Mono- and di-nuclear palladium(II) complexes with bulky arsino(phosphino)methanes in different coordination modes

DALTON FULL PAPER

Ulrich Schmidt, Kerstin Ilg, Carsten D. Brandt and Helmut Werner*

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany. E-mail: helmut.werner@mail.uni-wuerzburg.de

Received 21st March 2002, Accepted 2nd May 2002
First published as an Advance Article on the web 6th June 2002

The peralkylated arsino(phosphino)methanes $R_2AsCH_2PiPr_2$ ($R = tBu\ 2$, $iPr\ 3$) react with trans-[PdCl₂(NCPh)₂] 1 to give the chelate compounds [PdCl₂(κ^2 -R₂AsCH₂PiPr₂)] 4, 5 which, via salt metathesis with KBr, KI (or NaI) and CF₃CO₂Ag, are converted to the dibromo-, diiodo-, and bis(trifluoracetato)-palladium(II) derivatives 6–11, respectively. Whereas from 2, 3 and [{Pd(μ -Cl)(η^3 -C₃H₅)}₂] 12 the mono-cationic species [Pd(η^3 -C₃H₅)(κ^2 -R₂-AsCH₂PiPr₂)]PF₆ 13, 14 are obtained, treatment of 4, 5 with AgPF₆ in acetonitrile affords the di-cationic complexes [Pd(NCCH₃)₂(κ^2 -R₂AsCH₂PiPr₂)](PF₆)₂ 15, 16. Compound 15 (R = tBu) reacts with Na(acac) to give [Pd(κ^2 -acac)-(κ^2 -R₂AsCH₂PiPr₂)]PF₆ 17. The reaction of 4, 5 with AgPF₆ in acetone leads to the formation of the di-nuclear complexes [{Pd(μ -Cl)(κ^2 -R₂AsCH₂PiPr₂)}₂](PF₆)₂ 18, 19, which in the presence of SbiPr₃ or pyridine undergo bridge cleavage to yield the mono-nuclear chelate derivatives [PdCl(L)(κ^2 -R₂AsCH₂PiPr₂)]PF₆, mostly as a mixture of *cisltrans* isomers. The methylpalladium(II) compound [PdCl(CH₃)(κ^2 -tBu₂AsCH₂PiPr₂)] 25, prepared from [PdCl(CH₃)(η^4 -C₈H₁₂)] 24 and 2, reacts with Na[B(Ar_F)₄] to afford the A-frame type complex [Pd₂(CH₃)₂(μ -Cl)-(μ -tBu₂AsCH₂PiPr₂)₂][B(Ar_F)₄] 27. In contrast, the related precursor [PdCl(CH₃)(κ^2 -iPr₂AsCH₂PiPr₂)], generated *in situ* from 24 and 3, gives, upon treatment with Na[B(Ar_F)₄], a mixture of two products 28a,b being the corresponding head-to-tail and head-to-head isomers. The mono-nuclear compounds 4 and 13 as well as the A-frame type complex 27 have been characterized by X-ray crystallography.

In the context of our studies on the coordination chemistry of unsymmetrical, possibly hemilabile, chelating systems such as R₂PCH₂CH₂OMe and R₂AsCH₂CH₂OMe, ^{1,2} we recently reported the synthesis of the first representatives of arsino-(phosphino)methanes R₂AsCH₂PR', with bulky alkyl or cycloalkyl groups R and R' at the donor centres.3 We first tested the bonding capabilities of these molecules towards rhodium(I) and found that mono-nuclear as well as di-nuclear complexes with either monodentate or bidentate R₂AsCH₂PR'₂ ligands can be obtained.^{3,4} As a continuation of this work, we turned our interest to palladium(II), being isoelectronic to rhodium(I), as the metal centre and describe in this article the preparation of a series of neutral and cationic compounds, in which the bulky arsino(phosphino)methanes coordinate either in a chelating or bridging mode. Some preliminary results have already been communicated.5

Results and discussion

DOI: 10.1039/b202879b

Mono-nuclear neutral and cationic chelate complexes with $R_2AsCH_2PiPr_2$ as ligands

Addition of a solution of *trans*-[PdCl₂(NCPh)₂] **1** in CH₂Cl₂ to a solution containing an equimolar amount of *t*Bu₂AsCH₂-P*i*Pr₂ **2** or *i*Pr₂AsCH₂P*i*Pr₂ **3** in CH₂Cl₂ affords the chelate complexes **4** and **5** in, respectively, 75% and 83% yield (Scheme 1). The red or red–brown air-stable compounds are readily soluble in acetone and CH₂Cl₂, nearly insoluble in ether and pentane and thermally stable up to about 185 °C. The most typical features of the ¹H and ¹³C NMR spectra of **4** and **5** are the positions of the signals for the protons and carbon atoms of the bridging CH₂ groups of the ligands, which are significantly shifted to lower field compared to the arsino(phosphino)-methanes **2** and **3**. Moreover, the signal for the AsCH₂P protons appears as a doublet with *J*(P,H) = 9.7 Hz, while in the

¹H NMR spectra of the free ligands singlet resonances are observed.

The result of the X-ray crystal structure analysis of **4** (possessing C_s symmetry) is shown in Fig. 1. The coordination geometry around the palladium(II) centre is distorted square-planar with a Cl(1)–Pd–Cl(2) bond angle of 93.66(5)°. The As–Pd–P bite angle of 74.94(3)° is quite small and comparable to the P–Pd–P bite angle of the dppm relatives [PdCl₂(κ^2 -Ph₂PCH₂-PPh₂)] [72.68(3)°]⁶ and [PdI₂(κ^2 -Ph₂PCH₂PPh₂)] (73.56°).⁷ The PdAsCP four-membered ring is not strictly planar, the dihedral angle between the planes [As,C,P] and [As,Pd,P] being 10.9°.

Both chelate complexes 4 and 5 undergo salt metathesis reactions in the presence of KBr and KI or NaI, respectively. In acetone or acetone–CH₂Cl₂ as solvent, substitution products 6–9 are formed and isolated as yellow (6, 7), brown (8) or orange (9) air-stable solids in good to excellent yields (see Scheme 1). The chemical properties as well as the spectroscopic data of 6–9 are quite similar to those of the chloro derivatives and deserve no further comment.

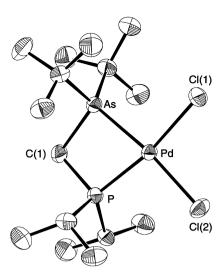


Fig. 1 Molecular structure of compound 4. Selected bond distances (Å) and angles (°): Pd-As 2.3526(7), Pd-P 2.2427(13), Pd-Cl(1) 2.3595(14), Pd-Cl(2) 2.3657(13), As-C(1) 1.974(5), P-C(1) 1.840(5); As-Pd-P 74.94(3), As-C(1)-P 94.3(2), Cl(1)-Pd-Cl(2) 93.66(5), As-Pd-Cl(2) 170.24(4), P-Pd-Cl(1) 170.08(5), As-Pd-Cl(1) 95.23(4), P-Pd-Cl(2) 96.25(5).

The chloro ligands of 4 and 5 can also be replaced by trifluoracetate but in this case it is necessary to use instead of CF₃CO₂Na or CF₃CO₂K the corresponding silver salt. Treatment of solutions of 4 or 5 in CH2Cl2 with solutions of CF₃CO₂Ag in acetone at -40 °C affords, after warming to room temperature and separation of AgCl, the bis(trifluoracetato) compounds 10 and 11 as pale-yellow moderately airsensitive solids in 56% and 90% yield, respectively. In CH₂Cl₂ or acetone, both compounds 10 and 11 are not exceedingly stable and decompose in 4-6 h to give palladium precipitates. Since in nitromethane 10 and 11 possess a molar conductivity of ca. 25 cm² Ω^{-1} mol⁻¹ (i.e., significantly less than anticipated for 1 : 1 electrolytes),8 we conclude that in polar solvents a partial dissociation takes place. However, owing to the positions of the asymmetric and symmetric OCO stretching vibrations in the IR spectra (in Nujol) of 10 and 11 there is no doubt that in the crystal the two CF₃CO₂ groups are covalently linked to the metal in a monodentate bonding mode.

The π -allylpalladium complexes 13 and 14 (Scheme 2)

[{Pd(
$$\mu$$
-Cl)(η^3 -C₃H₅)}₂] $\xrightarrow{1. R_2 AsCH_2 PiPr_2}$ $\xrightarrow{iPr_2}$ Pd \xrightarrow{P} Pd \xrightarrow{P} Pd \xrightarrow{P} 12 13, 14 Scheme 2

containing 2 and 3 as chelating ligands were prepared from $[\{Pd(\mu-Cl)(\eta^3-C_3H_5)\}_2]$ 12 following the procedure used for analogous compounds with P,N-donor groups. After recrystallization from ethyl acetate, the PF₆ salts 13 and 14 were obtained as white solids revealing in nitromethane a molar conductivity typical for 1:1 electrolytes.8 The ¹H NMR spectra of 13 and 14 display five well-separated signals for the allylic protons indicating that at least at room temperature a η^3 - η^1 - η^3 rearrangement of the C₃H₅ ligand does not take place. The assignment for these signals is based on NOE measurements (Fig. 2) as well as in the case of 13 on a C,H correlation spectrum in CDCl₃. From the latter it is obvious that the resonance for the carbon atom C1 of the allylic ligand (for numbering see Chart 1 in the Experimental section) at δ 66.4 correlates with the signals of the protons H^{1s} and H^{1a} and the resonance for C3 at δ 63.7 with the signals of H^{3s} and H^{3a}, respectively. Since there is no mirror plane passing through the coordinated As

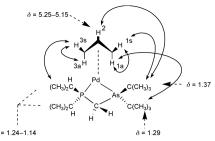


Fig. 2 Selected data of NOE measurements (in CDCl₃) for compound $13(\delta \text{ in ppm})$

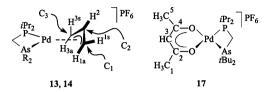


Chart 1 Assignment of protons and carbon atoms of the C₃H₅ ligand in compounds 13 and 14, and of carbon atoms of the acac ligand in compound 17.

and P atoms, the two isopropyl groups at phosphorus and the two tert-butyl or isopropyl groups at arsenic are diastereotopic and thus give rise both in the ¹H and ¹³C NMR spectra of 13 and 14 to two sets of signals.

To obtain information about the detailed structural aspects of the cationic π-allyl complexes, an X-ray crystal structure investigation of 13 was carried out. The molecular diagram (Fig. 3) confirms the chelating coordination mode of the

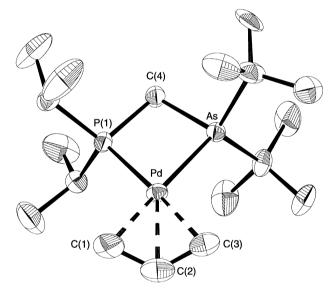


Fig. 3 Molecular structure of compound 13 (PF₆ counterion omitted for clarity). Selected bond distances (Å) and angles (°): Pd-As 2.4063(6), Pd-P(1) 2.3079(12), Pd-C(1) 2.169(3), Pd-C(2) 2.162(4), Pd-C(3) 2.197(4), As-C(4) 1.973(3), P(1)-C(4) 1.848(3), C(1)-C(2) 1.371(7), C(2)–C(3) 1.361(7); As–Pd–P(1) 74.81(2), As–C(4)–P(1) 97.09(14), C(4)-As-Pd 90.70(9), C(4)-P(1)-Pd 97.11(10), C(3)-C(2)-C(1) 123.7(4).

arsino(phosphino)methane with bond lengths Pd-P and Pd-As that are ca. 0.06 Å longer than in 4. The distance Pd-C(1) is somewhat shorter (by 0.03 Å) than the distance Pd-C(3), probably due to the stronger trans influence of phosphines compared with arsines. Despite the positive charge of 13, the As-Pd-P bite angle of 74.81° is almost identical to that of the neutral compound 4. The plane of the allylic carbon atoms C(1)–C(3) is not exactly perpendicular to the plane containing the palladium, arsenic and phosphorus atoms, the dihedral angle between the two planes being 116.1° with the carbon atom C^2 pointing away from the metal centre.

