	7.561(5)	9.655(5)
b (Å)	9.586(6)	12.530(4)
c (Å)	13.363(10)	14.799(7)
α (°)	98.73(3)	
β (°)	95.74(3)	102.832(20)
γ (°)	110.10(2)	
Volume (Å ³)	886.8(10)	1745.6(13)
Z	2	4
Density (calcd) (g/cm ³)	1.400	1.350
Residual $R, R_{\rm w}$	0.0425, 0.0499	0.0360, 0.1123

ing an intramolecular nonbonded S–O interaction.¹⁷ Compound 1 had a conformation similar to PTK787 2 and AAL993 3 with the same interaction. On the other hand, such S–O close contact was not observed in compound 9 (the torsion angle of the C1–C2–C3–S: 108° , S–O distance 3.79 Å). Thus the most stable conformation of 9 would be different from that of 1. These results suggest that a conformation, which forms a pseudobicyclic ring through intramolecular nonbonded interaction,¹⁸ such as hydrogen bonding or nonbonded S–O interaction, is necessary to exert inhibition of KDR (Fig. 5).

In summary, we analyzed novel 4-pyridylmethyl derivatives 1–9 and evaluated their KDR inhibitory activities to investigate the relationship with conformation– activity. The IC₅₀ of 1 and 7 was approximately 10^{-7} nM, which is comparable to anthranylamide derivatives 2 or 5. The conformational analysis of the model

Figure 5. Left, structure of compound 1; middle, ORTEP drawing of compound 1 (monohydrate) (S–O; 2.82 Å, $\chi = 35^{\circ}$); right, ORTEP drawing of compound 9 (S–O; 3.79 Å, $\chi = 108^{\circ}$).

compounds V–IX of 4-pyridylmethyl derivatives 5-9 suggests that the major conformations of the active derivatives 5-7, apparently shaped pseudobicyclic rings through intramolecular hydrogen bonding/S–O nonbonded interaction, were similar to each other, and thus to PTK787 2. This conformation was found in the crystal of 1 monohydrate, in which an intramolecular nonbonded S–O interaction was indicated. X-ray crystallography of an inactive 9 crystal revealed that the conformation was very different from that of 1. An intramolecular nonbonded interaction, such as hydrogen bonding or S–O interaction, is a critical structural property for compounds in this class for the inhibition of KDR (Table 2).

Acknowledgments

We greatly thank Shouhei Katao of Nara Institute of Science and Technology for X-ray crystallographic analyses of compounds 1 (monohydrate) and 9. Also, we thank Dr. Ken-ichi Fujimura and Dr. Koushi Fujisawa of the Research and Development Center at Santen Pharmaceutical Co. Ltd for their helpful suggestions.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2008.03.068.

References and notes

- Manley, P. W.; Bold, G.; Bruggen, J.; Fendrich, G.; Pascal, F.; Mestan, J.; Schnell, C. R.; Stolz, B.; Meyer, T.; Meyhack, B.; Stark, W.; Strauss, A.; Wood, J. *Biochim. Biophys. Acta* 2004, *1697*, 17, and the references cited there in.
- Sun, L.; Liang, C.; Shirazian, S.; Zhou, Y.; Miller, T.; Cui, J.; Fukuda, J. Y.; Chu, J.-Yu.; Sistla, A.; Luu, T. C.; Tang, F.; Wei, J.; Tang, C. J. Med. Chem. 2003, 46, 1116, and the references cited there in.
- Hennequin, L. F.; Stokes, E. S. E.; Thomas, A. P.; Johnstone, C.; Ple, P. A.; Ogilvie, D. J.; Dukes, M.; Wedge, S. R.; Kendrew, J.; Curwen, J. O. J. Med. Chem. 2002, 45, 1300, and the references cited there in.
- Bold, G.; Altmann, K.-H.; Jorg, F.; Lang, M.; Manley, P. W.; Traxler, P.; Wietfeld, B.; Bruggen, J.; Buchdunger, E.; Cozens, R.; Ferrari, S.; Pascal, F.; Hofmann, F.; Martiny-Baron, G.; Mestan, J.; Rosel, J.; Sills, M.; Stover, D.; Masso, E.; Roth, R.; Schlachter, C.; Vetterli, W.; Wyss, D.; Wood, J. J. Med. Chem. 2000, 43, 2310.
- Bold, G.; Jorg, F.; Pascal, F.; Manley, P. W.; Bruggen, J.; Cozens, R.; Ferrari, S.; Hofmann, F.; Martiny-Baron, G.; Mestan, J.; Meyer, T.; Wood, J. *Drugs Future* 2002, *27*, 43.
- Manley, P. W.; Pascal, F.; Bold, G.; Bruggen, J.; Mestan, J.; Meyer, T.; Schnell, C. R.; Wood, J. J. Med. Chem. 2002, 45, 5687.
- (a) Dumas, J.; Dixon, J. A. *Exp. Opin. Ther. Patents* 2005, 15, 647, and the references cited there in; (b) Nakamura, H.; Sasaki, Y.; Uno, M.; Yoshikawa, T.; Asano, T.; Ban,

