¹³C-N.M.R. SPECTROSCOPY OF α - AND β -ANOMERIC SERIES OF ALKYL L-ARABINOPYRANOSIDES

KENJI MIZUTANI, RYOJI KASAI, AND OSAMU TANAKA*

Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine, Kasumi, Hiroshima 734 (Japan)

(Received June 12th, 1980; accepted for publication, July 2nd, 1980)

ABSTRACT

Anomeric pairs of L-arabinopyranosides of a variety of aliphatic alcohols were prepared, and their n.m.r. spectroscopy, especially the glycosylation shift of their ¹³C signals, was investigated in comparison with those of D-glucopyranosides, Dmannopyranosides, and L-rhamnopyranosides reported previously. It was found that the glycosylation shift of the L-arabinopyranosides in the present study is almost the same as that of D-glucopyranosides, and the conformational equilibrium of each of these L-arabinopyranosides is very similar to that of the corresponding anomer of methyl L-arabinopyranoside, namely, a preponderance of the ${}^{4}C_{1}$ form, regardless of the structure of the aglycon alcohol. The present results are also useful for structural study of naturally occurring arabinopyranosides.

INTRODUCTION

¹³C-N.m.r. spectroscopy is now a most powerful tool for identification, structure determination, and stereochemical investigation in the field of carbohydrate chemistry. For the purpose of the development of its application, a variety of α and β -anomeric pairs of D-glucopyranosides^{1,2}, D-mannopyranosides, and L-rhamnopyranosides³ was synthesized, and their glycosylation shifts (carbon-resonance displacement, for both the sugar and the aglycon moiety, on glycoside formation) were reported. With regard to the glycosylation shift for glycosides of aldopentoses, D-xylopyranosides would be expected to exhibit values similar to those of D-glucopyranosides, because the favored conformation must be exclusively the ${}^{4}C_{1}$ conformer. In contrast, further investigation is necessary for the glycosylation shift of L-arabinopyranosides, as, in this case, the conformation equilibrium, ${}^{4}C_{1} \rightleftharpoons^{1}C_{4}$, might depend upon the structure of the aglycon. The present paper deals with the synthesis, and an n.m.r. study, of anomeric pairs of alkyl L-arabinopyranosides.

0008-6215/80/0000-0000/\$ 02.25, © 1980 - Elsevier Scientific Publishing Company

^{*}To whom correspondence should be addressed.

RESULTS AND DISCUSSION

Synthesis of L-arabinopy ranosides. — α -L-Arabinopy ranosides were synthesized according to the Koenigs-Knorr procedure for the synthesis of β -D-glucopy ranosides⁴, namely, condensation of 2,3,4-tri-O-acetyl- β -L-arabinopy ranosyl bromide with an excess of an agly con alcohol in the presence of Hg(CN)₂ at room temperature, followed by deacetylation.

The reparation of β -L-arabinopyranosides, which are 1,2-*cis*-glycosides, is known to be difficult. Several attempts according to the procedures used for the synthesis of α -D-glucopyranosides resulted in failure. However, the desired result was obtained by application of the Jennings procedure⁵ for the preparation of α -Dxylopyranosides, namely, condensation of α -L-arabinopyranosyl chloride 2,3,4tri(chlorosulfate) with an aglycon alcohol in the presence of Ag₂CO₃.

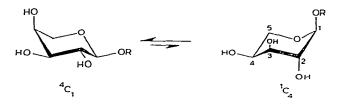
By means of the foregoing procedures, α - and β -L-arabinopyranosides of the following alcohols were prepared: methyl, propyl, and isopropyl alcohol, *trans*-4-*tert*-butylcyclohexanol, *tert*-butanol, and *d*- and *l*-menthol, respectively designated 1α , 1β ; 2α , 2β ; 3α , 3β ; 4α , 4β ; 5α , 5β ; 6α , 6β ; and 7α , 7β . Their physical constants are listed in Table I.

