Preparation, Spectroscopic and Structural Characterization of η^1 -N and η^2 -Se,Se' Complexes of a $P_2N_4Se_2$ Ring

Tristram Chivers,* ^a Daniel D. Doxsee, ^a Robert W. Hilts, ^a Auke Meetsma, ^b Masood Parvez ^a and Johan C. van de Grampel* ^b

- Department of Chemistry, The University of Calgary, Calgary, Alberta T2N 1N4, Canada
- b Department of Polymer Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

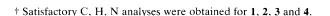
The reaction of 1,5-Ph₄P₂N₄Se₂, **1**, prepared by the treatment of Ph₂PN₂(SiMe₃)₃ with a mixture of SeCl₄ and Se₂Cl₂ in acetonitrile, with [PtCl₂(PEt₃)]₂ gives the adducts [PtCl₂(PEt₃)]_n[η^1 -N-Ph₄P₂N₄Se₂] (**2**, n=1; **3**, n=2) in which the P₂N₄Se₂ ring is shown by an X-ray structural determination of **3** to contain a transannular Se–Se interaction; the oxidative addition of **1** or **2** to Pt(C₂H₄)(PPh₃)₂ produces the corresponding η^2 -Se,Se' complexes.

Several interesting reactions of Se₄N₄ have been reported recently.1-5 Without exception these reactions result in breakdown of the heterocyclic ring. For example, the treatment of Se₄N₄ with [PtCl₂(PMe₂Ph)]₂ or Pt(PPh₃)₃ produces the complexes Pt(Se₃N)Cl(PMe₂Ph)⁴ or [Pt(Se₂N₂)(PPh₃)]₂,⁵ which contain the chelating ligands Se₃N⁻ and Se₂N₂² respectively. Furthermore, Se₄N₄ is difficult to handle owing to its explosive nature and insolubility in organic solvents. By contrast, the 1,5-diphosphadiselenatetrazocine 1 is non-explosive, soluble in organic solvents, and contains a structurally informative ³¹P NMR probe. ⁶ By analogy with the chemistry of the sulfur analogue, 7.8 the hybrid inorganic heterocycle 1 should provide a good model for investigating reactions of unsaturated selenium-nitrogen systems. However, 1 has only been obtained in very low yields and the existence of the cross-ring bond has not been unequivocally established owing

to the tendency of this compound to deposit red selenium in the solid state or in solution.⁶

We report here a high yield synthesis of 1 and the reaction of 1 with $[PtCl_2(PEt_3)]_2$ to give the *N*-bonded 1:1 and 1:2 adducts, 2 and 3. We also establish the presence of a transannular Se–Se interaction in 3 by X-ray crystallography. The oxidative addition of $Pt(PPh_3)_2(C_2H_4)$ to 1 or 2 produces the corresponding η^2 -Se,Se' adducts 4 and 5, respectively.

The eight-membered ring 1 is readily obtained by the cyclocondensation reaction between Ph₂PN₂(SiMe₃)₃ and a mixture of selenium halides designed to imitate 'SeCl₃' [eqn. (1)]. The slow addition of Ph₂PN₂(SiMe₃)₃ (21.5 mmol) in acetonitrile (100 ml) to a mixture of SeCl₄ (14.3 mmol) and Se₂Cl₂ (3.6 mmol) suspended in acetonitrile (150 ml) at 23 °C produced (after 16 h) a yellow-brown precipitate and a yellow solution. The volume of the solution was reduced to 50 ml and


the precipitate was dried under vacuum. Extraction of this precipitate with dichloromethane (3 \times 40 ml) gave 1 in 85% yield (9.1 mmol) as a yellow solid identified by ³¹P and ⁷⁷Se NMR spectra.^{6†}

$$2Ph_2PN_2(SiMe_3)_3 + 4/3 SeCl_4 + 1/3 Se_2Cl_2$$

 $\rightarrow 1,5-Ph_4P_2N_4Se_2 + 6Me_3SiCl$ (1)