The reactions of 4 and 5 with *two* equivalents of AgPF₆ in acetonitrile at -30 °C afford the dicationic complexes 15 and 16 which were isolated as yellow solids in 83% (15) and 47% (16) yields (Scheme 3). Both the elemental analysis and conductivity

Scheme 3

measurements are in agreement with the proposed composition. Similarly to the starting material 1, the nitrile ligands can easily be displaced by other nucleophiles and thus upon treatment of 15 with Na(acac) the mono-cationic species 17 is formed. Since the Pd(acac) unit is connected to an unsymmetrical chelating moiety, the 1H NMR spectrum of 17 exhibits two signals for the methyl protons of the acetylacetonate and the ^{13}C NMR spectrum two resonances, separated only by 0.4 ppm, for the carbonyl carbon atoms of the acac ligand. The $^{13}C^{-31}P$ coupling constant of the signal for the ^{13}C carbon nuclei *trans* to phosphorus is rather small (1.9 Hz) and comparable to the value found for $[Pd(\kappa^2\text{-acac})(\kappa^2\text{-Ph}_2PCH_2PPh_2)]PF_6$ (1.5 Hz). 10

In order to test the potential utility of the cations [Pd- $(NCCH_3)_2(\kappa^2-R_2AsCH_2PiPr_2)]^{2+}$ as pre-catalysts for the generation of polyketones, a solution of 15 (10 mg) in methanol (10 cm³) was treated in an autoclave with CO and ethene (10 bar, ratio 1:1). After stirring the reaction mixture at 80 °C, an off-white precipitate is formed which proved to be insoluble in all common organic solvents and decomposes at 150 °C. While the IR spectrum of the product shows a strong v(C=O)absorption at 1692 cm⁻¹ (for comparison see ref. 11), the ¹³C NMR spectrum (CP-MAS) displays two singlet resonances at δ 209.3 and 35.4 assigned to the carbonyl and methylene (and methyl) carbon atoms. In agreement with published data, 12 these chemical shift values indicate that the polymeric material is built up by alternating CO and C₂H₄ units. The average molecular mass of the polyketone is 42390, determined by GPC (gel permeation chromatography) measurements.

Preparation and substitution reactions of di-nuclear chelate complexes

Both compounds **4** and **5** react with *one* equivalent of AgPF₆ in acetone–CH₂Cl₂ to give instead of [PdCl(acetone)(κ^2 -R₂-AsCH₂PiPr₂)]PF₆ the di-nuclear complexes **18** and **19** in 70–80% yields (Scheme 4). Even in the presence of acetonitrile, the solvent-free di-cationic species are formed, which is noteworthy insofar as treatment of **4** and **5** with *two* equivalents of AgPF₆ in CH₃CN affords the mononuclear compounds **15** and **16** (see Scheme 3). The chloro-bridged dimers **18** and **19** are yellow solids, which are air-stable and readily soluble in polar solvents such as acetone, chloroform and dichloromethane. The molar conductivity of **18** (132.7 cm² Ω^{-1} mol⁻¹) is almost the same as that of the structurally related platinum(II) complex [{Pt(μ -I)-(κ^2 -Ph₂PCH₂PPh₂)}₂](BF₄)₂ (129.2 cm² Ω^{-1} mol⁻¹), ¹³ both values being determined in nitromethane. The ³¹P NMR spectra of **18** and **19** display the resonance for the coordinated

Scheme 4

phosphorus atom at $\delta - 12.1$ (18) and -4.7 (19) which is exactly 4 ppm downfield compared with the monomeric di-cations 15 and 16

Treatment of **18** with a slight excess of SbiPr₃ (molar ratio 1:2.3) in CH₂Cl₂ leads to bridge cleavage and formation of the mono-nuclear compound **20a** in 74% yield. Both the elemental analysis and the mass spectrum (FAB) confirm the proposed composition of the product. In contrast, the reaction of **19** with SbiPr₃ under the same conditions affords a mixture of two isomers **21a** and **21b**, one of which contains the stibine ligand *trans* to the AsiPr₂ and the other *trans* to the PiPr₂ unit. According to the intensity of the signals for the AsCH₂P methylene protons in the ¹H NMR spectrum at δ 3.39 and 3.24, the ratio of **21a** to **21b** is approximately 2:1.

The question which of the isomers 21a or 21b dominates has been answered on the basis of the ¹³C NMR data as well as DEPT 90 and DEPT 135 measurements. The most conclusive result is that the signal for the SbCHCH₃ carbon atom of the major isomer 21a appears at δ 23.6 as a slightly broadened singlet while that of the minor isomer 21b at δ 22.0 is a doublet with a ¹³C-³¹P coupling constant of 6.9 Hz. The assignment of the resonance at δ 23.6 to isomer 21a is supported by the observation that the 13C NMR spectrum of 20a exhibits for the SbCHCH₃ carbon nuclei a single resonance at δ 23.4, *i.e.*, at practically the same position as for 21a. In this context it should be mentioned that the chloro-bridged complex [{Pd- $(\mu-Cl)(\kappa^2-Ph_2AsCH_2CH_2PPh_2)$ ₂](ClO₄)₂ reacts with tertiary phosphines PR₃ to give also a mixture of two isomers cis,trans-[PdCl(PR₃)(κ²-Ph₂AsCH₂CH₂PPh₂)]ClO₄ in that with PR₃ in trans-disposition to AsPh₂ dominates.¹⁴

The reaction of 18 and 19 with pyridine proceeds analogously to that of 19 with SbiPr3 and affords a mixture of 22a,b and 23a,b, respectively (see Scheme 4). In contrast to the NMR spectra of 21a,b, which at room temperature show for most of the ¹H, ¹³C and ³¹P nuclei sharp resonances, the corresponding spectra of 22a,b and 23a,b display at 295 K rather broad signals indicating that in solution a relatively fast (on the NMR time scale) rearrangement takes place. The ¹H NMR spectrum of 22a,b at 353 K in CD₃NO₂ shows sharp resonances (the number of which is about half of that at 295 K) while the ³¹P NMR spectrum of **22a,b** at 353 K exhibits a broad bump at ca. $\delta - 12$. At 295 K, the ³¹P NMR spectrum of 22a,b displays two broadened singlets at δ -6.5 and -18.4. A high-temperature ¹³C NMR spectrum of 22a,b could not be obtained due to continuing decomposition of both isomers under these conditions in nitromethane. Regarding the isomeric mixture 23a,b, the ¹³C NMR spectrum shows at 213 K in CD₂Cl₂ rather sharp signals which suggests that at this temperature the dynamic process is significantly slowed down. Whether this process consists of an intramolecular cis/trans isomerization or a dissociation of the

pyridine-palladium bond cannot be decided on the basis of the present data.

A-Frame complexes with Pd-CH₃ bonds and R₂AsCH₂PiPr₂ as bridging ligands

In contrast to the reaction of $[PdCl(CH_3)(\eta^4-C_8H_{12})]$ **24** with **3**, which leads to a mixture of products, treatment of **24** with an equimolar amount of **2** in toluene affords cleanly the chelate complex **25** (Scheme 5). The pale-yellow slightly air-sensitive

Scheme 5

solid was isolated in 83% yield. Owing to the NMR spectroscopic data of 25, there is no doubt that only one of the two possible stereoisomers is formed. Since the doublet resonances of the protons and the carbon atom of the Pd–CH₃ moiety in the ¹H and ¹³C NMR spectra show rather small ¹H–³¹P and ¹³C–³¹P couplings (0.9 and 5.7 Hz, respectively), we assume, in agreement with data from the literature, ¹⁵ that the metal-bonded methyl group and the PiPr₂ unit are in *cis*-disposition.

The methylpalladium(II) complex **25** reacts with AgBF₄ in acetonitrile at -30 °C to give, after warming to room temperature and removal of the solvent, a white solid which due to the ¹H, ¹³C and ³¹P NMR spectra consists of [Pd(CH₃)(NCCH₃)-(κ^2 -tBu₂AsCH₂PtPr₂)]BF₄ **26** as the main product. Diagnostic features are the broadened singlet at δ –0.4 [with J(P,C) = 5.5 Hz] for the corresponding Pd–CH₃ methyl carbon atom in the ¹³C NMR and the singlet resonance at δ 24.3 for the PtPr₂ phosphorus atom in the ³¹P NMR spectrum.

If instead of AgBF₄, the sodium salt of Brookhart's acid $Na[B(Ar_F)_4][Ar_F = C_6H_3(CF_3)_2-3,5]$ is used as substrate for the reaction with 25, quite unexpectedly the A-frame type complex 27 is isolated in 74% yield (see Scheme 5). The composition of the light red, moderately air-sensitive solid has been confirmed by elemental analysis and mass spectra (FAB). The NMR data of the di-nuclear cation indicate that only the head-to-tail isomer with the phosphorus and the arsenic atoms trans to each other is formed. The ³¹P NMR spectrum of 27 displays a singlet at δ 30.6 which is shifted *ca.* 8 ppm downfield compared to 25. In the ¹H NMR spectrum of 27, the signal for the protons of the Pd-CH₃ group appears as a doublet at δ 0.93 with a $^{1}H_{-}^{31}P$ coupling constant (4.4 Hz) that is somewhat larger than for the mono-nuclear compound 25 (0.9 Hz). The value of the chemical shift for the Pd-CH₃ resonance is similar to that of the related A-frame complexes [Pd₂(CH₃)₂(µ-X)(µ-Ph₂PCH₂- $PPh_2_2PF_6$ (X = Cl, Br) with dppm as the bridging ligand. ¹⁶ With regard to the formation of 27 from 25 and Na[B(Ar_F)₄] we note that the platinum derivative [PtCl(CH₃)(κ²-Ph₂PCH₂-PPh₂)] rearranges in methanol-CH₂Cl₂ at room temperature completely to the thermodynamically more stable compound $[Pt_2(CH_3)_2(\mu-Cl)(\mu-Ph_2PCH_2PPh_2)_2]Cl.^{17}$

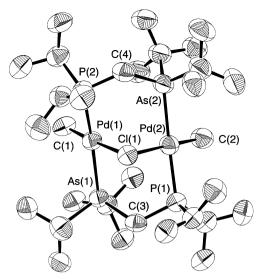


Fig. 4 Molecular structure of compound 27 [B(Ar_F)₄ counterion omitted for clarity]. Selected bond distances (Å) and angles (°): Pd(1)–As(1) 2.4823(18), Pd(1)–P(2) 2.306(2), Pd(1)–C(1) 2.052(6), Pd(1)–Cl(1) 2.459(2), Pd(2)–As(2) 2.4678(18), Pd(2)–P(1) 2.301(2), Pd(2)–C(2) 2.064(6), Pd(2)–Cl(1) 2.460(3); As(1)–Pd(1)–P(2) 173.45(4), As(1)–C(3)–P(1) 119.2(3), C(1)–Pd(1)–Cl(1) 176.3(2), Pd(1)–Cl(1)–Pd(2) 77.51(10), As(2)–Pd(2)–P(1) 173.44(4), As(2)–C(4)–P(2) 118.5(3), C(2)–Pd(2)–Cl(1) 176.3(2).