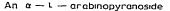
N.m.r. spectroscopy of the sugar moiety. — In the following discussion, all of the glycosides are pyranosides. By referring to the assignments of methyl α - and β -L-arabinosides reported by Bock and Pederson⁶, identification of the carbon signals of the sugar moiety was established, as shown in Table II. As already observed for D-glucosides^{1,2}, D-mannosides, and L-rhamnosides³, the anomeric carbon atom of

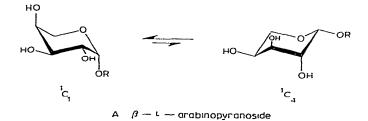
TABLE I

L-Atabino- side	State ^a	M.p. (degrees)	Crystallization solvent	[α]D ²⁵ (degrees) ^b	Concentration
1α	needles	131.5-132.5	ethanol	+4.7	1.07
1β	needles	171 0-173.0	ethanol	+239.4	2 18
2α	needles	121 5-123.0	hexane-chloroform	+3.8	0.93
2β	needles	145 0-146.5	hexane-chloroform	+192 0	0 90
3α	needles	124.0-126.0	benzene-acetone	+8.9	0.45
3β	needles	168 0– 169 5	hexane-chloroform	+204 4	0.16
4α	needles	164.0-166 0	benzene-acetone	-8.3	1.08
4β	needles	232.0-234.0	chloroform	+154.8	0.29
5 a	syrup			+31.8	1.89
5β	syrup			+197.9	0.25
6α	syrup			+60.3	2.47
6β	syrup			+137.5	0.47
7α	needles	142 0-143.0	hexane-chloroform	-52.7	5.34
7β	syrup			+85.3	0.34

PHYSICAL CONSTANTS OF L-ARABINOPYRANOSIDES


"All colorless "In pyridine.


TABLE II


¹³C CHEMICAL SHIFTS OF SUGAR MOIETIES

Compound	δ_{C-1}	$\Delta \delta_{C-1}^{\alpha}$	¹ J _{C-1,H-1} (Hz)	δ <i>c-</i> 2	δ_{C-3}	Nc-1	ბ _{C−5}
α-L-Arabinopyranose	99.2	······		73.9	74 7	69 3	66 3
1α	105.8	+6.6	158	72.1	74 2	69 0	66 5
2α	104.7	+5.5	156	72.1	74 I	69.1	66.5
3 a	103.0	+3.8	157	72 1	74.1	69.3	66.6
4a	103.0	+3.8	158	72.1	74 2	69.1	66.4
5 <i>a</i> .	99.1	-0.1	157	72.1	74 2	69.2	66.3
β -L-Arabinopyranose	94.6			71 64	71 3"	69.7	64 1
1β	102.1	+7.5	168	70 0%	70.5°	70.9"	63.9
2β	100.9	+63	166	70.1 <i>°</i>	70.7 ⁶	71 O ^b	64.1
2β 3β	99.0	+4.4	167	70 1*	70.6 ⁶	71.16	64 1
4β	99.0	+4.4	168	70.1 <i>^b</i>	70 6 ^o	71.0 ^b	64.1
5β	95.1	+05	168	70 O ^u	70 7"	71 10	63 8

 $a_{\Delta} \delta_{C-1} = \delta_{C-1 \text{ of glycoside}} - \delta_{C-1 \text{ of corresponding L-arabinose}}$ between both the boundary of the set of the s

L-arabinose is generally deshielded on glycosylation, in the decreasing order of methyl, other primary alcohols, and secondary alcohols. On glycosylation with a tertiary alcohol, as in 5, the signal of C-1 remains almost unshifted. In contrast to that of C-1, the C-2 signal was found to be displaced slightly upfield on glycosylation.

Bock and Pedersen⁶ reported that the ${}^{4}C_{1}$ conformer is preponderant for both methyl α - and β -L-arabinoside (1α and 1β) in solution. For the L-arabinosides examined in the present study, sugar-carbon signals other than C-1 were found to be only slightly affected by change in structure of the aglycon, and the C-2, -3, -4, and -5

Aglycon	a-L-Arabinopy	ranoside	β-L-Arabinopy	-L-Arabinopyranoside		
alcohol of	δ_{H-1}	$({}^{1}J_{1,2}, H_{z})$	δ_{H-1}	$(^{1}J_{1,2}, H_{z})$		
1	4.58	(7)	5.00	(3)		
2	4.62	(7)	5.23	(3)		
3	4 64	(7)	5.24	(3)		
4	4.70	(7)	5.50	(3)		
5	4.72	(7)	5.46	(3)		
6	4.70	(7)	5.40	(3)		
7	471	(7)	5 29	(3)		

