

www.elsevier.com/locate/carres Carbohydrate Research 334 (2001) 207–213 CARBOHYDRATE RESEARCH

Cleavage of the C–C linkage between the sugar and the aglycon in C-glycosylphloroacetophenone, and the NMR spectral characteristics of the resulting di-C-glycosyl compound

Toshihiro Kumazawa,* Takayuki Kimura, Shigeru Matsuba, Shingo Sato, Jun-ichi Onodera

Department of Chemistry and Chemical Engineering, Faculty of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan

Received 15 May 2001; accepted 27 June 2001

Abstract

The treatment of unprotected mono-C- β -D-glucopyranosylphloroacetophenone with a cation-exchange resin in anhydrous acetonitrile afforded both a phloroacetophenone and a di-C- β -D-glucopyranosylphloroacetophenone. Treatment of an unprotected mono-C-(2-deoxy- β -D-*arabino*-hexopyranosyl)phloroacetophenone (mono-C-2-deoxy- β -D-glucopyranosylphloroacetophenone) also afforded both the aglycon and di-C-(2-deoxy- β -D-*arabino*-hexopyranosyl)phloroacetophenone. The reaction mixtures were acetylated, and the structures of the isolated products were determined by NMR spectroscopy. This is the first demonstration of the formation of a di-C-glycosyl derivative. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: C-Glycosylflavonoid; C-Glycosyl compound; Di-C-Glycosyl compound; C-C linkage; Cation exchange resin

1. Introduction

Because of their biological activity, an efficient synthesis of aryl *C*-glycosylic compounds (aryl '*C*-glycosides') has been a subject of considerable interest, and several effective methods in this area have been reported to date.¹ The characteristic properties of aryl *C*glycosyl compounds include resistance to acid hydrolysis, in contrast to *O*-glycosides. Therefore, these compounds have the potential for use as therapeutic agents for clinical use. Cglycosylflavonoids are plant constituents, some of which are biologically active.² Recently, we reported on the synthesis of C-glycosylphloroacetophenone derivatives,³ which represent synthetic intermediates in the preparation of C-glycosylflavonoids, and for the regio- and stereoselective synthesis of isoorientin, 6-C-glucosylflavone.⁴ In the field of Cglycosylflavonoid chemistry, three types of reactions are possible under hydrolytic conditions:⁵ (1) the Wessely–Moser rearrangement of the aglycon moiety, but not the sugar; (2) the expected pyranose-furanose interconversion; and (3) the acid-catalyzed degradation of the C-glycosyl compound. In order to avoid

^{*} Corresponding author. Tel.: +81-238-263122; fax: +81-238-263413.

E-mail address: tk111@dip.yz.yamagata-u.ac.jp (T. Kumazawa).

the Wessely-Moser rearrangement of the aglycon moiety in the flavone during acid hydrolysis, C-glycosylphloroacetophenones were used, and it was shown that they could be converted into spiroketal compounds on treatment with a catalytic amount of *p*-toluenesulfonic acid in hot water.6 However, Minamikawa and co-workers reported that bergenin, a C-glucoside derivative of 4-Omethylgallic acid, was transformed into a 4-Omethylgallic acid by a strain of soil bacteria.⁷ Hattori and co-workers have showed that several C-glycosyl compounds, including C-glycosylflavonoids, were transformed into their corresponding aglycons by human intestinal bacteria on the course of a study of the metabolites of C-glycosyl compounds.⁸ These results provide a clear demonstration of the enzymic hydrolysis of C-glycosyl compounds. On the other hand, treatment with a hydroiodic acid-phenol mixture readily yielded the corresponding isoflavones from C-glycosylisoflavones.⁹ Ferric chloride oxidation also has been used to identify the C-glycosyl residue in C-glycosylisoflavones.^{9,10} These chemical methods involve the cleavage of the C-C linkage in the aryl C-glycosyl compound and show that it is possible, using enzymic or chemical methods, to convert them to the corresponding aglycon and sugar. The present report shows that the C-C bond linkage between the sugar and the carbon atom of an aglycon in the C-glycosylphloroacetophenone can be cleaved using a strongly acidic cationexchange resin in anhydrous acetonitrile, resulting in the production of the aglycon and di-C-glycosylphloroacetophenone. The formation of such a di-C-glycosyl compound under conditions of acidic hydrolysis has not previously been reported.