The result of the X-ray crystal structure analysis of 27 is shown in Fig. 4. The di-nuclear cation consists of two PdCH₃ fragments which are bridged by two tBu₂AsCH₂PiPr₂ ligands and one chloride. The coordination geometry around the palladium(II) centres is approximately square-planar with As–Pd–P and C(1)–Pd–Cl bond angles of ca. 173.4 and 176.3°, respectively. The Pd(1)–C(1) and Pd(2)–C(2) bond lengths of 2.052(6) and 2.064(6) Å are nearly identical to the Pd–CH₃ bond length in the unsymmetrical hydrido(methyl) complex [Pd₂H(CH₃)(μ-Cl)(μ-Ph₂PCH₂PPh₂)₂]BPh₄ [2.050(11) Å].¹⁸ Moreover, the Pd–Pd distance of 3.079(4) Å is within the range reported for other structurally related palladium compounds of the A-frame type [2.976(6)–3.190(4) Å].^{18,19}

To obtain the counterpart of **27** with two molecules of **3** as bridging ligands, the preparative route used for **27** had to be slightly modified. Following the observation that the mononuclear chelate complex $[PdCl(CH_3)(\kappa^2-iPr_2AsCH_2PiPr_2)]$ seems to be rather labile and undergoes subsequent reactions in toluene even at room temperature, this compound was generated *in situ* from **24** and **3** in ether suspension. Treatment of the suspension with a solution of $Na[B(Ar_F)_4]$ in ether affords a pale-yellow solid of analytical composition $[Pd_2(CH_3)_2(\mu-Cl)-(\mu-iPr_2AsCH_2PiPr_2)_2][B(ArF)_4]$ consisting, however, in contrast to **27** of a mixture of two isomers **28a** and **28b** (Scheme 6).

Scheme 6

Since the NMR data of the dominating species **28a** are quite similar to those of **27**, we assume that **28a** is the head-to-tail isomer with the AsiPr₂ and PiPr₂ groups in *trans*-disposition. The most typical features of the minor component **28b** (observed in the ¹H- and ³¹P-decoupled ¹³C NMR spectrum of the mixture **28a,b**) are the two resonances for the metal-bonded CH₃ carbon atoms at δ –5.5 and –11.7, of which only the first one shows in the ¹³C{¹H} NMR spectrum a ¹³C–³¹P coupling. The signal at δ –5.5 can therefore be assigned to the methyl group *cis* to the PiPr₂ and the other at δ –11.7 to the methyl group *cis* to the AsiPr₂ fragment. We found that in CD₂Cl₂ in the temperature range of 20 to 40 °C no rearrangement of **28a** to **28b** or *vice versa* occurs.

In summary, the work presented in this paper has shown that the arsino(phosphino)methanes 2 and 3 with bulky alkyl instead of phenyl substituents at the donor centres can behave both as chelating and bridging ligands towards palladium(II). Besides neutral and mono- as well as di-cationic compounds, in which 2 and 3 are bonded in a chelating fashion, di-nuclear complexes of the A-frame type with 2 and 3 as bridging units can also be generated. While related compounds with dppm, particularly in a bridging coordination mode, are well known we note that prior to our investigations 3,4 only a few examples of dimeric rhodium or mixed platinum-rhodium compounds with Ph₂AsCH₂PPh₂ as the ligand have been described in the literature.20 We are currently attempting to find out what the catalytic potential of the rhodium(I) and palladium(II) complexes with the new arsino(phosphino)methanes is and will report on the results of these studies in due course.

Experimental

All experiments were carried out under an atmosphere of Argon by Schlenk techniques. The starting materials 1, 21 12, 22 24^{23} and the ligands 2 and 3^3 were prepared as described in the literature. NMR spectra were recorded at room temperature on Bruker AC 200, DRX 300, AMX 400 and DMX 600 instruments, IR spectra on a Bruker IFS 25 FT-IR infrared spectrometer, and mass spectra on a Finnigan 90 MAT instrument (70 eV). Conductivity measurements were carried out in nitromethane with a Schott Konduktometer CG 851. Melting points were measured by DTA. Abbreviations used: s, singlet; d, doublet; q, quartet; sept, septet; m, multiplet; br, broadened signal; coupling constants J in Hz.

Preparations

 $[PdCl_2(\kappa^2-tBu_2AsCH_2PiPr_2)]$ 4. A solution of compound 1 (277 mg, 0.72 mmol) in CH₂Cl₂ (10 cm³) was treated dropwise with a solution of 2 (235 mg, 0.73 mmol) in CH₂Cl₂ (5 cm³) and then stirred for 1 h at room temperature. The solution was filtered and the filtrate was evaporated in vacuo. Pentane (20 cm³) was added to the oily residue and the suspension irradiated in an ultrasound bath for 30 min. A red-brown solid precipitated which was separated from the mother liquor, washed twice with 5 cm³ portions of pentane and dried. Yield 270 mg (75%); mp 188 °C (decomp.) (Found: C, 36.06; H, 6.61. C₁₅H₃₄AsCl₂PPd requires: C, 36.20; H, 6.89%). NMR (CD₂Cl₂): $\delta_{\rm H}$ (400 MHz) 2.94 [2 H, d, J(P,H) = 9.7, PCH_2As], 2.66-2.54 (2 H, m, PCHCH₃), 1.56 (18 H, s, br, AsCCH₃), 1.46–1.40 (12 H, m, br, PCHC H_3); δ_C (100.6 MHz) 45.4 (s, As CCH_3), 29.5 (s, $AsCCH_3$), 26.5 [d, J(P,C) = 19.1, $PCHCH_3$], 21.4 [d, J(P,C) = 19.118.1, PCH₂As], 19.2 [d, J(P,C) = 1.9, PCH CH_3], 17.9 [d, J(P,C)= 1.9, PCH CH_3]; δ_P (162.0 MHz) -12.9 (s).

[PdCl₂(κ^2 -iPr₂AsCH₂PiPr₂)] 5. This compound was prepared as described for 4 from 1 (320 mg, 0.83 mmol) and 3 (245 mg, 0.83 mmol). Red solid: yield 310 mg (83%); mp 232 °C (decomp.) (Found: C, 33.99; H, 6.25. C₁₃H₃₀AsCl₂PPd requires: C, 33.25; H, 6.44%). NMR (CD₂Cl₂): $\delta_{\rm H}$ (400 MHz) 2.88 [2 H,

d, J(P,H) = 9.7, PCH_2As], 2.69 [2 H, sept, J(H,H) = 7.0, $AsCHCH_3$], 2.42–2.30 (2 H, m, $PCHCH_3$], 1.44–1.38 (18 H, m, br, $AsCHCH_3$ and $AsCHCH_3$), 1.27 [6 H, dd, $AsCHCH_3$] and $AsCHCH_3$]; $AsCHCH_3$]; $AsCHCH_3$]; $AsCHCH_3$]; $AsCHCH_3$], 26.2 [d, $AsCHCH_3$], 21.1 [d, $AsCHCH_3$], 26.2 [d, $AsCHCH_3$], 21.1 [d, $AsCHCH_3$], 27.4 [d, $AsCHCH_3$], 28.8 (s, $AsCHCH_3$), 18.8 (s, $AsCHCH_3$), 17.4 [d, $AsCHCH_3$]; $AsCHCH_3$]; $AsCHCH_3$]; $AsCHCH_3$], 17.4 [d, $AsCHCH_3$], 18.9 (s) (81.0 MHz) –6.1 (s); $AsCHCH_3$], $AsCHCH_3$],

[PdBr₂(κ^2 -tBu₂AsCH₂PiPr₂)] 6. A solution of 4 (90 mg, 0.18 mmol) in acetone (6 cm³) was treated with KBr (107 mg, 0.90 mmol) and the reaction mixture was stirred for 90 min at 40 °C. After the solvent was evaporated in vacuo, the remaining residue was washed twice with 10 cm³ portions of water. The residue was dissolved in $\mathrm{CH_2Cl_2}$ (10 cm³), the solution was dried with Na₂SO₄ and then filtered. The filtrate was brought to dryness in vacuo, the yellow solid was washed with pentane (5 cm³) and dried. Yield 66 mg (63%); mp 219 °C (decomp.) (Found: C, 30.75; H, 5.82. C₁₅H₃₄AsBr₂PPd requires: C, 30.72; H, 5.84%). NMR (CD₃NO₂): $\delta_{\rm H}$ (400 MHz) 3.28 [2 H, d, J(P,H) = 10.0 Hz, PCH₂As], 2.70-2.61 (2 H, m, PCHCH₃), 1.56 (18 H, s, br, AsCCH₃), 1.48–1.38 (12 H, m, PCHC H_3); δ_C (100.6 MHz) 47.0 (s, $AsCCH_3$), 30.0 (s, $AsCCH_3$), 28.3 [d, J(P,C) = 20.3, $PCHCH_3$, 23.1 [d, J(P,C) = 19.3, PCH_2As , 19.8, 18.4 [both d, J(P,C) = 2.0, PCHCH₃]; δ_P (162.0 MHz) -12.3 (s).

 $[PdBr_2(\kappa^2-iPr_2AsCH_2PiPr_2)]$ 7. A solution of 5 (80 mg, 0.17 mmol) in acetone-CH₂Cl₂ (1:1, 12 cm³) was treated with KBr (230 mg, 1.93 mmol) and the reaction mixture was stirred for 12 h at room temperature. The solvent was evaporated in vacuo, the residue was dissolved in CH₂Cl₂ (12 cm³) and the solution was filtered. The filtrate was brought to dryness in vacuo, the residue was washed with pentane (8 cm³) and then dissolved in warm methanol (6 cm³, ca. 40 °C). The solution was first cooled to room temperature and then stored for 6 h at -78 °C. Small yellow crystals precipitated, which were separated from the mother liquor, washed with pentane (6 cm³) and dried. Yield 56 mg (59%); mp 204 °C (decomp.) (Found: C, 27.77; H, 5.21. C₁₃H₃₀AsBr₂PPd requires: C, 27.96; H, 5.41%). NMR (CD₂Cl₂): δ_H (400 MHz) 3.03 [2 H, d, J(P,H) = 10.0, PCH_2As], 2.78 [2 H, sept, J(H,H) = 7.0, $AsCHCH_3$), 2.52–2.39 (2 H, m, PCHCH₃), 1.51-1.45 (18 H, m, br, AsCHCH₃ and $PCHCH_3$), 1.33 [6 H, dd, J(P,H) = 17.6, J(H,H) = 6.8, $PCHCH_3$]; δ_C (100.6 MHz) 30.8 (s, As $CHCH_3$), 27.0 [d, J(P,C)= 21.0, PCHCH₃], 22.3 [d, J(P,C) = 20.0, PCH₂As], 20.3, 19.7 (both s, AsCHCH₃), 19.1 (s, br, PCHCH₃), 17.5 [d, J(P,C) = 2.9Hz, PCHCH₃]; $\delta_{\mathbf{P}}$ (162.0 MHz) -7.6 (s).