TABLE III

ANOMERIC PROTON, CHEMICAL SHIFTS AND COUPLING CONSTANTS

signals appeared at almost the same positions as those of the corresponding methyl L-arabinosides; this indicates that these L-arabinosides have a similar conformational equilibrium for the glycosyl group, regardless of the structure of the aglycon. The direct-bonded, C-H coupling-constant of the C-1 signal $({}^{1}J_{C-1,H-1})$ of hexo- and pento-pyranoses is known to be characteristic of the orientation of the anomeric proton³; ${}^{1}J_{C-1,H-1}$ of an equatorial, anomeric proton is observed to be nearly 165 Hz, whereas that of an axial one is⁶ ~155 Hz. As shown in Tables II and VI, ${}^{1}J_{C-1}$ H-1 values of the L-arabinosides in the present study were recorded in the range of 164-168 Hz (± 2 Hz) for the β -anomeric series, and of 156–158 Hz (± 2 Hz) for the α -anomeric series, respectively, demonstrating the preponderance of the ${}^{4}C_{1}$ conformer for each anomeric series, regardless of the structure of the aglycon. This finding was supported by the coupling constant between the anomeric proton and H-2; $J_{1,2}$ was consistently observed to be 3 Hz for the β -anomeric series, and 7 Hz for the α series. It is notable that the anomeric-proton signals of the β -anomeric series generally appear at lower field than those of their α -anomeric counterparts, namely, δ 5.0–5.5 for the β series and 4.6–4.7 for the α series, as shown in Table III.

Glycosylation shifts of the carbon signals of the aglycons. — As already observed for D-glucosylation, D-mannosylation, and L-rhamnosylation, a carbonyl carbon atom (designated a-C) is deshielded by ~7.0 p.p.m. on α -L-arabinosylation, except for the glycosides of the relatively hindered, secondary alcohols (vide infra). As regards β -L-arabinosylation, the magnitude of this downfield shift is a little smaller than that of the corresponding α -anomeric counterpart, as shown in Table IV, although this difference is less evident than for D-mannosylation and L-rhamnosylation³.

It had already been found that signals due to the carbon atoms vicinal to a-C (designated b-C) are displaced upfield on glycosylation, and the magnitude of the shifts of two equivalent methyl or methylene groups of secondary-alcohol aglycons, such as those in 3 and 4 are significantly different from each other, depending upon the stereochemical relationship between the chirality of C-1 and that¹⁻³ of a-C. These novel, glycosylation shifts of b-C were also observed for L-arabinosylation,

TABLE IV

COMPARISON OF L-ARABINOSYLATION SHIFT^{α} OF AGLYCON *a*-C, with corresponding D-glucosylation shift (in parentheses)

Aglycon alcohol of	α-L-Arabinopyranoside (β-D-glucopyranoside) Δίδ _{α-C} b	β-L-A1 abinopy1 anoside (α-D-glucopyranoside) Δίδ _{α-C} b
1	+67(+7.3)	+5.9 (+5 5)
2	+7.0 (+7.3)	
3	+73 (+7.6)	+63 (+6.3)
4	+72(+7.4)	+6.7(+6.6)
5	+7.1(+7.5)	

"In p.p m. ${}^{b}\delta_{a-C}$ of glycoside - δ_{a-C} of aglycon.

TABLE V

COMPARISON OF L-ARABINOSYLATION SHIFT^a OF AGLYCON b-C and b'-C, with corresponding d-glucosylation shift

Com- pound	Moiety	Chir ^b	∠1δ ₀₋₍	∠l∂ø-c	Motety	Chir ^b	_10 _{0-C}	210b -C
	α-D-Glc	S	-3.5		β-D-Glc	R	-3.3	
2	β-L-Ara	S	-34		α-L-Ara	R	-33	
	α-D-Glc	S	-3.9	-2.0	β -D-Glc	R	-18	-3.6
3	β-L-Ara	S	-39	-2 1	α-L-Ara	R	-18	-3.7
	α-D-Glc	S	-4.2	-24	β-D-Glc	R	-22	-39
4	β-L-Ara	S	-42	-2.3	α-ιAra	R	-2.1	-3.9
•	α-D-Glc	S	-2.8		β -D-Glc	R	-26	
5	β-L-Ага	S	-2.8		α-L-Ara	R	-26	