2. Results and discussion

Treatment of a solution of C- β -D-glucopyranosylphloroacetophenone (**1a**)^{3a} with Dowex[®] 50W (H⁺ form) at ambient temperature in anhydrous acetonitrile showed, by thin-layer chromatography (TLC), the presence of two new zones at the top and near the bottom of the plate that corresponded to phenolic substituents (red-brown with 5% ferric chloride spray), in addition to mono-C-glucosyl compound 1a and a number of noncolored byproducts. Because of difficulties in the purification of these compounds, the reaction acetylated. After silica-gel mixture was column chromatography, acetylphloroacetophenone 2 was obtained in 31% yield, along with mono-C- β -D-glucosylphloroacetophenone acetate 3a in 22% yield, and di-C- β -Dglucosylphloroacetophenone acetate 4a in 9% yield (Entry 2). The structure of the aglycon acetate 2 was confirmed by a comparison of its ¹H NMR spectrum with an authentic sample. A ¹H NMR spectrum of the mono-C-glucosyl derivative 3a was obtained at 50 °C in CDCl₃ because a structural assignment by NMR spectroscopy at ambient temperature was hampered by the slow rotation around the C-1-aglycon bond. The ¹³C NMR spectrum of compound 3a in CDCl₃ at ambient temperature showed that some of the peaks were broad and that the peaks that correspond to the aglycon represented the pairing of major and minor peaks. ¹H NMR spectra of the di-C-glucosyl derivative 4a showed that the methine and methylene signals of each glucose moiety could be identified independently at ambient temperature in CDCl₃. The reason for this is mentioned above. To eliminate the rotational hindrance in compound 4a, the ¹H NMR spectrum was obtained at an elevated temperature of 140 °C in Me₂SO- d_6 . Although a slow decomposition of compound 4a was observed during this ¹H NMR experiment at this temperature, the ¹H NMR spectra showed that the signals were sharpened, and that the chemical shift values for both the methine and methylene protons of the glucose moieties were clear and equivalent. Judging from $J_{1',2'} = J_{1'',2''} = 9.5$ Hz, the anomeric configuration of both of the glucose moieties of compound 4a is β . We previously described the β stereoselective synthesis of mono-Cglucopyranosylphloroacetophenone using 2,4dibenzyl-protected phloroacetophenone as a glycosyl acceptor, benzyl-protected glucosyl fluoride as a glycosyl donor, and boron trifluoride diethyl etherate as an activator, in CH₂Cl₂.^{3a} In this study, the formation of the di-C-glucosvl compound 4a, having a β

configuration for both of the glucose moieties, was verified when unprotected starting material 1a was used. In relation to this fact, the glucose moieties in all natural di-C-glucosylflavonoids isolated thus far are of the β configuration. The ¹³C NMR spectrum of compound 4a at ambient temperature in CDCl₃ showed that the chemical shift values for C-3 and C-5 of the aromatic ring were not equivalent, and that the chemical shift values for the C-2 and C-6 were also not equivalent. We previously reported on the synthesis of 3,5-di-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)phloroacetophenone 4c.¹¹ When the ¹³C NMR spectra of the fully protected di-C-glucosvl compound 4a was compared with that of compound 4c, the data showed that the chemical shift values for the C-3 and C-5, as well as C-2 and C-6 of its aromatic ring, were equivalent. These differences result from the existence of acetyl groups on the phenolic hydroxy groups and are the result of the slow rotation around the C-1-aglycon bonds. HMBC spectra of the compound 4a indicated that the H-1' signal was correlated to the C-2, C-3, and the C-4 signals, and that the H-1" signal was correlated to the C-4, C-5, and the C-6 signals. Therefore, all carbon signals in the aromatic ring could be assigned.

The cleavage of the C–C linkage of C-glucosylphloroacetophenone **1a** with Dowex[®] 50W (H⁺) was examined under several conditions, and the results are summarized in Table 1. As a matter of course, when less cation-exchange resin was used, the yields of the aglycon acetate **2** and the di-C-glucosyl compound **4a** decreased, and when the reaction was carried out at the low temperature, their yields also decreased. Compound **1a** could be cleaved to generate an aglycon and a sugar oxonium ion by treatment with acid. The oxonium ion attacked the mono-C-glucosyl compound 1a to give the unprotected di-*C*-glucosyl compound. The mechanism of the formation of the unprotected di-C-glucosyl compound is not clear. It is possible that the second C-glucosylation of the mono-C-glucosyl compound involved a Friedel-Crafts type reaction or underwent an $O \rightarrow C$ glycosylic rearrangement. To the contrary, it is also possible that the unprotected di-C-glucosyl compound was converted to the unprotected mono-C-glucosyl compound **1a** by acid, and was then converted to the aglycon. In addition, the decomposition of the oxonium ion is also possible during the reaction. Therefore, the yield of the di-C-glucosyl compound 4a would not be expected to be over 10%. The possibility that a hydroxy group, positioned at C-2 of the glucose moiety of the mono-C-glucosyl compound **1a**, influences the formation of the di-C-glycosylation product also cannot be excluded.