[PdI₂(κ²-tBu₂AsCH₂PiPr₂)] 8. This compound was prepared as described for 6 from 4 (80 mg, 0.16 mmol) and KI (133 mg, 0.80 mmol) in acetone (6 cm³) at room temperature; time of reaction 48 h. Brown solid: yield 93 mg (85%); mp 137 °C (decomp.) (Found: C, 26.48; H, 4.78. C₁₅H₃₄AsI₂PPd requires: C, 26.47; H, 5.04%). NMR (CD₂Cl₂): $\delta_{\rm H}$ (400 MHz) 3.22 [2 H, d, J(P,H) = 10.0, PCH₂As], 2.71–2.61 (2 H, m, PCHCH₃), 1.54 (18 H, s, br, AsCCH₃), 1.43 [6 H, dd, J(P,H) = 18.2, J(H,H) = 7.0, PCHCH₃], 1.39 [6 H, dd, J(P,H) = 19.4, J(H,H) = 7.4, PCHCH₃]; $\delta_{\rm C}$ (100.6 MHz) 45.3 (s, AsCCH₃), 29.4 (s, AsCCH₃), 27.7 [d, J(P,C) = 18.1, PCHCH₃], 23.5 [d, J(P,C) = 16.2, PCH₂As], 19.4 (s, br, PCHCH₃), 17.8 [d, J(P,C) = 3.8, PCHCH₃]; $\delta_{\rm P}$ (162.0 MHz) –15.0 (s).

[PdI₂(κ²-iPr₂AsCH₂PiPr₂)] 9. This compound was prepared as described for 7 from **5** (80 mg, 0.17 mmol) and NaI (300 mg, 2.00 mmol); time of reaction 48 h. Orange solid: yield 55 mg (49%); mp 233 °C (decomp.) (Found: C, 24.22; H, 4.58. C₁₃H₃₀AsI₂PPd requires: C, 23.93; H, 4.63%). NMR (CD₂Cl₂): $\delta_{\rm H}$ (200 MHz) 3.19 [2 H, d, J(P,H) = 9.9, PCH₂As], 2.78 [2 H, sept, J(H,H) = 6.9, AsCHCH₃], 2.55–2.32 (2 H, m, PCHCH₃), 1.54–1.41 (18 H, m, br, AsCHCH₃ and PCHCH₃), 1.31 [6 H,

dd, J(P,H) = 17.2, J(H,H) = 6.9, $PCHCH_3$]; δ_C (50.3 MHz) 30.9 (s, $AsCHCH_3$), 28.1 [d, J(P,C) = 19.4, $PCHCH_3$], 24.5 [d, J(P,C) = 18.5, PCH_2As], 20.3, 19.6 (both s, $AsCHCH_3$), 19.3 (s, br, $PCHCH_3$), 17.4 [d, J(P,C) = 1.8, $PCHCH_3$]; δ_P (81.0 MHz) -11.3 (s).

 $[Pd(CF_3CO_2)_2(\kappa^2-tBu_2AsCH_2PiPr_2)]$ 10. A solution of 4 (110) mg, 0.22 mmol) in CH_2Cl_2 (5 cm³) was treated at -40 °C with a solution of CF₃CO₂Ag (98 mg, 0.44 mmol) in acetone (7 cm³). After warming to room temperature the reaction mixture was stirred for 4 h. The solvent was evaporated in vacuo, the remaining residue was dissolved in CH₂Cl₂ (10 cm³) and the solution was filtered. The filtrate was brought to dryness in vacuo, the residue was washed with pentane (8 cm³), and then methanol (3 cm³) was added. The suspension was filtered and the filtrate was stored for 12 h at -78 °C. A pale-yellow solid precipitated, which was separated from the mother liquor, washed with pentane (8 cm³) and dried. Yield 80 mg (56%); mp 195 °C (decomp.); $\Lambda = 25.3 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$ (Found: C, 35.04; H, 5.35. C₁₉H₃₄AsF₆O₄PPd requires: C, 34.96; H, 5.25%). IR (Nujol) $\nu(\text{OCO})_{\text{asym}}$ 1687, $\nu(\text{OCO})_{\text{sym}}$ 1413 cm⁻¹; NMR (CD₂Cl₂): δ_{H} (300 MHz) 2.87 [2 H, d, J(P,H) = 10.0, PCH₂As], 2.70–2.53 (2 H, m, PCHCH₃), 1.54 (18 H, s, br, AsCCH₃), 1.43 [6 H, dd, J(P,H) = 18.5, J(H,H) = 7.4, $PCHCH_3$, 1.36 [6 H, dd, J(P,H) =17.9, J(H,H) = 7.2, PCHC H_3]; δ_C (75.5 MHz) 161.3 [q, J(F,C) =36.0, CF_3CO_2], 116.4 [q, J(F,C) = 291.5, CF_3CO_2], 46.3 (s, $AsCCH_3$), 29.4 (s, $AsCCH_3$), 27.5 [d, J(P,C) = 21.4, $PCHCH_3$], 20.1 [d, J(P,C) = 21.1, PCH_2As], 19.3 [d, J(P,C) = 1.8, $PCHCH_3$], 18.1 [d, J(P,C) = 1.5, $PCHCH_3$]; δ_F (282.4 MHz) -75.3 (s); $\delta_{\mathbf{P}}$ (81.0 MHz) -11.7 (s).

[Pd(CF₃CO₂)₂(κ²-iPr₂AsCH₂PiPr₂)] 11. This compound was prepared as described for 10 from 5 (80 mg, 0.17 mmol) and CF₃CO₂Ag (75 mg, 0.34 mmol). Pale-yellow solid: yield 96 mg (90%); mp 107 °C (decomp.); Λ = 24.1 cm² Ω ⁻¹ mol⁻¹ (Found: C, 32.4; H, 4.76. C₁₇H₃₀AsF₆O₄PPd requires: C, 32.69; H, 4.84%). IR (Nujol) ν(OCO)_{asym} 1686, ν(OCO)_{sym} 1410 cm⁻¹; NMR (CD₂Cl₂): δ _H (400 MHz) 2.95 [2 H, sept, J(H,H) = 7.0, AsCHCH₃], 2.75 [2 H, d, J(P,H) = 10.2, PCH₂As], 2.54–2.45 (2 H, m, PCHCH₃), 1.50–1.26 (24 H, m, AsCHCH₃ and PCHCH₃); δ _C (75.5 MHz) 161.6 [q, br, J(F,C) = 6.7, CF₃CO₂], 116.2 [q, br, J(F,C) = 290.6, CF₃CO₂], 33.3 (s, AsCHCH₃), 26.8 [d, J(P,C) = 22.5, PCHCH₃], 21.4, 19.2 (both s, AsCHCH₃), 19.1 (s, br, PCHCH₃), 18.0 [d, J(P,C) = 21.0, PCH₂As], 17.5 [d, J(P,C) = 2.5, PCHCH₃]; δ _F (282.4 MHz) −75.0 (s); δ _P (162.0 MHz) −2.9 (s).

 $[Pd(\eta^3-C_3H_5)(\kappa^2-tBu_2AsCH_2PiPr_2)]PF_6$ 13. A solution of 12 (78 mg, 0.21 mmol) in CH₂Cl₂ (4 cm³) was treated with a solution of 2 (170 mg, 0.53 mmol) in CH₂Cl₂ (6 cm³) and stirred at room temperature. After 3 h a solution of NH₄PF₆ (340 mg, 2.10 mmol) in methanol (3 cm³) was added dropwise and the reaction mixture was stirred for 12 h. The solvent was evaporated in vacuo, the residue was suspended in CH₂Cl₂ (8 cm³) and the solution was filtered. The filtrate was brought to dryness in vacuo, the oily residue was treated with pentane (8 cm³) and the mixture was irradiated for 20 min in an ultrasound bath. An off-white solid was formed, which was separated from the mother liquor, dried, and then dissolved in warm (ca. 40 °C) ethyl acetate (4 cm³). Upon storing the solution for 12 h at −78 °C, a white microcrystalline solid precipitated, which was washed twice with pentane (8 cm³) and dried. Yield 136 mg (53%); mp 142 °C (decomp.); $\Lambda = 72.8 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$ (Found: C, 34.52; H, 6.26. C₁₈H₃₉AsF₆P₂Pd requires: C, 35.28; H, 6.42%). NMR (CDCl₃): $\delta_{\rm H}$ (400 MHz) 5.25–5.15 (1 H, m, H² of C_3H_5), 4.67–4.63 (1 H, m, H^{1s} of C_3H_5), 4.58–4.46 (1 H, m, H^{3s} of C₃H₅), 3.47, 3.41 [1 H each, ABX spin system; in ¹H{³¹P} AB spin system, J(A,B) = 15.9, PCH₂As], 2.98–2.88 (2 H, m, H^{1a} and H^{3a} of C_3H_5), 2.36, 2.24 [1 H each, both m; in ${}^{1}H\{{}^{31}P\}$ both sept, J(H,H) = 7.6, PCHCH₃], 1.37, 1.29 (9 H each, both s,

AsCCH₃), 1.27–1.14 (12 H, m, PCHC*H*₃); $δ_C$ (100.6 MHz) 119.1 [d, J(P,C) = 7.6, C^2 of C_3H_5], 66.4 [d, J(P,C) = 31.5, C^1 of C_3H_5], 63.7 [d, J(P,C) = 6.7, C^3 of C_3H_5], 41.3, 41.2 [both d, J(P,C) = 2.9, AsCCH₃], 29.3, 29.2 (both s, AsCCH₃), 27.6 [d, J(P,C) = 20.0, PCH₂As], 25.5–25.3 [m; in ¹³C{¹H, ³¹P} two s at 25.3, 25.2, PCHCH₃)], 20.2–20.0 [m; in ¹³C{¹H, ³¹P} two s at 20.0, 19.9, PCHCH₃)], 18.6, 18.4 (both s, PCHCH₃); for assignment of protons and carbon atoms of C_3H_5 see Chart 1; $δ_P$ (162.0 MHz) 12.5 (s, PCH₂As), –144.3 [sept, J(F,P) = 712.8, PF₆]; MS (FAB): m/z 467 (M⁺, 100.0%).

 $[Pd(\eta^3-C_3H_5)(\kappa^2-iPr_2AsCH_2PiPr_2)]PF_6$ 14. This compound was prepared as described for 13 from 12 (53 mg, 0.14 mmol) and 3 (106 mg, 0.36 mmol) in CH₂Cl₂ (4 cm³) plus a solution of NH₄PF₆ (235 mg, 1.44 mmol) in methanol (3 cm³). White solid: yield 123 mg (72%); mp 190 °C (decomp.) (Found: C, 32.6; H, 5.75; Pd, 19.02. C₁₆H₃₅AsF₆P₂Pd requires: C, 32.87; H, 6.03; Pd, 18.20%). NMR (CDCl₃): $\delta_{\rm H}$ (400 MHz) 5.26–5.15 $(1 \text{ H, m, br, } \text{H}^2 \text{ of } \text{C}_3\text{H}_5), 4.70-4.67 (1 \text{ H, m, br, } \text{H}^{1s} \text{ of }$ C_3H_5), 4.55–4.54 (1 H, m, br, H^{3s} of C_3H_5), 3.39, 3.34 [1 H each, m; in ${}^{1}H\{{}^{31}P\}$ AB-spin system, J(A,B) = 15.6, PCH₂As], 3.01– $2.95 (1 \text{ H, m, H}^{1a} \text{ of } C_3H_5), 2.90 (1 \text{ H, m, br, H}^{3a} \text{ of } C_3H_5), 2.60-$ 2.42 (2 H, m, br, AsCHCH₃), 2.30–2.12 (2 H, m, br, PCHCH₃), 1.32–1.09 (24 H, m, br, AsCHCH₃ and PCHCH₃); $\delta_{\rm C}$ (100.6 MHz) 119.3 [d, J(P,C) = 8.1, C^2 of C_3H_5], 68.1 [d, J(P,C) = 30.5, C^1 of C_3H_5 , 62.8 [d, J(P,C) = 6.1, C^3 of C_3H_5], 27.8 (s, br, $AsCHCH_3$), 26.0 [d, J(P,C) = 20.3, PCH_2As], 25.6 [d, J(P,C) = 20.323.0, PCHCH₃], 25.4 [d, J(P,C) = 22.4, PCHCH₃], 20.2, 20.1, 18.8, 18.7, 18.6 (all s, AsCHCH₃ and PCHCH₃); for assignment of protons and carbon atoms of C_3H_5 see Chart 1; δ_P $(162.0 \text{ MHz}) \ 16.6 \text{ (s, PCH₂As)}, -144.3 \text{ [sept, } J(F,P) = 712.8,$ PF_6].

