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SYNTHESIS OF ( 9 S , 1 2 S ) - C Y C L O I S O D I T Y R O S I N E  A N D  ITS  U N N A T U R A L  (9R,12S)- 
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Abstract. A synthesis of the (9S,12S)-cycloisodityrosine derivatives and their unnatural (9R, 12S)-diastereomers are 
disclosed. The approach is based on an intramolecular aromatic nucleophilic substitution reaction for formation of the 
macrocyclic biaryl ether and includes the documentation of a remarkably facile base-catalyzed epimerization. 
Copyright © 1996 Elsevier Science Ltd 

Piperazinomycin (1) j constitutes the simplest naturally occurring agent possessing a 14-membered biaryl ether 

core also found in bouvardin, deoxybouvardin, and the RA class of bicyclic hexapeptides. 2 Although related, the 

cycloisodityrosine subunit of 1 is further reduced and cyclized to provide the bicyclic core of the natural product while 

that of the latter agents is simply N-methylated. In recent studies, we disclosed the total synthesis of(+)-I based on 

an intramolecular Ullmann reaction for macrocyclization formation of the key biaryl ether (Chart 1).3 In a recent 

communication, 4 we detailed a synthesis of the N-methylcycloisodityrosine subunit found in this latter class of agents 

and documented a facile epimerizatinn of the C-9 carboxylate center to the unnatural (9R, 12S)-diastereomer. Herein, 

we report our observations on the extension of these studies to the preparation of the (9S, 12S)-cycloisodityrosine 

derivatives 8--10 potentially applicable in the synthesis of 1, their unnatural (9R, 12S)-cycloisodityrosine derivatives 

12-14, the documentation a facile epimerization in this series as well, and the resulting clarification of the analogous 

studies recently disclosed by Zhu and Beugelmans. 5 
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Both (S)- and (R)-3-fluoro-4-nitrophenylalanine methyl esters (2) 4'5 were prepared and coupled (THF, 25 °C, 

4 h, 90-95%) with L-BOC-Tyr-OC6Fs, 6 [tx]~ 5 -25 (c 0.4, CHCI3), to provide (S,S)-3, [~v]~ 5 +18 (c 0.16, CHCI3), and 

(R,S)-4, [r~]~ 5 -38 (c 0.18, CHCI3). When this reaction was conducted with L-BOC-Tyr-OH activated for coupling by 

treatment with EDCI-HOBt, a 4:1 mixture of (S,S)-3 and (S,R)-4 was obtained and is facilitated by the kinetic 

preference for formation of the (S,R)- or (R,S)-diastereomer (Scheme 1).7 
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Scheme 1 
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(R,S)-4 underwent smooth macrocyclization upon treatment with K2CO3 (5 equiv, 0.005 M DMF, 70 °C, 10 

h, 63%) to provide a single, stable diastereomer in excellent conversions (Scheme 2). In contrast, exposure of (S,S)-3 

to the same reaction conditions (70 °C) provided an approximate 1:1 mixture of the expected (9S,12S)-6 and the 

epimerized diastereomer (9R,12S)-5 in 50--60% combined yield (Scheme 2). Conducting this reaction at 25 °C (3 

equiv, K2CO3, 0.01 M DMF, 20-24 h, 59%, 1:1 5:6) provided the same results but required a more extended reaction 

time for completion s and analogous but tuwecognized observations have been disclosed in the independent efforts of 

Zhu and Beugelmans. 9 A detailed study of the macrocyclization reaction of 3 revealed that epimerization could be 

minimized by use of Nail (3.3 equiv, 0-25 °C, 6-12 h) or KF/18-c-6 (5 equiv, 0.1 equiv, DMF, 25 °C) but not 

completely eliminated. Optimal conversions (65-85%) albeit with 10-25% epimerization were obtained with Nail and 

the desired (9S, 12S)-6 was obtained pure by chromatographic separation of the resulting diastereomers. 

Scheme 2 
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Characterization of 5 derived from the closure of (S,S)-3 and its comparison with authentic (9R,12S)-5 derived 

from (R,S)-4 as well as deliberate epimerization of (9S,12S)-6 established that isomedzation occurs essentially 

exclusively at the C-9 ester center providing an equilibrium ratio of diastereomers of a2: I (eq 1). The true equilibrium 

ratio was not able to be accurately assessed due to base-catalyzed decomposition of the products 3 through nucleophilic 

attack of the deprotonated central amide onto the C-12 N~-BOC in a reaction that is not competitive upon C-12 N- 

methylation. 4 The structure of 6 was unambiguously established upon N-BOC deprotection (3.3 N HC1-THF, 25 °C, 

3 h, 100%) and subsequent single-crystal X-ray structure determination of the resulting HCI salt (Figure 2)/o 
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Figure 2 
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The conversions of (9S,12S)-6 and (9R,12S)-5 to the cycloisodityrosine derivatives 8-10 and 12-14, 

respectively, are summarized in Schemes 3 and 4. Thus, nitro reduction (H2, 10% Pd-C, CH3OH , 25 °C, 2h, 97-98%), 

diazotization (2 equiv nBF4, 2 equiv t-BuONO, THF, 0-25 °C, 1 h) and oxidative hydrolysis of the in situ generated 

diazonium salt (100 equiv Cu(NO02, 5 equiv Cu20, H20, 25 °C, 1-2 h, 40-55%), followed by selective O-methylation 

(1.5 equiv Nail, 5 equiv CH3I, THF, 0-25 °C, 1 h, 90-91%) provided 9 and 13, respectively. Subsequent N-BOC 

deprotection provided the free amines 10 and 14. t°'u With care, 6 could be taken through this sequence without 

epimerization. The conversion of the aryl nitro group into a hydroxy or methoxy substituent required of the 

cycloisodityrosine core structure suffers from competitive reduction of the diazonium salt, and requires the use of a 

nonprotic cosolvent (THF versus CH3OH) for satisfactory conversions. 
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Scheme 4 
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