We next examined the cleavage of an unprotected C-(2-deoxy-β-D-arabino-hexopyranosyl)phloroacetophenone $1b^{3a}$ [C-(2-deoxy- β -D-glucopyranosyl)phloroacetophenone], which does not contain a 2-OH group. The reaction was carried out under identical conditions, and the resulting mixture was acetylated. Acetylphloroacetophenone 2 in 31% yield, mono - C - (2-deoxy-β-D-arabino-hexopyranosyl)phloroacetophenone acetate **3b** in 22% yield, and di-C-(2-deoxy-β-D-arabino-hexopyranosyl)phloroacetophenone acetate **4b** in 9% yield were obtained, respectively. The yield of compound **4b** was less than 10%, by analogy with the di-C-glucosyl compound 4a. We conclude from this experiment that the 2-OH group of the glucose moiety is not a factor in

Table 1

Cleavage of the C-C linkage of mono-C-glucosyl 1a and formation of both the corresponding aglycon 2 and di-C-glucosyl 4a

Entry	1a (mg)	Dowex [®] -50W (H ⁺) (g)	CH ₃ CN (mL)	Time (h)	Temperature (°C)	Yield 2 (%)	Yield 3a (%)	Yield 4a (%)
1	100	0.3	10	0.5	rt	15	50	8.2
2	100	1.5	50	0.5	rt	31	22	9.1
3	100	0.3	50	0.5	rt	17	53	5.0
4	100	1.5	50	5	0	32	27	9.3
5	100	7.5	100	5	-23	15	67	4.4

this reaction. Whereas the ¹H NMR spectrum of the compound 3b was clear at ambient temperature, the ¹H NMR experiment of the di-C-2-deoxy-glucosyl compound **4b** had to be carried out at 50 °C in CDCl₃ because the structural assignment by NMR spectroscopy at ambient temperature was hampered by the slow rotation around the C-1-aglycon bond. Based on the fact that $J_{1',2'ax} = J_{1'',2''ax} = 9.5$ Hz, the anomeric configuration of both of the 2-deoxy-glucose moieties of compound 4b can be assigned as β . The ¹³C NMR spectrum of compound 4b in CDCl₃ at ambient temperature showed that some of carbon peaks of the 2-deoxy-glucose moieties were broad. In particular, the carbon signals of C-1' and C-1" of the sugar moieties were broadened. The reason for this is mentioned above. Alternatively, the ¹³C NMR spectrum of compound 4b in acetone- d_6 at ambient temperature showed that the Č-1' and C-1" signals were identified at 72.0 and 73.1 ppm, respectively, although these peaks may be interchanged.

In conclusion, the unprotected C-glycosylphloroacetophenones gives the aglycon and the di-C-glycosylphloroacetophenone on treatment with a cation-exchange resin in anhydrous acetonitrile. Alternatively, they give the spiroketal compounds on treatment with p-toluenesulfonic acid in hot water. This is the first demonstration of the formation of a di-C-glycosyl compound during the chemical cleavage of the C–C linkage between the sugar and the aglycon in the aryl C-glycosyl compound (Scheme 1).

3. Experimental

General methods.—All nonaqueous reactions were carried out under an atmosphere of dry Ar using freshly distilled solvent, unless otherwise noted. All reactions were monitored by TLC, which was carried out on 0.25 mm Silica Gel 60 F₂₅₄ plates (E. Merck) using either UV light, a 5% ethanolic solution of ferric chloride or a 5% ethanolic solution of phosphomolybdic acid with heat as developing agents. Fuji Silysia BW-300 was used for silica-gel column chromatography. Optical rotations were recorded using CHCl₃ as the solvent on a JASCO DIP-370 digital polarimeter. IR spectra were recorded on a HORIBA FT-720 IR spectrometer as KBr pellets. Mass spectra were recorded on a JEOL JMS-AX-505-HA mass spectrometer under electron ionization (EI) conditions or under fast-atom bombardment (FAB) conditions using 3-nitrobenzyl alcohol as the matrix. ¹H NMR spectra were recorded on a VARIAN INOVA 500 instrument using Me₄Si as the internal reference.