 $[Pd(NCCH_3)_2(\kappa^2-tBu_2AsCH_2PiPr_2)](PF_6)_2$, 15. A solution of 4 (100 mg, 0.20 mmol) in CH_2Cl_2 (5 cm³) was treated at -30 °C with a solution of AgPF₆ (100 mg, 0.40 mmol) in CH₃CN (5 cm³). After the reaction mixture was warmed to room temperature, it was stirred for 1 h. The solvent was evaporated in vacuo, the residue was suspended in CH₂Cl₂ (8 cm³) and the solution was filtered. The filtrate was concentrated in vacuo to ca. 1.5 cm³ and diethyl ether (15 cm³) was added dropwise. An oily solid precipitated, which was separated from the mother liquor and washed three times with diethyl ether (8 cm³). After it was stored for 12 h at 0 °C, a yellow solid was formed. Yield 133 mg (83%); mp 98 °C (decomp.); $\Lambda = 157 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$ (Found: C, 28.48; H, 4.75; N, 3.42; Pd, 13.03. C₁₉H₄₀AsF₁₂-N₂P₃Pd requires: C, 28.57; H, 5.05; N, 3.51; Pd, 13.32%). NMR (CD_3NO_2) : δ_H (400 MHz) 3.41 [2 H, d, J(P,H) = 10.6, PCH_2As], 2.80-2.68 (2 H, m, PCHCH₃), 2.43 (6 H, s, br, CH₃CN), 1.62 (18 H, s, br, AsCCH₃), 1.50–1.42 (12 H, m, PCHC H_3); δ_C (100.6 MHz) 125.3 (m, CH₃CN), 50.4 (s, AsCCH₃), 29.4 (s, AsCCH₃), 28.1 [d, J(P,C) = 21.4, $PCHCH_3$], 19.5 [d, J(P,C) = 25.4, PCH_2As], 18.7 [d, J(P,C) = 2.0, $PCHCH_3$], 18.5 (s, $PCHCH_3$), 2.4 (s, br, CH_3CN); δ_P (162.0 MHz) -16.1 (s, PCH_2As), -144.6[sept, J(F,P) = 706.3, PF_6].

[Pd(NCCH₃)₂(κ²-iPr₂AsCH₂PiPr₂)](PF₆)₂ 16. This compound was prepared as described for 15 from 5 (100 mg, 0.22 mmol) and AgPF₆ (104 mg, 0.41 mmol). Yellow solid: yield 79 mg (47%); mp 64 °C (decomp.) (Found: C, 26.21; H, 4.48; N, 3.45. C₁₇H₃₆AsF₁₂N₂P₃Pd requires: C, 26.49; H, 4.71; N, 3.63%). NMR (CD₃NO₂): $\delta_{\rm H}$ (400 MHz) 3.40 [2 H, d, J(P,H) = 10.6, PCH₂As], 3.12 [2 H, sept, J(H,H) = 7.0, AsCHCH₃], 2.67–2.56 (2 H, m, PCHCH₃), 2.41 (6 H, s, br, CH₃CN), 1.52 [12 H, d, J(H,H) = 7.0, AsCHCH₃], 1.47 [6 H, dd, J(P,H) = 20.5, J(H,H) = 7.0, PCHCH₃], 1.41 [6 H, dd, J(P,H) = 19.9, J(H,H) = 6.7, PCHCH₃]; $\delta_{\rm C}$ (100.6 MHz) 125.4 (m, br, CH₃CN), 33.8 (s, AsCHCH₃), 27.5 [d, J(P,C) = 22.9, PCHCH₃], 20.2, 19.9 (both s, AsCHCH₃), 18.7 (s, PCHCH₃), 18.4 [d, J(P,C) = 25.8, PCH₂As], 17.7 [d, J(P,C) = 1.9, PCHCH₃], 2.5 (s, br, CH₃CN);

 δ_{P} (162.0 MHz) -8.6 (s, PCH₂As), -144.6 [sept, J(F,P) = 708.4, PF₆].

 $[Pd(\kappa^2-acac)(\kappa^2-tBu_2AsCH_2PiPr_2)]PF_6$ 17. A solution of 15 (45 mg, 0.06 mmol) in methanol (5 cm³) was treated at -60 °C with Na(acac) (10 mg, 0.08 mmol). After the reaction mixture was warmed to room temperature, it was stirred for 30 min and then the solvent was evaporated in vacuo. The residue was suspended in CH₂Cl₂ (7 cm³) and the solution was filtered. The filtrate was brought to dryness in vacuo, the white solid was washed twice with pentane (5 cm³) and dried. Yield 30 mg (79%); mp 183 C (decomp.) (Found: C, 36.10; H, 5.90. $C_{20}H_{41}AsF_6O_2P_2Pd$ requires: C, 35.81; H, 6.16%). IR (KBr) $\nu(\text{CO})$ 1570, 1521 cm⁻¹; NMR (CD₂Cl₂): δ_{H} (400 MHz) 5.46 (1 H, s, CH of acac), 3.08 [2 H, d, J(P,H) = 10.0, PCH_2As], 2.52-2.42 (2 H, m, PCHCH₃), 2.00, 1.98 (3 H each, both s, CH₃ of acac), 1.56 (18 H, s, AsCCH₃), 1.45 [6 H, dd, J(P,H) = 18.5, J(H,H) = 7.3, PCHC H_3 , 1.39 [6 H, dd, J(P,H) = 17.6, J(H,H) = 17.67.3, PCHC H_3]; δ_C (50.3 MHz) 186.8 [d, J(P,C) = 1.9, CH₃ C^2 O of acac], 186.4 (br s, CH₃C⁴O of acac), 99.3 (s, C³ of acac), 45.6 (s, AsCCH₃), 29.4 (s, AsCCH₃) 27.2 (m, C^1 and C^5 of acac), 26.5 [d, J(P,C) = 20.3, $PCHCH_3$], 21.1 [d, J(P,C) = 23.1, PCH_2As], 18.7 (s, $PCHCH_3$), 18.3 [d, J(P,C) = 2.8, $PCHCH_3$], for assignment of carbon atoms of acac see Chart 1; $\delta_{\rm P}$ (162.0 MHz) -14.0 (s, PCH₂As), -144.4 [sept J(F,P) = 712.3, PF₆]; MS (FAB): m/z 525 (M⁺, 7.9%).

 $[\{Pd(\mu-Cl)(\kappa^2-tBu_2AsCH_2PiPr_2)\}_2](PF_6)_2$ 18. A solution of 4 (150 mg, 0.30 mmol) in CH₂Cl₂ (5 cm³) was treated at −40 °C with a solution of AgPF₆ (76 mg, 0.30 mmol) in acetone (5 cm³). After the reaction mixture was warmed to room temperature, it was stirred for 1 h. The solvent was evaporated in vacuo, the residue was dissolved in CH₂Cl₂ (10 cm³) and the solution was filtered. The filtrate was brought to dryness in vacuo, the pale-yellow solid was washed twice with pentane (10 cm³) and dried. Yield 145 mg (80%); mp 159 °C (decomp.); $\Lambda = 132.7 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$ (Found: C, 29.68; H, 5.40. $C_{30}H_{68}As_2$ -Cl₂F₁₂P₄Pd₂ requires: C, 29.67; H, 5.64%). NMR (CD₂Cl₂): $\delta_{\rm H}$ (400 MHz) 3.31 [4 H, d, J(P,H) = 10.6, PCH₂As], 2.65–2.52 (4 H, m, PCHCH₃), 1.59 (36 H, s, AsCCH₃), 1.49–1.41 (24 H, m, PCHC H_3); δ_C (100.6 MHz) 49.8 (s, br, AsCCH₃), 29.7 (s, AsCCH₃), 28.1 [d, J(P,C) = 20.0, $PCHCH_3$], 21.2 [d, J(P,C) =24.8, PCH₂As], 18.9 [d, J(P,C) = 2.9, PCHCH₃], 18.7 (br s, $PCHCH_3$); δ_P (162.0 MHz) -12.1 (s, PCH_2As), -144.3 [sept, $J(F,P) = 712.8, PF_6$].

[{Pd(μ-Cl)(κ²-iPr₂AsCH₂PiPr₂)}₂](PF₆)₂ 19. This compound was prepared as described for 18 from 5 (315 mg, 0.67 mmol) and AgPF₆ (169 mg, 0.67 mmol) in CH₂Cl₂–acetone (16 cm³, 1 : 1). Yellow solid: yield 268 mg (69%); mp 118 °C (decomp.) (Found C, 27.14; H, 4.94; Pd, 18.27. C₂₆H₆₀As₂Cl₂F₁₂P₄Pd₂ requires: C, 26.96; H, 5.22; Pd, 18.38%). NMR (CD₂Cl₂): $\delta_{\rm H}$ (400 MHz) 3.35 [4 H, d, J(P,H) = 10.2, PCH₂As], 2.96 [4 H, sept, J(H,H) = 7.0, AsCHCH₃], 2.50–2.40 (4 H, m, PCHCH₃), 1.52–1.39 (48 H, m, AsCHCH₃ and PCHCH₃); $\delta_{\rm C}$ (100.6 MHz) 33.2 (s, AsCHCH₃), 27.0 [d, J(P,C) = 22.4, PCHCH₃], 20.2 (m, PCH₂As), 20.1, 20.0 (both s, br, AsCHCH₃), 18.5 (s, PCHCH₃), 17.7 (s, br, PCHCH₃); $\delta_{\rm P}$ (162.0 MHz) -4.7 (s, PCH₂As), -144.4 [sept, J(F,P) = 710.6, PF₆].

[PdCl(SbiPr₃)(κ²-tBu₂AsCH₂PiPr₂)]PF₆ 20a. A solution of 18 (70 mg, 0.06 mmol) in CH₂Cl₂ (3 cm³) was treated at -50 °C with SbiPr₃ (0.03 cm³, 0.14 mmol). After the reaction mixture was warmed to room temperature, it was stirred for 45 min. A change of color from yellow to deep red occurred. The solvent was evaporated *in vacuo*, the oily residue was layered with pentane (5 cm³) and the suspension was irradiated for 15 min in an ultrasound bath. A pale-yellow solid was formed, which was separated from the mother liquor, washed twice with pentane (5 cm³) and dried. Yield 76 mg (74%); mp 68 °C (decomp.);

 $Λ = 69.2 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$ (Found: C, 33.34; H, 6.18; Pd, 13.01. C₂₄H₅₅AsClF₆P₂PdSb requires: C, 33.59; H, 6.46; Pd, 12.40%). NMR (CD₂Cl₂): $δ_H$ (400 MHz) 3.26 [2 H, d, J(P,H) = 10.3, PCH₂As], 2.71 [3 H, sept, J(H,H) = 7.3, SbCHCH₃], 2.39–2.26 (2 H, m, PCHCH₃), 1.59 (18 H, s, br, AsCCH₃), 1.53 [18 H, d, J(H,H) = 7.3, SbCHCH₃], 1.48 [6 H, dd, J(P,H) = 19.0, J(H,H) = 7.3, PCHCH₃], 1.36 [6 H, dd, J(P,H) = 17.0, J(H,H) = 7.0, PCHCH₃]; $δ_H$ (100.6 MHz) 47.6 (s, AsCCH₃), 30.0 (s, AsCCH₃), 29.2 [d, J(P,C) = 20.0, PCHCH₃], 23.4 (s, SbCHCH₃), 22.4 (s, SbCHCH₃), 21.1 (s, PCHCH₃), 20.5 [d, J(P,C) = 21.0, PCH₂As], 18.3 [d, J(P,C) = 2.9, PCHCH₃]; $δ_P$ (162.0 MHz) 2.3 (s, PCH₂As), -144.4 [sept, J(F,P) = 710.6, PF₆]; MS (FAB): m/z 713 (M $^+$, 10.6%).

