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Abstract

Under the action of anionic nucleophiles RO^ (R=Ph, HCF2CF2CH2), R0S^ (R0=Ph, PhCH2,
C2H5OC(O)CH2), N3

^ on 2,4,6-trinitrobenzamide in MeCN or DMF, the ortho-nitro group is substituted
with high selectivity. Intramolecular cyclisation involving ortho-positioned fragments SX and -CONH2

(X�C2H5OC(O)CH2, Cl) has been achieved with the formation of 2-ethoxycarbonyl-3-hydroxy-4,6-
dinitrobenzo[b]thiophene and 4,6-dinitro-2H-benzo[b]isothiazol-3-one correspondingly. # 2000 Elsevier
Science Ltd. All rights reserved.
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The details of nucleophilic substitution of the nitro group in aromatic di- and polynitro-
compounds, though being of great importance, are little known, especially for compounds with
meta arranged nitro groups.1

Upon investigation of the chemistry of 2,4,6-trinitrobenzoic acid derivatives we have found
some interesting properties in the behaviour of 2,4,6-trinitrobenzamide (TNBA) in the reactions
of nucleophilic substitution. Upon reaction of TNBA with a range of anionic O-, S- and N-
nucleophiles (Nu^): RO^ (R=Ph, HCF2CF2CH2), R

0S^ (R0=Ph, PhCH2, C2H5OC(O)CH2) in
MeCN (at 80±82�C) or DMF (in the case of HCF2CF2CH2O

^ at 75�C and N3
^ at 20�C) selective

ortho-nitro group substitution, with the formation of the corresponding 2-Nu-4,6-dinitro-
benzamides (1), takes place in high yields (Scheme 1).
Nucleophiles RO^ and RS^ were generated in situ using a mixture of ROH or RSH with solid

K2CO3 (molar ratio TNB/ROH(RSH)/K2CO3 was 1:1:1). For azidation NaN3 (equimolar
amount) was employed and the reaction was continued until the full conversion of TNBA was
observed (6±10 h). According to the 1H NMR data, under such conditions, para-isomers are
either not formed at all (in the case of PhOH, PhSH, C2H5OC(O)CH2SH) or appeared in trace
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quantities; no more than 2% (in the case of HCF2CF2CH2OH, PhCH2SH). Only in the case of
NaN3 is the para-isomer formed in amounts of 5±7%.2

In the case of C2H5OC(O)CH2SH, when the process is carried out in re¯uxing MeCN, the
product of ortho-substitution 1e cyclises to form 2-ethoxycarbonyl-3-hydroxy-4,6-dinitro-
benzo[b]thiophene 22a (Scheme 1). At the same time, 1e can be obtained if the reaction is con-
ducted in 1-methyl-2-pyrrolidinone (NMP) at 20�C.
We have found that the polarity increase of an aprotic solvent leads to an increase in an

amount of the para-isomer: in NMP, ortho/para ratio for PhOH was 4:1, for PhSH and
PhCH2SH=5:1 and for C2H5OC(O)CH2SH=6:1. However, even in these cases, the ortho-iso-
mers can be easily separated from para-isomers by means of crystallisation from an appropriate
solvent. After this, the yield of isolated ortho-isomers is 55±80%.
Thus obtained, are previously unknown, ortho-substituted benzamides 1 which are of interest

in the synthesis of benzannelated heterocycles with a novel combination of functional
substituents. The formation of benzothiophene 2 can serve as an example of this. Besides, we
have found, that upon treatment of sul®de 1d with SO2Cl2, the product 3 spontaneously cyclises
to form 4,6-dinitro-2H-benzo[d]isothiazol-3-one (4)3 (Scheme 2).

The structure of the compounds obtained was proven by 1H and 13C NMR spectroscopy,
mass-spectrometry, IR spectroscopy and elemental analysis.
Some preliminary considerations concerning the reasons for high selectivity of ortho-substitution

in TNBA. In some earlier works4,5 it was reported, that the turn of the nitro group's plane with
respect to the plane of aromatic ring under the in¯uence of a neighbouring group, favours the
substitution of this nitro group. This aids the transition from sp2 to sp3 hybridization of the carbon
atom at the formation of the ipso-s-complex of the nitro compound with a nucleophile (cf. see
Ref. 4). In accordance with quantum-chemical calculations (AM1, Chem3D Pro, version 5.0), the
2-NO2 group in TNBA is turned relative to the plane of aromatic ring by 68�, the 6-NO2- by 30�

and the 4-NO2 is in the plane of the aromatic ring, which probably governs the high regioselec-
tivity of ortho-substitution. The plane of the CONH2 fragment is turned by 62� which decreases
the steric hindrance of a nucleophile approach.

Scheme 1. a: Nu^=PhO^; b: HCF2CF2CH2O
^; c: PhS^; d: PhCH2S

^; e: C2H5OC(O)CH2S
^; f: N3

^

Scheme 2.
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It must be noted that quantum-chemical calculations using this method quite adequately
re¯ects the known experimental data on the geometry of aromatic di- and polynitrocompounds
(to be published later).
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