2,4,6-Tri-acetoxyacetophenone (2), 2,4,6-triacetoxy-3-C-(2,3,4,6-tetra-O-acetyl-\beta-D-glucopyranosyl)acetophenone (3a), and 2,4,6-tri*acetoxy*-3,5-*bis*-C-(2,3,4,6-*tetra*-O-*acetyl*-β-Dglucopyranosyl)acetophenone (**4a**).—To а stirred solution of compound $1a^{3a}$ (100 mg), Dowex[®]-50W (H⁺) which had been dried at 70 °C for 3 h under vacuo, was added. After 0.5 h. MeOH was added to the reaction mixture, and it was filtered to remove the resin. The solvent was evaporated under reduced pressure. The residual syrup was acetylated for 12 h at 0 °C using Ac₂O, pyridine, and a catalytic amount of 4,4-dimethylaminopyridine (DMAP). The reaction mixture was poured into 0.5 M HCl in ice and extracted with EtOAc. The organic layer was washed with water and brine, and the solvent was evaporated at reduced pressure. The residual syrup was purified by column chromatography on silica gel $(1:1 \rightarrow 1:2 \text{ hexane}-\text{EtOAc})$ to

give compound **2** (28 mg, 31%) as a colorless powder, compound **3a** (41 mg, 22%) as a colorless powder and compound **4a** (26 mg, 9%) as a crude syrup. Recrystallization of crude compound **4a** from hexane– Et_2O gave an analytically pure sample.

Physicochemical data for (3a): mp 191-193 °C; $[\alpha]_{D}^{25} - 24^{\circ}$ (c 1.0, CHCl₃); $R_f 0.26$ (1:1 hexane-EtOAc); IR (KBr): v 3107, 3066, 2979, 2943, 2895, 1774, 1755, 1701, 1612, 1429, 1371, 1238, 1213, 1182, 1151, 1101, 1055, 912, 901, 877, 839 cm⁻¹; ¹H NMR (CDCl₃ at 50 °C): δ 1.79 (s, 3 H, –OAc), 2.00 (s, 3 H, -OAc), 2.03 (s, 3 H, -OAc), 2.05 (s, 3 H, –OAc), 2.25 (s, 3 H, ArOAc), 2.31* (s, 3 H, ArOAc), 2.37* (s, 3 H, ArOAc), 2.41 (s, 3 H, ArAc), 3.75 (ddd, 1 H, J_{5',6'a} 2.2, J_{5',6'b} 4.6, J_{4',5'} 10.1 Hz, H-5'), 3.99 (dd, 1 H, J_{5'.6'a} 2.2, J_{gem} 12.6 Hz, H-6'a), 4.37 (dd, 1 H, $J_{5',6'b}$ 4.6, J_{gem} 12.6 Hz, H-6'b), 4.73* (br. d, 1 H, $J_{1',2'}$ 9.9 Hz, H-1'), 5.14 (dd, 1 H, $J_{3',4'}$ 9.3, $J_{4',5'}$ 10.1 Hz, H-4'), 5.25 (t, 1 H, $J_{2',3'} = J_{3',4'}$ 9.3 Hz, H-3'), 5.61* (dd, 1 H, $J_{2',3'}$ 9.3, $J_{1',2'}$ 9.9 Hz, H-2'), 7.01* (br. s, 1 H, ArH). The (*) indicates broad peaks. ¹³C NMR (CDCl₃): δ 20.3, 20.59, 20.65, 20.7, 20.9*, 21.0, 21.2* (-OAc), 30.7*, 30.9* (ArAc), 61.9* (C-6'), 68.0 (C-4'), 69.7*, 70.0* (C-2'), 72.8 (C-1'), 74.5* (C-3'), 76.7* (C-5'), 115.4*, 116.9* (C-5), 118.8*, 119.2* (C-3), 125.7*, 127.2* (C-1), 146.5*, 147.8*, 148.0*, 148.2*, 149.8*, 151.3* (C-2,4,6), 167.6*, 167.7*, 167.8*, 168.0, 168.3, 169.3*, 169.5, 170.3, 170.5 (-OAc), 197.2*, 197.7*(ArAc). The (*) indicates broad peaks, and C-2, -4, and -6 may be interchanged. EIMS: m/z 624 [M]⁺. Anal. Calcd for C₂₈H₃₂O₁₆: C, 53.85; H, 5.16. Found: C, 53.61; H, 5.16.

Physicochemical data for (**4a**): mp 137– 139 °C; $[\alpha]_D^{25} - 21^\circ$ (*c* 1.0, CHCl₃); R_f 0.10 (1:1 hexane–EtOAc); IR (KBr): *v* 2943, 1784, 1759, 1707, 1597, 1435, 1371, 1230, 1171, 1142, 1090, 1055, 1036, 903, 874 cm⁻¹; ¹H NMR (CDCl₃): δ 1.73 (s, 3 H, –OAc), 1.93 (s, 3 H, –OAc), 2.01 (s, 3 H, –OAc), 2.032 (s, 6 H, –OAc), 2.038 (s, 3 H, –OAc), 2.043 (s, 3 H, –OAc), 2.09 (s, 3 H, –OAc), 2.30 (s, 3 H, –OAc), 2.37 (s, 3 H, –OAc), 2.41 (s, 3 H, ArAc), 2.46 (s, 3 H, –OAc), 3.62 (ddd, 1 H, $J_{5',6'a}$ 1.5, $J_{5',6'b}$ 4.9, $J_{4',5'}$ 9.8 Hz, H-5'), 3.78 (ddd, 1 H, $J_{5'',6''a}$ 1.5, $J_{5'',6''b}$ 4.9, $J_{4'',5''}$ 9.8 Hz,