[PdCl(SbiPr₃)(κ²-iPr₂AsCH₂PiPr₂)]PF₆ 21a,b. This mixture of two isomers was prepared as described for 20a from 19 (80 mg, 0.07 mmol) and SbiPr₃ (0.03 cm³, 0.16 mmol) in CH₂Cl₂ (4 cm³). After recrystallization from methanol (2 cm³) red crystals were obtained. Yield 69 mg (60%); mp 106 °C (decomp.) (Found: C, 31.70; H, 5.82. C₂₂H₅₁AsClF₆P₂PdSb requires: C, 31.83; H, 6.19%). NMR (CD₂Cl₂): $\delta_{\rm H}$ (600 MHz) 3.39 [d, J(P,H) = 10.0, PCH₂As of isomer B], 3.24 [d, J(P,C) = 10.2, PCH₂As of isomer A], 2.92-2.85, 2.74-2.65, 2.63-2.53, 2.28-2.20 (all m, br, AsCHCH₃, PCHCH₃, SbCHCH₃ of isomers A and B), 1.54-1.31 (m, br, AsCHCH₃, PCHCH₃, SbCHCH₃ of isomers A und B); $\delta_{\rm C}$ (150.9 MHz) 32.1 (s, AsCHCH₃ of isomer B), 31.8 (s, As CHCH₃ of isomer A), 28.5 [d, J(P,C) = 21.3, PCHCH₃ of isomer A], 27.2 [d, J(P,C) = 15.8, $PCHCH_3$ of isomer B], 23.6 (s, br, SbCHCH₃ of isomer A), 22.45 (s, br, SbCHCH₃ of isomer A), 22.4 (s, br, SbCHCH₃ of isomer A), 22.0 [d, J(P,C) = 6.9, SbCHCH₃ of isomer B], 21.4 [d, J(P,C) = 19.9, PCH₂As of isomer B], 21.2 (s, AsCHCH₃ or PCHCH₃ of isomer B), 21.0 [d, J(P,C) = 24.0, PCH_2As of isomer A], 20.4 (s, $AsCHCH_3$ of isomer A), 20.2 [d, J(P,C) = 3.0, PCHCH, of isomer A], 20.1 (s, AsCHCH₃ of isomer A), 19.4, 19.0 (both s, AsCHCH₃ and PCHCH₃ of isomer B), 17.8 [d, J(P,C) = 1.8, PCHCH₃ of isomer B], 17.6 [d, J(P,C) = 2.9, PCHCH₃ of isomer A]; δ_P (162.0 MHz) 5.3 (s, PCH₂As of isomer A), -14.2 (s, PCH₂As of isomer B), -144.4 [sept, J(F,P) = 710.6, PF_6].

[PdCl(py)(κ²-tBu₂AsCH₂PiPr₂)]PF₆ 22a,b. A solution of 18 (50 mg, 0.04 mmol) in CH_2Cl_2 (3 cm³) was treated at -50 °C with pyridine (0.01 cm³, 0.12 mmol). After the reaction mixture was warmed to room temperature, it was stirred for 2 h. The solvent was evaporated in vacuo, the oily residue was layered with pentane (6 cm³) and the suspension was irradiated for 20 min in an ultrasound bath. A brownish solid was formed, which was separated from the mother liquor, washed twice with pentane (5 cm³) and dried. Yield 55 mg (93%); mp 72 °C (decomp.) (Found: C, 34.66; H, 5.30; N, 2.17. C₂₀H₃₉AsClF₆-NP₂Pd requires C, 35.00; H, 5.73; N, 2.04%). NMR (CD₂Cl₂, 295 K): $\delta_{\rm H}$ (400 MHz) 8.67 (m, ortho-H of C₅H₅N), 7.96 (m, para-H of C_5H_5N), 7.58 (m, meta-H of C_5H_5N), 3.20 [d, br, J(P,H) = 10.3, PCH_2As , 2.75 (m, $PCHCH_3$ of isomer A), 2.57 (m, PCHCH₃ of isomer B), 1.63-1.20 (m, br, AsCCH₃ and PCHC H_3); δ_C (100.6 MHz) 151.2 (m, ortho-C of C₅H₅N), 139.8 (m, para-C of C₅H₅N), 126.4 (m, meta-C of C₅H₅N), 47.2 (m, As CCH₃ of isomer B), 46.0 (m, As CCH₃ of isomer A), 29.6 (s, AsCCH₃), 26.7 (m, br, PCHCH₃), 20.4 (m, br, PCH₂As), 19.2, 17.6 (both s, br, PCHCH₃ of isomer A), 18.8, 17.9 (both s, br, PCHCH₃ of isomer B); δ_P (162.0 MHz) -6.5 (s, br, PCH₂As of isomer A), -18.4 (s, br, PCH₂As of isomer B), -144.3 [sept, J(F,P) = 710.6, PF₆]; NMR (CD₃NO₂, 353 K): $\delta_{\rm H}$ (200 MHz) 8.75 (2 H, m, ortho-H of C₅H₅N), 8.07 (1 H, m, para-H of C_5H_5N), 7.65 (2 H, m, meta-H of C_5H_5N), 3.37 [2 H, d, J(P,H) =10.6, PCH₂As], 2.90–2.65 (2 H, m, br, PCHCH₃), 1.63 (18 H, s, AsCCH₃), 1.61–1.32 (12 H, m, br, PCHCH₃).

[PdCl(py)(κ²-iPr₂AsCH₂PiPr₂)]PF₆ 23a,b. This mixtures of two isomers was prepared as described for 22a,b from 19

(90 mg, 0.08 mmol) and pyridine (0.02 cm³, 0.20 mmol) in CH₂Cl₂ (4 cm₃). Light red solid: yield 55 mg (54%); mp 88 °C (decomp.) (Found: C, 33.10; H, 5.08; N, 2.19. C₁₈H₃₅AsClF₆-NP₂Pd requires: C, 32.85; H, 5.36; N. 2.13%). NMR (CD₂Cl₂, 295 K): $\delta_{\rm H}$ (300 MHz) 8.63 (2 H, m, ortho-H of C₅H₅N), 7.96 (1 H, m, para-H of C₅H₅N), 7.57 (2 H, m, meta-H of C₅H₅N), 3.19 [2 H, d, J(P,H) = 10.2, PCH₂As], 3.00-2.75, 2.65-2.35(2 H each, both m, br, AsCHCH₃ and PCHCH₃), 1.65–1.15 (24 H, m, br, AsCHC H_3 and PCHC H_3); δ_C (75.5 MHz) 151.4 (s, ortho-C of C₅H₅N), 140.0 (s, para-C of C₅H₅N), 126.5 (s, meta-C of C₅H₅N), 31.5 (s, br, AsCHCH₃ of isomer B), 30.5 (s, br, As CHCH₃ of isomer A), 26.5 [d, br, J(P,C) = 21.8, PCHCH₃ of isomer Al, 25.4 (m, br, PCHCH₃ of isomer B), 20.3, 19.8 (both s, AsCHCH₃), 19.4 (m, br, PCH₂As), 19.0, 17.4 (both s, br, PCHCH₃); δ_P (81.0 MHz) -0.5 (s, PCH₂As of isomer A), -11.1 (s, PCH₂As of isomer B), -143.9 [sept, J(F,P) = 711.9. PF₆]; NMR (CD₂Cl₂, 213 K) $\delta_{\rm H}$ (300 MHz) 8.55 (m, ortho-H of C₅H₅N), 7.94 (m, para-H of C₅H₅N), 7.56 (m, meta-H of C₅H₅N), 3.13 (m, br, PCH₂As of isomers A and B), 2.94–2.77, 2.60-2.40, 2.30-2.25 (all m, br, AsCHCH₃ and PCHCH₃ of isomers A and B), 1.50-1.00 (m, br, AsCHCH₃ and PCHCH₃ of isomers A and B); δ_C (75.5 MHz) 150.5 (s, ortho-C of C₅H₅N of isomer A), 150.4 (s, ortho-C of C₅H₅N of isomer B), 139.5 (s, para-C of C₅H₅N of isomer B), 139.4 (s, para-C of C₅H₅N of isomer A), 126.2 (s, meta-C of C₅H₅N of isomer B), 125.8 [d, J(P,C) = 2.5, meta-C of C_5H_5N of isomer A], 30.1 (s, br, AsCHCH₃ of isomer B), 29.2 (s, br, AsCHCH₃ of isomer A), 25.3 [d, J(P,C) = 24.0, $PCHCH_3$ of isomer A], 23.7 [d, J(P,C) =21.1, PCHCH₃ of isomer B], 19.4 (s, br, AsCHCH₃ or PCHCH₃ of isomers A and B), 19.0 (s, AsCHCH₃ or PCHCH₃ of isomer B), 18.9 (s, AsCHCH₃ or PCHCH₃ of isomer A), 18.2 (m, PCH₂As of isomer B), 18.0 (s, AsCHCH₃ or PCHCH₃ of isomer A), 17.6 [d, J(P,C) = 23.3, PCH_2As of isomer A], 17.3 (s, br, AsCHCH₃ or PCHCH₃ of isomer B), 16.6 [d, J(P,C) =1.8, PCHCH₃ of isomer A], 16.3 (s, br, PCHCH₃ of isomer B); $\delta_{\rm P}$ (81.0 MHz) -2.1 (s, PCH₂As of isomer A), -10.1 (s, $PCH_2As \text{ of isomer B}$, $-144.2 \text{ [sept } J(F,P) = 711.9, PF_6]$.

[PdCl(CH₃)(κ^2 - tBu_2 AsCH₂PiPr₂)] 25. A solution of 24 (130 mg, 0.49 mmol) in toluene (6 cm³) was treated with a solution of 2 (185 mg, 0.58 mmol) in toluene (6 cm³) and stirred for 30 min at room temperature. The solvent was evaporated in vacuo, the residue was suspended in pentane (5 cm³) and the suspension was irradiated for 20 min in an ultrasound bath. A paleyellow solid precipitated, which was separated from the mother liquor, washed twice with pentane (5 cm³) and dried. Yield 194 mg (83%); mp 64 °C (decomp.) (Found: C, 40.56; H, 7.82; Pd, 23.25. C₁₆H₃₇AsClPPd requires: C, 40.27; H, 7.81; Pd, 22.30%). NMR (CDCl₃): δ_H (400 MHz) 2.58 [2 H, d, J(P,H) = 10.0, PCH₂As], 2.56-2.39 (2 H, m, br, PCHCH₃), 1.38 (18 H, s, AsCCH₃), 1.30 [6 H, dd, J(P,H) = 16.4, J(H,H) = 7.3, $PCHCH_3$], 1.28 [6 H, dd, J(P,H) = 15.3, J(H,H) = 7.3, $PCHCH_{3}$], 0.73 [3 H, d, J(P,H) = 0.9, $PdCH_{3}$]; δ_{C} (100.6 MHz) 39.4 [d, J(P,C) = 2.9, As CCH_3], 29.8 (s, As CCH_3), 26.3 [d, J(P,C) = 19.1, $PCHCH_3$, 21.2 [d, J(P,C) = 18.1, PCH_2As], 19.7, 18.6 (both s, PCH*C*H₃), 0.9 [d, J(P,C) = 5.7, PdCH₃]; δ_P (162.0 MHz) 22.1 (s).