The addition of 1 to the dimer [PtCl₂(PEt₃)]₂ in a 2:1 molar ratio in CH₂Cl₂ at -78 °C, followed by warming to room temp. for 20 min, produces a mixture of the 1:1 adduct, **2**, and the 2:1 adduct, **3**, in the approximate molar ratio 7:2 as determined by ³¹P NMR spectroscopy. A pure sample of the monoadduct was obtained by layering hexane on to a solution of the mixture of **2** and **3** in dichloromethane.† The ³¹P{¹H} NMR spectrum of **2** shows three resonances at δ 2.4 (d, ${}^3J_{P_X-P_A}$ 5, ${}^1J_{P_X-P_A}$ 3619 Hz), 109.3 (d, ${}^4J_{P_A-P_B}$ 16, ${}^2J_{P_B-Se_A}$ 93 Hz) and 114.3 (dd, ${}^4J_{P_A-P_B}$ 16, ${}^3J_{P_A-P_X}$ 5, ${}^2J_{P_A-P_t}$ 94 Hz). The low-frequency resonance is readily assigned to the Et₃P ligand (P_X) on the basis of the large P-Pt coupling constant, whereas the two high-frequency resonances can be attributed to the inequivalent phosphorus atoms, P_A and P_B of the heterocyclic ring, [cf. δ (³¹P) 113.4 for 1].6 The ⁷⁷Se NMR spectrum of **2** shows two resonances for the inequivalent Se atoms at δ 1270 (${}^2J_{Se_A-P_B}$ 93, ${}^2J_{Se_A-P_A}$ 85 Hz) and 1258 (${}^2J_{Se_B-P}$ 96, ${}^2J_{Se_B-P}$ 60 Hz) (ref. SeMe₂ δ 0), which appear as a pseudotriplet and a doublet of doublets, respectively.

The diadduct **3** can be obtained in virtually quantitative yield by carrying out the reaction of **1** with $[PtCl_2(PEt_3)]_2$ in a 1:1 molar ratio.† The $^{31}P\{^{1}H\}$ NMR spectrum of **3** exhibits two singlets at δ 3.0 ($^{1}J_{P-Pt}$ 3654 Hz) and 113.2 ($^{2}J_{P-Se}$ 69 and 89 Hz) attributable to the Et_3P ligands and equivalent PPh_2 groups, respectively. The ^{77}Se NMR spectrum of **3** exhibits a five line AA'X pattern (where X is ^{77}Se for the most abundant isotopomer) centred at δ 1337 with $|(J_{P_A-Se}+J_{P_A'-Se})|$ 160 Hz. These NMR data are uniquely consistent with a distal arrangement for the $PtCl_2(PEt_3)$ groups in the 2:1 adduct. Furthermore, the anomalously high-frequency ^{31}P NMR chemical shifts of the PPh_2 groups observed for **2** and **3** suggests strongly that N-coordination does not disrupt the Se–Se transannular interaction in these adducts. $^{9.10}$

The structure of **3** was established by X-ray crystallography. Yellow crystals of **3** were obtained by recrystallization from

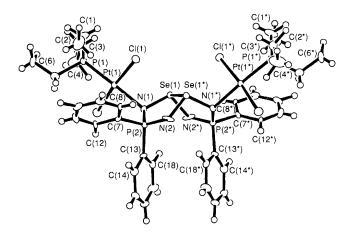


Fig. 1 ORTEP plot (50% probability ellipsoids) for [η¹-N-PtCl₂(PEt₃)]₂(1,5-Ph₄P₂N₄Se₂), 3; selected bond lengths (Å) and bond angles (°): Pt(1)–P(1) 2.229(3), Pt(1)–Cl(1) 2.319(3), Pt(1)–Cl(2) 2.301(3), Pt(1)–N(1) 2.162(9), Se(1)–Se(1)* 2.594(2), Se(1)–N(1) 1.753(9), Se(1)–N(2)* 1.717(8), P(2)–N(1) 1.673(9), P(2)–N(2) 1.64(1), Cl(2)–Pt(1)–P(1) 91.5(1), Cl(2)–Pt(1)–N(1) 87.5(3), Cl(1)–Pt(1)–P(1) 94.2(1), Cl(1)–Pt(1)–N(1) 86.9(3), Se(1)*–Se(1)–N(1) 91.7(3), Se(1)–Se(1)*–N(2) 89.9(3), N(1)–Se(1)–N(2)* 106.0(4), N(1)–P(2)–N(2) 110.9(4), Pt(1)–N(1)–Se(1) 108.7(4), Pt(1)–N(1)–P(2) 117.2(5), Se(1)–N(1)–P(2) 118.1(6), Se(1)*–N(2)-P(2) 122.4(5). The asterisks indicate symmetry-related atoms.