H-5"), 3.92 (dd, 1 H, J_{5'.6'a} 1.5, J_{gem} 13.5 Hz, H-6'a), 3.98 (dd, 1 H, J_{5".6"a} 1.5, J_{gem} 13.5 Hz, H-6"a), 4.34 (d, 1 H, J_{1',2'} 10.0 Hz, H-1'), 4.40 (dd, 1 H, J_{5',6'b} 4.9, J_{gem} 13.5 Hz, H-6'b), 4.42 (dd, 1 H, J_{5",6"b} 4.9, J_{gem} 13.5 Hz, H-6"b), 4.78 (d, 1 H, $J_{1'',2''}$ 10.0 Hz, H-1''), 5.130 (dd, 1 H, $J_{3'4'}$ 9.3, $J_{4'5'}$ 9.8 Hz, H-4'), 5.135 (dd, 1 H, $J_{3'',4''}$ 9.3, $J_{4'',5''}$ 9.8 Hz, H-4''), 5.22 (t, 1 H, $J_{2'',3''} = J_{3'',4''}$ 9.3 Hz, H-3''), 5.32 (t, 1 H, $J_{2',3'}$ = $J_{3'4'}$ 9.3 Hz, H-3'), 5.57 (dd, 1 H, $J_{2''3''}$ 9.3, $J_{1'',2''}$ 10.0 Hz, H-2''), 5.71 (dd, 1 H, $J_{2',3'}$ 9.3, $J_{1'2'}$ 10.0 Hz, H-2'); ¹H NMR (Me₂SO- d_6 at 140 °C): δ 1.73 (s, 6 H, –OAc), 1.92 (s, 6 H, -OAc), 1.96 (s, 6 H, -OAc), 1.98 (s, 6 H, -OAc), 2.27 (s, 6 H, -OAc), 2.30 (s, 3 H, -OAc), 2.38 (s, 3 H, ArAc), 3.95 (dd, 2 H, $J_{5',6'a} = J_{5'',6''a}$ 2.2, $J_{6'a,6'b} = J_{6''a,6''b}$ 12.5 Hz, H- $6a', 6''a), 4.03 \text{ (ddd, } 2 \text{ H}, J_{5',6'a} = J_{5'',6''a} 2.2,$ $J_{5',6'b} = J_{5'',6''b}$ 5.1, $J_{4',5'} = J_{4'',5''}$ 9.8 Hz, H-5',5''), 4.14 (dd, 2 H, $J_{5',6'b} = J_{5'',6''b}$ 5.1, $J_{6'a,6'b} = J_{6''a,6''b}$ 12.5 Hz, H-6'b,6''b), 4.75* (d, 2 H, $J_{1',2'} = J_{1'',2''}$ 9.5Hz, H-1',1"), 5.00 (t, 2 H, $J_{3',4'} = J_{3'',4''} =$ $J_{4',5'} = J_{4'',5''}$ 9.8 Hz, H-4',4''), 5.33 (dd, 2 H, $J_{2',3'} = J_{2'',3''}$ 9.5, $J_{3',4'} = J_{3'',4''}$ 9.8 Hz, H-3',3''), 5.55 (t, 2 H, $J_{1',2'} = J_{1'',2''} = J_{2',3'} = J_{2'',3''}$ 9.5 Hz, H-2',2"). The (*) indicates a broad peak. ^{13}C NMR (CDCl₃): δ 20.1, 20.3, 20.58, 20.62, 20.67, 20.68, 20.8, 20.9, 21.08, 21.13 (-OAc), 29.9 (ArAc), 61.6 (C-6'), 61.8 (C-6"), 68.0 (C-4',4''), 69.4 (C-2''), 70.0 (C-2'), 73.0 (C-1''), 73.6 (C-1'), 74.4 (C-3'), 74.5 (C-3"), 76.9 (C-5'), 77.1 (C-5''), 119.6 (C-5), 121.7 (C-3), 128.7 (C-1), 146.4 (C-6) 148.4 (C-2), 150.8 (C-4) 167.3, 167.6, 168.1, 169.2, 169.5, 169.8, 170.22, 170.28, 170.41, 170.44 (-OAc), 197.4 (ArAc); FABMS (positive ion): m/z 955 $[M + H]^+$. Anal. Calcd for C₄₂H₅₀O₂₅: C, 52.83; H, 5.28. Found: C, 53.00; H, 5.31.