Reaction of 25 with AgBF₄. A solution of 25 (90 mg, 0.19 mmol) in acetonitrile (5 cm³) was treated under continuous stirring at -30 °C with a solution of AgBF₄ (37 mg, 0.19 mmol) in acetonitrile (5 cm³). An off-white solid precipitated. After the solution was slowly warmed to room temperature, it was stirred for 25 min. The solvent was then evaporated *in vacuo*, the residue was suspended in dichloromethane (10 cm³) and the suspension was filtered. The filtrate was brought to dryness *in vacuo*, the remaining pale-yellow residue was washed three times with pentane (8 cm³) and dried. The ¹H and ³¹P NMR spectra revealed that besides 26 as the major species several by-products were formed. Attempts to separate the by-products

by fractional crystallization failed. Data for **26**: NMR (CD₂Cl₂): $\delta_{\rm H}$ (300 MHz) 2.80 [2 H, d, $J({\rm P,H})$ = 10.1, PCH₂As], 2.50–2.36 (2 H, m, br, PCHCH₃), 2.35 (3 H, s, br, CH₃CN), 1.48–1.25 (12 H, m, PCHCH₃), 1.41 (18 H, s, AsCCH₃), 0.62 (3 H, s, br, PdCH₃); $\delta_{\rm C}$ (75.5 MHz) 122.7 (m, CH₃CN), 40.6 [d, $J({\rm P,C})$ = 1.8, AsCCH₃], 29.7 (s, AsCCH₃), 26.6 [d, $J({\rm P,C})$ = 22.2, PCHCH₃], 21.3 [d, $J({\rm P,C})$ = 21.8, PCH₂As], 19.7 (s, PCHCH₃), 18.4 [d, $J({\rm P,C})$ = 1.1, PCHCH₃], 3.0 (s, br, CH₃CN), -0.4 [d, $J({\rm P,C})$ = 5.5, PdCH₃]; $\delta_{\rm P}$ (81.0 MHz) 24.3 (s).

 $[Pd_2(CH_3)_2(\mu-Cl)(\mu-tBu_2AsCH_2PiPr_2)_2][B(Ar_F)_4]$ 27. A solution of 25 (100 mg, 0.21 mmol) (55) in diethyl ether (5 cm³) was treated with a solution of Na[B(Ar_E)₄] (92 mg, 0.10 mmol) in diethyl ether (6 cm³) and stirred for 1 h at room temperature. An off-white solid precipitated. The solution was filtered, the filtrate was concentrated in vacuo to ca. 3 cm³ and then stored for 3 d at -78 °C. A pale-red microcrystalline solid was formed, which was separated from the mother liquor, washed twice with pentane (5 cm³) and dried. Yield 139 mg (74%); mp 70 °C (decomp.) (Found: C, 42.71; H, 4.53. C₆₄H₈₆As₂BClF₂₄P₂Pd₂ requires: C, 43.13; H, 4.86). NMR (CD₂Cl₂): $\delta_{\rm H}$ (400 MHz) 7.74 [8 H, s, br, ortho-H of B(Ar_F)₄], 7.58 [4 H, s, br, para-H of B(Ar_F)₄], 2.75 [2 H, m, in ${}^{1}H\{{}^{31}P\}$ d, J(H,H) = 14.0, PCH₂As], 2.61, 2.44 [2 H each, m, in ${}^{1}H\{{}^{31}P\}$ sept, J(H,H) = 7.0, $PCHCH_3$, 2.19 [2 H, m, in ${}^{1}H\{{}^{31}P\}$ d, J(H,H) = 12.5, PCH_2As], 1.49 (12 H, m, PCHCH₃), 1.47, 1.44 (18 H each, both s, br, AsCCH₃), 1.36 [6 H, dd, J(P,H) = 11.2, J(H,H) = 7.0, $PCHCH_3$], 1.28 [6 H, dd, J(P,H) = 16.1, J(H,H) = 7.3, $PCHCH_3$], 0.93 [6 H, d, J(P,H) = 4.4, $PdCH_3$]; δ_C (100.6 MHz) 162.1 [q, J(B,C) = 49.6, ipso-C of B(Ar_F)₄], 135.1 [s, br, ortho-C of B(Ar_F)₄], 129.2 [qq, J(F,C) = 31.5, J(B,C) = 2.9, meta-C of $B(Ar_F)_4$], 124.9 [q, J(F,C) = 272.8, CF_3], 117.8 [m, br, para-C of $B(Ar_F)_4$, 41.9 [m, X-part of ABX spin system, in ${}^{13}C\{{}^{1}H, {}^{31}P\}$ s, AsCCH₃], 40.3 [m, br, X-part of ABX spin system, in $^{13}C\{^{1}H, ^{31}P\}$ s, AsCCH₃], 31.4, 30.0 (both s, AsCCH₃), 28.6 [d, J(P,C) = 21.0, $PCHCH_3$], 23.2 [d, J(P,C) = 19.1, $PCHCH_3$], 23.1[d, J(P,C) = 3.8, $PCHCH_3$], 21.2, 18.9 [both d, J(P,C) = 1.9, $PCHCH_3$], 17.6 [d, J(P,C) = 7.6, $PCHCH_3$], 13.0 [m, X-part of ABX spin system, in ${}^{13}C\{{}^{1}H, {}^{31}P\}$ s, $PCH_2As]$, -6.4 (s, br, PdCH₃); $\delta_{\rm F}$ (376.4 MHz) -62.7 (s, CF₃); $\delta_{\rm P}$ (162.0 MHz) = 30.6 (s); MS (FAB): m/z 919 (M⁺, 6.3%).

 $[Pd_2(CH_3)_2(\mu-Cl)(\mu-iPr_2AsCH_2PiPr_2)_2]B(Ar_E)_4$ 28a,b. A solution of 24 (60 mg, 0.23 mmol) in diethyl ether (5 cm³) was treated at -50 °C with a solution of 3 (80 mg, 0.27 mmol) in diethyl ether (5 cm³) and under continuous stirring slowly warmed to room temperature (1 h). To this solution, a solution of Na[B(Ar_F)₄] (102 mg, 0.12 mmol) in diethyl ether (10 cm³) was added dropwise and the reaction mixture stirred for 45 min. The solution was filtered, and the filtrate was brought to dryness in vacuo. The residue was dissolved in CH₂Cl₂ (2 cm³) and the solution was stored at -78 °C for 3 d. A pale-yellow microcrystalline solid precipitated, which was separated from the mother liquor, washed twice with pentane (5 cm³) and dried. Yield 135 mg (68%); mp 145 °C (decomp.); $\Lambda = 45.6$ cm² Ω^{-1} mol⁻¹ (Found: C, 41.48; H, 4.26. C₆₀H₇₈As₂BClF₂₄P₂Pd₂ requires: C, 41.75; H, 4.55%). NMR (CD₂Cl₂): $\delta_{\rm H}$ (400 MHz) 7.75 [8 H, s, br, ortho-H of B(Ar_F)₄], 7.59 [4 H, s, br, para-H of $B(Ar_F)_4$], 2.70–2.58 (4 H, m, AsCHCH₃ or PCHCH₃), 2.55– 2.40, 2.07-1.87 (4 H each, both m, PCH₂As and AsCHCH₃ or PCHCH₃), 1.51–1.12 (48 H, m, AsCHCH₃ and PCHCH₃), 0.73 [6 H, d, J(P,H) = 4.7, in ${}^{1}H\{{}^{31}P\}$ s, PdCH₃]; δ_{C} (100.6 MHz) 162.1 [q, J(B,C) = 49.6, ipso-C of $B(Ar_F)_4$], 135.1 [s, br, ortho-C of $B(Ar_F)_4$, 129.4 [qq, J(F,C) = 31.5, J(B,C) = 2.9, meta-C of $B(Ar_F)_4$, 124.9 [q, J(F,C) = 272.8, CF_3], 117.8 [m, br, para-C of $B(Ar_F)_4$, 29.2 [d, J(P,C) = 21.0, $PCHCH_3$], 28.9 (m, X-part of ABX spin system, AsCHCH₃), 24.8 (m, br, X part of ABX spin system, AsCHCH₃), 23.0, 21.1 (both s, AsCHCH₃ or $PCHCH_3$), 20.6 [d, J(P,C) = 21.9, $PCHCH_3$], 19.9, 19.6 [both d, J(P,C) = 3.8, AsCHCH₃ or PCHCH₃], 19.7 (s, AsCHCH₃ or

Table 1 Crystallographic data for 4, 13 and 27

	4	13	27
Formula	C ₁₅ H ₃₄ AsCl ₂ PPd	$C_{18}H_{39}AsF_6P_2Pd$	C ₆₄ H ₈₆ As ₂ BClF ₂₄ P ₂ Pd ₂
M	497.61	612.75	1782.24
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P2_{1}/c$ (no. 14)	$P2_1$ (no. 4)	Pī (no. 2)
aĺÅ	18.408(3)	9.0217(18)	14.487(9)
b/Å	8.1421(9)	17.072(3)	17.323(11)
c/Å	14.335(2)	9.0882(18)	17.554(12)
a/°	90	90	112.46(8)
β/°	109.071(18)	113.81(3)	96.69(8)
γ/°	90	90	101.79(8)
V/ų	2030.6(5)	1280.6(4)	3892(4)
T/K	173(2)	173(2)	173(2)
Z	2	2	2
$D_{\rm c}/{\rm g~cm^{-3}}$	0.814	1.589	1.593
λ(Mo-Kα)/Å	0.71073	0.71073	0.71073
μ /mm ⁻¹	1.432	2.177	1.545
No. of reflections measured	19820	17768	38138
No. of unique reflections	3442 [R(int) = 0.0520]	6094 [R(int) = 0.0414]	12934 [R(int) = 0.0654]
$R1^a$	0.0378	0.0251	0.0404
$wR2^b$	0.1001	0.0620	0.0928
Residual electron density/e Å ⁻³	0.904/-0.915	1.014/-0.567	0.063/-0.064

 $^{{}^}aR = \Sigma |F_o - F_c|/\Sigma F_o \text{ [for } F_o > 2\sigma(F_o) \text{] for the number of observed reflections } [I > 2\sigma(I)], \text{ respectively.} \\ {}^bwR_2 = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma w(F_o^2)^2]^{1/2}; \\ {}^wW_1 = [\sigma^2(F_o^2) + (0.0691P)^2 + 0.0000P] \\ {}^aH_1 = [\sigma^2(F_o^2) + (0.0373P)^2 + 0.1233P] \\ {}^aH_2 = [\sigma^2(F_o^2) + (0.0409P)^2 + 0.0000P] \\ {}^aH_3 = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma w(F_o^2)^2]^{1/2}; \\ {}^aH_3 = [\sigma^2(F_o^2) + (0.0409P)^2 + 0.0000P] \\ {}^aH_3 = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma w(F_o^2)^2]^{1/2}; \\ {}^aH_3 = [\sigma^2(F_o^2) + (0.0409P)^2 + 0.0000P] \\ {}^aH_3 = [\Sigma w(F_o^2 - F_o^2)^2/\Sigma w(F_o^2)^2]^{1/2}; \\ {}^aH_3 = [\Sigma w(F_$