H. S.; Fukazawa, H.; Shibuya, M.; Uehara, Y. Bioorg. Med. Chem. Lett. 2006, 5, 5127.

- 8. Furet, P.; Bold, G.; Hofmann, F.; Manley, P.; Meyer, T.; Altmann, K.-H. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 2967.
- 9. Santen Pharmaceutical. Co. Ltd Patent WO04/78723. 10. Synthesis of 10: To the mixture of methyl salicylate (9.48 g, 62.2 mmol), 4-chloropyridine hydrochloride (10.2 g, 62.2 mmol), and N,N-dimethylformamide (100 ml), potassium carbonate (17.3 g, 125 mmol) was added at 4 °C. The reaction mixture was stirred at rt over night and was poured into ice water. The extract with AcOEt (250 ml) was washed with saturated NaCl aq and dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was purified by silica gel column chromatography (Hexane-AcOEt) to give the desired alkylated product 11 (7.34 g) as a colorless solid in 49% yield. To the solution of the above product (8.75 g, 36.0 mmol) in THF (60 ml), 1.0 M NaOH aq (108 ml, 108 mmol) was added at 4 °C and the mixture was stirred at rt for 2 h. After the addition of 1.0 M HCl aq (100 ml, 100 mmol) to the mixture, the insoluble material was filtered out and the filtrate was concentrated in vacuo. Carboxylic acid 10 (6.87 g) was obtained as a colorless solid in 83% yield.

Synthesis of 8: To the mixture of 10 (1.00 g, 4.36 mmol), *p*-chloroaniline (612 mg, 4.80 mmol), *N*,*N*-diisopropylethyamine (1.69 g, 13.1 mmol), and *N*,*N*-dimethylformamide (30 ml), 1-[bis(dimethylamino)methylene]-5-chloro-1Hbenzotriazolium-3-oxidehexafluorophosphate (HCTU, 3.61 g, 8.72 mmol) was added at 4 °C. The reaction mixture was stirred at rt over night. The mixture was diluted with AcOEt (40 ml), and then 0.1 M NaOH aq (60 ml, 6.0 mmol) was added to it. The resulting colorless solid was filtered and dried in vacuo. Anilide 8 (963 mg) was obtained as a colorless powder in 65% yield.

Synthesis of 9: After refluxing the mixture of 8 (501 mg, 1.48 mmol), phosphorous pentasulfide (660 mg, 1.48 mmol), and chlorobenzene (40 ml) for 2 h, the mixture was cooled to rt and diluted with N,N-dimethylformamide (40 ml). Saturated NaHSO₄ aq (100 ml) was added to the mixture. The AcOEt layer of the mixture was dried over anhydrous Na₂SO₄, and then the solvent was removed by evaporation. The residue was purified by NH silica gel column chromatography (Hexane–AcOEt) to give thioamide 9 (57.5 mg) as a yellow solid in 11% yield.

- 11. Schering, A. G. Patent WO01/81311.
- 12. KDR inhibitory activity assay was performed by the ELISA method by measuring the phosphorylation level of biotinylated peptide including Tyr in the sequence.
- Fong, T. A. T.; Shawver, L. K.; Sun, L.; Tang, C.; App, H.; Powell, T. J.; Kim, Y. H.; Schreck, R.; Wang, X.; Risau, W.; Ullrich, A.; Hirth, P.; McMahon, G. *Cancer Res.* **1999**, *59*, 99.
- 14. MO calculations of energy profiles were performed by using SPARTAN'04 program system (Wavefunction, Inc.).
- 15. X-ray crystallographic analyses data (CCDC Number #671297 for 1 (monohydrate) and #671298 for 9) were deposited with the Cambridge Crystallographic data Center.
- Kucsman, A.; Kapovits, I.. In Organic Sulfur Chemistry: Theoretical and Experimental Advances; Bernardi, F., Csizmadia, I. G., Mangini, A., Eds.; Elsevier: Amsterdam, 1985; Vol. 9, pp 191–245.
- (a) Nagao, Y.; Hirata, T.; Goto, S.; Sano, S.; Kakehi, A.; Iizuka, K.; Shiro, M. J. Am. Chem. Soc. 1998, 120, 3104;
 (b) Nagao, Y. Yakugaku Zasshi 2002, 122, 1; (c) Tanaka, R.; Oyama, Y.; Imajo, S.; Matsuki, S.; Ishiguro, M. Bioorg. Med. Chem. Lett. 1997, 5, 1389; (d) Ishigro, M.;

Nishihara, T.; Tanaka, R. Yakugaku Zasshi 2001, 121, 915; (e) Haginoya, N.; Kobayashi, S.; Komoriya, S.; Yoshino, T.; Suzuki, M.; Shimada, T.; Watanabe, K.; Hirokawa, Y.; Furugori, T.; Nagahara, T. J. Med. Chem. 2004, 47, 5167.

 (a) Ohkata, K.; Ohsugi, M.; Yamamoto, K.; Ohsawa, M.; Akiba, K. J. Am. Chem. Soc. 1996, 118, 6355; (b) Goldstein, B. M.; Kennedy, S. D.; Henen, W. J. J. Am. Chem. Soc. 1990, 112, 8265; (c) Roy, D.; Sunoj, R. B. J. Mol. Struct. 2007, 809, 145.