2,4,6-Tri-acetoxyacetophenone (2), 2,4,6-triacetoxy-3-C-(3,4,6-tri-O-acetyl-2-deoxy- β -Darabino-hexopyranosyl)acetophenone (3b), and 2,4,6-tri-acetoxy-3,5-bis-C-(3,4,6-tri-O-acetyl-2-deoxy - β - D - arabino-hexopyranosyl)acetophenone (4b).—The reaction conditions, posttreatment, and isolation were carried out in the same manner as described above. Recrystallization of crude compound 4b from hexane-Et₂O gave an analytically pure sample.

Physicochemical data for (**3b**): mp 132– 133 °C; $[\alpha]_{D}^{25}$ – 14° (*c* 1.0, CHCl₃); R_f 0.29 (1:1 hexane–EtOAc); IR (KBr): *v* 3103, 3064,

3024, 2995, 2972, 2962, 2943, 2904, 2893, 1770, 1743, 1695, 1618, 1437, 1371, 1254, 1219, 1190, 1151, 1113, 1066, 1053, 1012, 920, 906, 881 cm⁻¹; ¹H NMR (CDCl₃): δ 2.03 (s, 3 H, -OAc), 2.04 (s, 3 H, -OAc), 2.06 (s, 3 H, 6'-OAc), 2.14 (ddd, 1 H, $J_{1',2'eq}$ 2.2, $J_{2'eq,3'}$ 5.4, J_{gem} 13.2 Hz, H-2'eq), 2.28 (s, 3 H, 6-OAc), 2.31 (s, 3 H, 2-OAc), 2.34 (ddd, 1 H, $J_{2'ax,3'}$ 11.2, $J_{1',2'ax}$ 12.0, J_{gem} 13.2 Hz, H-2'ax), 2.37 (s, 3 H, 4-OAc), 2.45 (s, 3 H, ArAc), 3.66 (ddd, 1 H, $J = J_{5',6'a}$ 2.0, $J_{5',6'b}$ 4.6, $J_{4',5'}$ 9.8 Hz, H-5'), 3.94 (dd, 1 H, J_{5'.6'a} 2.0, J_{gem} 12.5 Hz, H-6'a), 4.43 (dd, 1 H, $J_{5',6'b}$ 4.6, J_{gem} 12.5 Hz, H-6'b), 4.66 (dd, 1 H, $J_{1',2'eq}$ 2.2, $J_{1',2'ax}$ 12.0 Hz, H-1'), 5.03 (dd, 1 H, $J_{3',4'}$ 9.3, $J_{4',5'}$ 9.8 Hz, H-4'), 5.10 (ddd, 1 H, $J_{2'eq,3'}$ 5.4, $J_{3',4'}$ 9.3, $J_{2'ax,3'}$ 11.2 Hz, H-3'), 6.98 (s, 1 H, ArH); ¹³C NMR (CDCl₃): δ 20.71, 20.79, 20.8, 20.9, 21.02, 21.03 (-OAc), 31.0 (ArAc), 34.4 (C-2'), 62.4 (C-6'), 68.9 (C-4'), 71.5 (C-1'), 71.9 (C-3'), 76.9 (C-5'), 116.3 (C-5), 122.9 (C-3), 126.6 (C-1), 146.2 (C-2), 147.4 (C-6), 149.8 (C-4), 167.8 (6-OAc), 168.2 (2-OAc), 168.5 (4-OAc), 169.9 (-OAc), 170.3 (-OAc), 170.5 (6'-OAc), 197.8 (ArAc); EIMS: m/z 566 [M]⁺. Anal. Calcd for C₂₆H₃₀O₁₄: C, 55.12; H, 5.34. Found: C, 55.06; H, 5.34.