 $PCHCH_3$), 19.0 [d, J(P,C) = 1.9, AsCHCH₃ or $PCHCH_3$], 18.6 $[d, J(P,C) = 3.8, AsCHCH_3 \text{ or } PCHCH_3], 16.4 [d, J(P,C) = 5.7,$ AsCHCH₃ or PCHCH₃], 10.4 (m, X part of ABX spin system, PCH_2As), -8.4 [d, J(P,C) = 3.8, $PdCH_3$]; $\delta_{C\{H,P\}}$ (100.6 MHz) 162.1 [q, J(B,C) = 49.6, ipso-C of $B(Ar_F)_4$], 135.1 [s, br, ortho-Cof B(Ar_F)₄], 129.4 [q, br, J(F,C) = 31.5, meta-C of B(Ar_F)₄], 124.9 [q, J(F,C) = 272.8, CF_3], 117.8 [m, br, para-C of $B(Ar_F)_4$], 29.5 (s, AsCHCH₃ of minor isomer), 29.2 (s, PCHCH₃ of major isomer), 29.1 (s, PCHCH₃ of minor isomer), 28.8, 24.8 (both s, AsCHCH3 of major isomer), 24.7 (s, AsCHCH3 of minor isomer), 23.1 (s, AsCHCH3 or PCHCH3 of major isomer), 21.9, 21.3 (both s, PCHCH₃ of minor isomer), 21.1 (s, AsCHCH₃ or PCHCH₃ of major isomer), 20.8, 20.1 (both s, AsCHCH₃ or PCHCH₃ of minor isomer), 20.6 (s, PCHCH₃ of major isomer), 19.9, 19.65, 19.6 (all s, AsCHCH₃ or PCHCH₃ of major isomer), 19.5, 19.45, 19.4, 19.25 (all s, AsCHCH₃ or PCHCH₃ of minor isomer), 18.9, 18.6 (both s, AsCHCH₃ or PCHCH₃ of major isomer), 17.3 (s, AsCHCH₃ or PCHCH₃ of minor isomer), 16.3 (s, AsCHCH3 or PCHCH3 of major isomer), 10.7 [s, in ¹³C{¹H} m, X part of ABX spin system, PCH₂As of minor isomer], 10.4 (s, PCH₂As of major isomer), -5.5 [s, in ¹³C{¹H} m, PdCH₃ cis to PiPr₂ of minor isomer], -8.4 (s, PdCH₃ of major isomer), -11.7 [s, in ${}^{13}C\{{}^{1}H\}$ also s, PdCH₃ cis to AsiPr₂ of minor isomer]; δ_F (376.4 MHz) -62.7 (s, CF₃); $\delta_{\rm P}$ (162.0 MHz) 38.5 (s, major isomer), 30.6 (s, minor isomer).

Crystallography

Single crystals of 4 were grown from methanol (50 to -15 °C), those of 13 by diffusion of pentane into a solution of CH_2Cl_2 (20 °C), and those of 27 from CH_2Cl_2 (25 to -20 °C). Crystal data collection parameters are summarized in Table 1. Intensity data were corrected for Lorentz and polarization effects. Data reduction was performed with Stoe IPDS software. The structures were solved by direct methods (SHELXS-97). Atomic coordinates and anisotropic thermal displacement parameters of the non-hydrogen atoms were refined anisotropically by full-matrix least squares on F^2 (SHELXL-97). The hydrogen atoms were assigned ideal positions and refined isotropically using a riding model. One of the *tert*-butyl groups in compound 13 is rotationally disordered and was refined anisotropically with an occupancy ratio of 50 : 50. Also, the PF₆ anion is disordered and was refined to a split occupancy ratio of 60 : 40.

Four of the CF_3 -groups of the $B(Ar_F)_4$ counterion in compound 27 were found disordered and refined anisotropically with restraints on U_{ij} . One molecule of CH_2Cl_2 per unit formula of 27 was located in the lattice.

CCDC reference number 182355 (13). The crystal structures of 4 (143399) and 27 (143400) were reported previously.⁵

See http://www.rsc.org/suppdata/dt/b2/b202879b/ for crystallographic data in CIF or other electronic format.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (SFB 347) and the Fonds der Chemischen Industrie for financial support, the latter in particular for a Ph.D. grant (to K. I.). Moreover, we are very grateful to Mrs M.-L. Schäfer and Dr R. Bertermann (NMR measurements), Dr G. Lange and Mr F. Dadrich (mass spectra), and to Mrs R. Schedl and Mr C. P. Kneis (elemental analyses and DTA measurements).

References

- 1 H. Werner, A. Hampp, K. Peters, E.-M. Peters, L. Walz and H. G. von Schnering, Z. Naturforsch., Teil B, 1990, 45, 1548–1558; H. Werner, A. Stark, M. Schulz and J. Wolf, Organometallics, 1992, 11, 1126–1130; H. Werner, A. Hampp and B. Windmüller, J. Organomet. Chem., 1992, 435, 169–183; M. Schulz and H. Werner, Organometallics, 1992, 11, 2790–2795; H. Werner, B. Weber, O. Nürnberg and J. Wolf, Angew. Chem., 1992, 104, 1105–1107; H. Werner, B. Weber, O. Nürnberg and J. Wolf, Angew. Chem., Int. Ed. Engl., 1992, 31, 1025–1027; H. Werner, M. Schulz and B. Windmüller, Organometallics, 1995, 14, 3659–3668; B. Windmüller, J. Wolf and H. Werner, J. Organomet. Chem., 1995, 502, 147–161; M. Martin, O. Gevert and H. Werner, J. Chem. Soc., Dalton Trans., 1996, 2275–2283.
- 2 P. Schwab and H. Werner, J. Chem. Soc., Dalton Trans., 1994, 3415–3425.
- 3 J. Wolf, M. Manger, U. Schmidt, G. Fries, D. Barth, B. Webern-dörfer, D. A. Vicic, W. D. Jones and H. Werner, J. Chem. Soc., Dalton Trans., 1999, 1867–1875.
- 4 H. Werner, M. Manger, U. Schmidt, M. Laubender and B. Weberndörfer, *Organometallics*, 1998, **17**, 2619–2627.
- 5 U. Schmidt, K. Ilg and H. Werner, J. Chem. Soc., Dalton Trans., 2000, 1005–1007.
- 6 W. L. Steffen and G. J. Palenik, *Inorg. Chem.*, 1976, **15**, 2432–2439.
- 7 J. A. Davies, A. A. Pinkerton, R. Syed and M. Vilmer, J. Chem. Soc., Chem. Commun., 1988, 47–49.
- 8 R. D. Feltham and R. G. Hayter, J. Chem. Soc., 1964, 4587–4591.

- N. Baltzer, L. Macko, S. Schaffner and M. Zehnder, Helv. Chim. Acta, 1996, 79, 803–812; C. Ganter, C. Glinsböckel and B. Ganter, Eur. J. Inorg. Chem., 1998, 1163–1168; L. Crociani, G. Bandoli, A. Dolmella, M. Basato and B. Corain, Eur. J. Inorg. Chem., 1998, 1811–1820; L. Crociani, S. Antonaroli, G. Bandoli, L. Canovese, F. Visentin and P. Uguagliati, Organometallics, 1999, 18, 1137–1147.
- 10 H. Hashimoto, S. Okeya and Y. Nakamura, *Bull. Chem. Soc. Jpn.*, 1988, **61**, 1593–1600.
- 11 M. Hesse, H. Meier and B. Zeeh, Spektroskopische Methoden in der Organischen Chemie, Thieme, Stuttgart, 1991.
- A. Sen and T.-W. Lai, J. Am. Chem. Soc., 1982, 104, 3520–3522;
 G. P. Suranna, P. Mastrorilli, C. F. Nobile and W. Keim, Inorg. Chim. Acta, 2000, 305, 151–156.
- 13 F. Neve, A. Crispini, M. Ghedini and G. De Munno, *Inorg. Chim. Acta*, 1990, 176, 23–25.
- 14 J. A. Davies, F. R. Hartley and S. G. Murray, *Inorg. Chem.*, 1980, 19, 2299–2303.
- A. Gillie and J. K. Stille, J. Am. Chem. Soc., 1980, 102, 4933–4941;
 I. Brassat, U. Englert, W. Keim, D. P. Keitel, S. Killat, D.-P. Suranna and R. Wang, Inorg. Chim. Acta, 1998, 280, 150–162; M. Tschoerner, P. S. Pregosin and A. Albinati, Organometallics, 1999, 18, 670–678; P. Braunstein, M. D. Fryzuk, M. Le Dall, F. Naud, S. J. Rettig and F. Speiser, J. Chem. Soc., Dalton Trans., 2000, 1067–1073.
- 16 A. L. Balch, C. T. Hunt, C.-L. Lee, M. M. Olmstead and J. P. Farr, J. Am. Chem. Soc., 1981, 103, 3764–3772.
- 17 S. J. Cooper, M. P. Brown and R. J. Puddephatt, *Inorg. Chem.*, 1981, 20, 1374–1377.
- 18 S. J. Young, B. Kellenberger, J. H. Reibenspies, S. E. Himmel, M. Manning, O. P. Anderson and J. K. Stille, J. Am. Chem. Soc., 1988, 110, 5744–5753.

- M. M. Olmstead, J. P. Farr and A. L. Balch, *Inorg. Chim. Acta*, 1981,
 47–54; R. A. Stockland Jr., G. K. Anderson and N. P. Rath, *Inorg. Chim. Acta*, 1997, 259, 173–178; R. A. Stockland Jr., G. K. Anderson and N. P. Rath, *J. Am. Chem. Soc.*, 1999, 121, 7945–7946; J. Blin, P. Braunstein, J. Fischer, G. Kickelbick, M. Knorr, X. Morise and T. Wirth, *J. Chem. Soc., Dalton Trans.*, 1999, 2159–2169; G. Besenyei, L. Párkányi, I. Foch and L. I. Simándi, *Angew. Chem.*, 2000, 112, 986–988; G. Besenyei, L. Párkányi, I. Foch and L. I. Simándi, *Angew. Chem., Int. Ed.*, 2000, 39, 956–958.
- P. D. Enlow and C. Woods, Organometallics, 1983, 2, 64–68;
 R. R. Guimerans and A. L. Balch, Inorg. Chim. Acta, 1983, 77,
 L177–L178; A. L. Balch, R. R. Guimerans, J. Linehan, M. M. Olmstead and D. E. Oram, Organometallics, 1985, 4, 1445–1451;
 A. L. Balch, R. R. Guimerans, J. Linehan and F. E. Wood, Inorg. Chem., 1985, 24, 2021–2026; C. J. Janke, L. J. Tortorelli, J. L. E. Burn, C. A. Tucker and C. Woods, Inorg. Chem., 1986, 25, 4597–4602; J. C. DePriest and C. Woods, Polyhedron, 1991, 10, 2153–2161.
- 21 J. R. Doyle, P. E. Slade and H. B. Jonassen, *Inorg. Synth.*, 1960, 6, 216–219.
- 22 Y. Tatsuno, T. Yoshida and S. Otsuka, *Inorg. Synth.*, 1990, 28, 342–343.
- 23 R. E. Rülke, J. M. Ernsting, A. L. Spek, C. J. Elsevier, P. W. N. M. van Leeuwen and K. Vrieze, *Inorg. Chem.*, 1993, 32, 5769–5778; F. T. Lapido and G. K. Anderson, *Organometallics*, 1994, 13, 303–306.
- 24 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467–473.
- 25 G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, 1997.