CH₂Cl₂-hexane at 0 °C.‡ The molecular geometry and atomic numbering scheme are shown in Fig. 1. The structural determination confirms that the equivalent PtCl₂(PEt₃) groups are η^1 -N bonded to the $P_2N_4Se_2$ ring in distal positions. The most interesting feature of the structure of 3 is the transannular Se-Se interaction. The Se-Se distance is 2.594(2) Å (cf. 2.34 Å for the Se–Se single bond in Se₈). 11 Based on the observation that the formation of N-bonded adducts results in a small contraction of the S-S distance for the sulfur analogue of 1,9,10 we tentatively estimate a value of 2.65-2.70 Å for the Se-Se interaction in 1. This can be compared with the values of 2.748(9) and 2.84(1) Å found for the analogous intramolecular $\pi^*-\pi^*$ interactions¹² in S₄N₄¹³ and Se₈²⁺, ¹⁴ respectively. The Se-N and P-N bonds involving the coordinated nitrogen atom N(1) in 3 are slightly longer than the corresponding bonds to N(2). The Se(1)-N(2)distance of 1.717(8) Å is significantly shorter than the average value of 1.777(3) Å observed for d(Se^{IV}-N) in 1,5-Ph₄P₂N₄Se₂Me₂⁶ (cf. 1.64 Å predicted for Se^{IV}=N double bond).¹³ The coordinated nitrogen atom N(1) is removed significantly from the Se_2N_2 plane as indicated by the dihedral angles N(1)–Se(1)+Se(1)*-N(1)* = 129.0(6), N(2)*-Se(1)-Se(1)-N(2)* = -83.0(6), and N(1)-Se(1)-Se(1)*-N(2) = 23.0(4)°. The sum of the angles at N(1) is 344°. The geometry at the platinum(II) centres is approximately square planar with bond angles in the range $86.9(3)-94.2(1)^{\circ}$.

The eight-membered ring 1 readily undergoes oxidative-addition with $Pt(C_2H_4)(PPh_3)_2$ at 0 °C in toluene to give 4 in 70% yield.† The $^{31}P\{^{1}H\}$ NMR spectrum of 4 consists of two singlets (with ^{195}Pt and ^{77}Se satellites) at δ 17.6 ($^{1}J_{P-P}$, 2980,

[‡] Crystal data for C₃₆H₅₀Cl₄P₄N₄Se₂Pt₂ 3: M=1352.62, monoclinic, space group C2/c; at 150(1) K. a=25.150(10), b=12.090(3), c=14.597(5) Å, $\beta=96.73(4)^\circ$, V=4407(3) Å³, Z=4, $\mu(\text{Mo-K}\alpha)=8.464$ mm⁻¹, F(000)=2584, $D_c=2.038$ g cm⁻³. Intensity data were collected at 150(1) K on a Rigaku AFC6S diffractometer operating in the ω -2 θ mode and using Mo-K α radiation ($\lambda=0.71069$ Å, graphite monochromator) and were corrected for absorption. Total number of unique reflections 4121, of which 2915 had $I>3\sigma(I)$. Crystal dimensions $0.45\times0.55\times0.15$ mm. The structure was solved by direct methods and was refined by full-matrix least-squares calculations to R 0.037 and $R_{\rm w}$ 0.034. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