Physicochemical data for (4b): mp 113-115 °C; $[\alpha]_{D}^{25} - 1^{\circ}$ (c 0.5, CHCl₃); R_{f} 0.12 (1:1 hexane–EtOAc); IR (KBr): v 2956, 2943, 2877, 1780, 1747, 1705, 1597, 1435, 1369, 1232, 1180, 1107, 1053, 962, 908, 883, 868 cm⁻¹; ¹H NMR (CDCl₃ at 50 °C): δ 2.02 (s, 6 H, -OAc), 2.03 (s, 6 H, -OAc), 2.05 (s, 6 H, -OAc), 2.14 (ddd, 2 H, $J_{1',2'eq} = J_{1'',2''eq}$ 2.0, $J_{2'eq,3'} = J_{2''eq,3''}$ 5.4, $J_{2'ax,2'eq} = J_{2''ax,2''eq}$ 13.3 Hz, H-2'eq, 2''eq), 2.30 (s, 6 H, -OAc), 2.304 (ddd, 2 H, $J_{2'ax,3'} = J_{2''ax,3''}$ 11.0, $J_{1',2'ax} = J_{1'',2''ax}$ 11.7, $J_{2'ax,2'eq} = J_{2''ax,2''eq}$ 13.3 Hz, H-2'ax, 2''ax), 2.411* (s, 3 H, ArAc), 2.412* (s, 3 H, -OAc), 3.61 (ddd, 2 H, $J_{5',6'a} = J_{5'',6''a}$ 2.0, $J_{5',6'b} = J_{5'',6''b}$ 4.9, $J_{4',5'} = J_{4'',5''}$ 9.5 Hz, H-5',5''), 3.96 (dd, 2 H, $J_{5',6'a} = J_{5'',6''a}$ 2.0, $J_{6'a,6'b} = J_{6''a,6''b}$ 12.5 Hz, H-6'a,6"a), 4.40 (dd, 2 H, $J_{5',6'b} = J_{5'',6''b}$ 4.9, $J_{6'a,6'b} = J_{6''a,6''b}$ 12.5 Hz, H-6'b,6''b), 4.54 (dd, 2 H, $J_{1',2'eq} = J_{1'',2''eq}$ 2.0 $J_{1',2'ax} = J_{1'',2''ax}$ 11.7 Hz, H-1',1"), 5.00 (t, 2 H, $J_{3',4'} = J_{3'',4''} = J_{4',5'} =$ $J_{4'',5''}$ 9.5 Hz, H-4',4''), 5.04 (ddd, 2 H, $J_{2'eq,3'}$ = $J_{2''\text{eq},3''}$ 5.4, $J_{3',4'} = J_{3'',4''}$ 9.5, $J_{2'\text{ax},3'} = J_{2''\text{ax},3''}$ 11.0 Hz, H-3'3''). The (*) indicates that these peaks may be interchanged. ¹H NMR (acetone- d_6): δ 1.98 (s, 6 H, –OAc), 1.997 (s, 6 H, –OAc),

2.003 (s, 6 H, –OAc), 2.37 (s, 6 H, –OAc), 2.40 (s, 3 H, ArAc), 2.50 (s, 3 H, -OAc), 3.88 (br. s, 2 H, H-5',5"), 3.89 (dd, 2 H, $J_{5',6'a} = J_{5'',6''a}$ 2.0, $J_{6'a,6'b} = J_{6''a,6''b}$ 12.9 Hz, H-6'a,6''a), 4.36 (br. s, 2 H, H-6'b, 6"b), 4.92 (m, 2 H, H-1', 1"), 5.01 (t, 2 H, $J_{3',4'} = J_{3'',4''} = J_{4',5'} = J_{4'',5''}$ 9.8 Hz, H-4',4''), 5.19 (m, 2 H, H-3',3''). The H-2', and H-2" peaks are very broad and not identified. ¹³C NMR (CDCl₃): δ 20.7, 20.80, 20.84, 20.92, 20.94 (-OAc), 30.5 (ArAc), 34.1* (C-2',2"), 62.2 (C-6',6"), 68.7* (C-4',4"), 71.9* (C-3',3"), 77.2 (C-5',5"), 124.2* (C-3,5), 129.6 (C-1), 145.8* (C-2,6), 147.8 (C-4), 168.2, 168.3, 169.8, 170.4, 170.5 (-OAc), 197.8 (ArAc). The (*) indicates broad peaks, and the C-1' and C-1" peaks appear broad around 73 ppm in CDCl₃. ¹³C NMR (acetone- d_6): δ 20.71, 20.77, 20.85, 21.08, 21.12 (-OAc), 30.8 (ArAc), 35.0*, 35.3* (C-2',2"), 63.2 (C-6',6"), 69.9* (C-4',4"), 72.3* (C-3',3"), 72.0*, 73.1* (C-1',1"), 77.3* (C-5',5"), 125.6* (C-3,5), 130.7 (C-1), 146.8* (C-2, 6), 149.0 (C-4), 169.0, 169.4, 170.2, 170.4, 170.7 (-OAc), 197.6 (ArAc). The (*) indicates broad peaks, and the C-1' and C-1" peaks may be interchanged. FABMS (positive ion): m/z 839 [M + H]⁺. Anal. Calcd for $C_{38}H_{46}O_{21}$: C, 54.42; H, 5.53. Found: C, 54.14; H, 5.61.

References

- (a) Postema, M. H. D. C-Glycoside Synthesis; CRC Press: Boca Raton, FL, 1995;
 (b) Postema, M. H. D. Tetrahedron 1992, 48, 8545-8599;
 (c) Jaramillo, C.; Knapp, S. Synthesis 1994, 1-20;
 (d) Levy, D. E.; Tang, C. The Chemistry of C-Glycosides; Elsevier: New York, 1995.
 (a) Waiss, Jr., A. C.; Chan, B. G.; Elliger, C. A.; Wise-
- (a) Waiss, Jr., A. C.; Chan, B. G.; Elliger, C. A.; Wiseman, B. R.; McMillian, W. W.; Widstrom, N. W.; Zuber, M. S.; Keaster, A. J. *J. Econ. Entomol.* 1979, *72*, 256–258;
 (b) Elliger, C. A.; Chan, B. G.; Waiss, Jr., A. C.; Lundin, R. E.; Haddon, W. F. *Phytochemistry* 1980, *19*, 293–297;
 (c) Carte, B. K.; Carr, S.; DeBrosse, C.; Hemling, M. E.; MacKenzie, L.; Offen, P.; Berry, D. E. *Tetrahedron* 1991, *47*, 1815–1822;
 (d) Besson, E.; Dellamonica, G.; Chopin, J.; Markham, K. R.; Kim, M.; Koh, H.-S.; Fukami, H. *Phytochemistry* 1985, *24*, 1061–1064;
 (e) Haribal, M.; Renwick, J. A. A. *Phytochemistry* 1998, *47*, 1237–1240;
 (f) Afifi, F. U.; Khalil, E.; Abdalla, S. *J. Ethnopharmacol.* 1999, *65*, 173–177.
- 3. (a) Kumazawa, T.; Akutsu, Y.; Matsuba, S.; Sato, S.; Onodera, J. *Carbohydr. Res.* **1999**, *320*, 129–137;
 (b) Kumazawa, T.; Saito, T.; Matsuba, S.; Sato, S.; Onodera, J. *Carbohydr. Res.* **2000**, *329*, 855–859;

(c) Kumazawa, T.; Sato, S.; Matsuba, S.; Onodera, J. Carbohydr. Res. 2001, 332, 103–108.

- Kumazawa, T.; Minatogawa, T.; Matsuba, S.; Sato, S.; Onodera, J. *Carbohydr. Res.* 2000, 329, 507–513.
- 5. (a) Besson, E.; Chopin, J. Phytochemistry 1983, 22, 2051–2056;
 - (b) Park, M. K.; Park, J. H.; Shin, Y. G.; Kim, W. Y.;
 Lee, J. H.; Kim, K. H. *Planta Med.* **1996**, *62*, 363–365;
 (c) Bezuidenhoudt, B. C. B.; Brandt, E. V.; Ferreira, D. *Phytochemistry* **1987**, *26*, 531–535.
- 6. (a) Kumazawa, T.; Asahi, N.; Matsuba, S.; Sato, S.; Furuhata, K.; Onodera, J. *Carbohydr. Res.* **1998**, *308*, 213–216;

(b) Kumazawa, T.; Chiba, M.; Matsuba, S.; Sato, S.; Onodera, J. *Carbohydr. Res.* **2000**, *328*, 599–603.

- Minamikawa, T.; Yoshida, S.; Hasegawa, M.; Komagata, K.; Kato, K. Agric. Biol. Chem. 1972, 36, 773–778.
- (a) Hattori, M.; Shu, Y.-Z.; El-Sedawy, A. I.; Namba, T. J. Nat. Prod. 1988, 51, 874–878;

(b) Hattori, M.; Kanda, T.; Shu, Y.-Z.; Akao, T.; Kobashi, K.; Namba, T. Chem. Pharm. Bull. **1988**, *36*, 4462–4466;

(c) Hattori, M.; Shu, Y.-Z.; Tomimori, T.; Kobashi, K.; Namba, T. *Phytochemistry* **1989**, *28*, 1289–1290;

(d) Che, Q.-M.; Akao, T.; Hattori, M.; Kobashi, K.; Namba, T. Chem. Pharm. Bull. 1991, 39, 704–708;

(e) Meselhy, M. R.; Kadota, S.; Hattori, M.; Namba, T. J. Nat. Prod. 1993, 56, 39-45;

(f) Li, Y.; Meselhy, M. R.; Wang, L.-Q.; Ma, C.-M.; Nakamura, N.; Hattori, M. *Chem. Pharm. Bull.* **2000**, *48*, 1239–1241.

- 9. van Heerden, F. R.; Brandt, E. V.; Roux, D. G. J. Chem. Soc., Perkin Trans. 1 1980, 2463–2469.
- Chawla, H.; Chibber, S. S.; Seshadri, T. R. Phytochemistry 1974, 13, 2301–2304.
- 11. Kumazawa, T.; Ishida, M.; Matsuba, S.; Sato, S.; Onodera, J. Carbohydr. Res. 1997, 297, 379-383.