 ${}^{2}J_{P-Se}$ 140 Hz) and 46.8 (${}^{3}J_{P-Pt}$ 424, ${}^{2}J_{P-Se}$ 71 Hz) attributable to the equivalent Ph₃P ligands and Ph₂P groups, respectively. The ⁷⁷Se NMR spectrum of 4 is characteristic of an A₂BB'M spin system (where M is ⁷⁷Se in the most abundant isotopomer for which the Ph₃P phosphorus atoms are magnetically inequivalent). The simulation of this spectrum provides the following coupling constants: ${}^{2}J_{P_{A}-Se}$ 71, ${}^{2}J_{P_{B}-Se}$ 137 ${}^{2}J_{P_{B}-Se}$ 28, and ${}^2J_{P_B-P_B}$ 8 Hz. 15 Thus, the NMR data are consistent with an η²-Se,Se' bonding mode for 4 analogous to that established by X-ray crystallography for the corresponding η²-S,S' complex.8b Finally we note that 2 also undergoes oxidativeaddition with $Pt(C_2H_4)(PPh_3)_2$ to give complex 5 in which the $P_2N_4Se_2$ ring acts as a μ^2,η^3-N,Se,Se' ligands on the basis of ³¹P NMR spectroscopy. Details will be given in the full account of this work.

In summary, the high-yield synthesis of 1 has facilitated studies of the chemistry of this heterocycle. Initial investigations indicate multimode coordination behaviour for this interesting ligand and the combination of ³¹P and ⁷⁷Se NMR spectroscopy provides a powerful structural probe for metal complexes. The presence of a transannular Se-Se interaction in N-bonded platinum(II) adducts of 1 has been established.

We thank the NSERC (Canada) for financial support.

Received, 17th June 1992; Com. 2/03164G

References

1 T. M. Klapötke, in The Chemistry of Inorganic Ring Systems, ed. R. Steudel, Elsevier, Amsterdam, 1992, pp. 409-427.

- 2 J. Adel, A. El-Kholi, W. Willing, U. Müller and K. Dehnicke, Chimia, 1988, 42, 70; J. Adel and K. Dehnicke, Chimia, 1988, 42,
- 3 E. G. Awere, J. Passmore, P. S. White and T. Klapötke, J. Chem. Soc., Chem. Commun., 1989, 1415; P. K. Gowik, T. M. Klapötke and T. S. Cameron, J. Chem. Soc., Dalton Trans., 1991, 1433. 4 P. F. Kelly, A. M. Z. Slawin, D. J. Williams and J. D. Woollins,
- J. Chem. Soc., Chem. Commun., 1989, 408.
- 5 P. F. Kelly, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, Polyhedron, 1990, 9, 1567.
- 6 T. Chivers, D. D. Doxsee and J. F. Fait, J. Chem. Soc., Chem. Commun., 1989, 1703.
- 7 N. Burford, T. Chivers, M. N. S. Rao and J. F. Richardson, Inorg. Chem., 1984, 23, 1946; T. Chivers, G. Dénès, S. W. Liblong and J. F. Richardson, Inorg. Chem., 1989, 29, 3683.
- 8 (a) T. Chivers, K. S. Dhathathreyan and T. Ziegler, J. Chem. Soc., Chem. Commun., 1989, 86; (b) T. Chivers, M. Edwards, A. Meetsma, J. C. van de Grampel and A. van der Lee, Inorg. Chem., 1992, 30, 2156.
- T. Chivers, G. Y. Dénès, S. W. Liblong and J. F. Richardson, Inorg. Chem., 1989, 28, 3683.
- 10 T. Chivers and R. W. Hilts, Inorg. Chem., submitted for publication.
- 11 P. Cherin and P. Unger, Acta Crystallogr., Sect. B, 1972, 28, 313.
- N. Burford, J. Passmore and J. C. P. Sanders, in From Atoms to Polymers-Isoelectronic Analogies, eds. J. F. Liebman and A. Greenberg, VCH, Weinheim, 1989, p. 53.
- 13 H. Bärnighausen, T. v Volkman and J. Jander, Acta Crystallogr., 1966, 21, 571.
- 14 R. K. McMullen, D. J. Prince and J. D. Corbett, Inorg. Chem., 1971, 10, 1749.
- 15 PANIC NMR simulation program supplied by Brüker.