"In p.p.m. "Chirality of anomeric carbon atom as a free form " $A \delta_{b-C \text{ or } b-C} = \delta_{b-C \text{ or } b'-C \text{ of given side}} - \delta_{b-C \text{ or } b'-C \text{ of given side}}$

being identified in analogy to D-glucosylation, as summarized in Table V. On α -Larabinosylation [the chirality of C-1 is (R), as a free form], pro-(S)-b-C (b'-C) is always more shielded than pro-(R)-C (b-C), whereas, on β -L-arabinosylation [the chirality of C-1 is (S) as a free form], b-C is more shielded than b'-C.

Glycosylation shifts for relatively hindered secondary alcohols. — As already reported for D-glucosides^{1,2}, D-mannosides, and L-rhamnosides³, the glycosylation shifts both of C-1 and of the aglycon signals of glycosides of relatively hindered, secondary alcohols, such as 6, 7, and a 3β -hydroxyl group of triterpenes, are charac-

Compound	δ_{C-1}	$\varDelta \delta_{C-1}^{a}$	¹ J _{C-1 II-1} (Hz)	δ_{C-2}	δ_{C-3}	δ_{c-1}	δ_{C-5}
 6α	106.3		156	72.6	74.3	69.1	66.4
7α	101.4	-2.2	158	72.2	74.4	69.2	66.6
6β	96.8	+2.2	166	70.0 ^b	70.6 ^b	71.20	64.6
7β	102 8	+82	164	70.0 ⁶	71.0 ^b	71.00	64.4

TABLE VI

¹³C CHEMICAL SHIFTS OF SUGAR MOIETIES OF L-ARABINOPYRANOSIDES (6 AND 7) OF d- AND l-MENTHOL

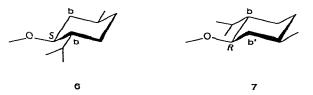

 $a_{-1}\delta_{C-1} = \delta_{C-1}$ of glycoside $-\delta_{C-1}$ of corresponding L-arabinove ^bThese assignments may be reversed in each horizontal row.

TABLE VII

COMPARISON OF L-ARABINOSYLATION SHIFT" OF a-C. b-C, AND b'-C OF GLYCOSIDES (6 AND 7) OF d- AND l-MENTHOL, WITH THE CORRESPONDING D-GLUCOSYLATION SHIFT (IN PARENTHESES)

Com- pound	α-L-Arabinop (β-D-glucopy	-		β-L-A1 abinop (α-D-glucopy	-		
	$1\delta_{a-c}$	<i>Δ</i> 1δ _{b−c}	$\Delta \delta_{b'-c}$	$\Delta \delta_{u-c}$	$\Delta \delta_{b-c}$	$\Delta \delta_{b'-c}$	
4	+72 (+74)	-2.1 (-2.2)	39 (39)	+6.7 (+6.6)	-42 (-42)	-23 (-2.4)	
7	+10.1	-1.8	-13	+5.0	-5.7	-2.1	
6	(– 10.5) + 5.9	(-1.8) -2.3	(-1.1) -5.3	(+4.7) +10.2	(5.9) 12	(-2.1) -2.4	
7	(-64)	(-2.1)	(-4.9)	(+104)	(-1.3)	(2.6)	

"In p p.m. $b \varDelta \delta_{1-C}$ b-C or b-C $= \delta_{1-C}$ b-C, or b'-C of glycoside $-\delta_{1-}$ b-, or b-C of rglycon

teristically different from those of the aforementioned glycosides of less hindered, secondary alcohols, because of the change of the orientation of the glycosyl linkage⁷. The degree of this "anomalous" shift was found to depend upon the combination of the chiralities of C-1 and a-C. In the present study, the glycosylation shifts of L-arabinosides 6 and 7 were demonstrated to be quite similar to those for the p-glucosides. Combination of α -L-arabinose (C-1: (R)] with the aglycan [a-C: (S)] of 6 as well as that of β -L-arabinose (C-1: (S)] with that [a-C: (R)] of 7 resulted in a more remarkable, downfield displacement of signals of both C-1 and a-C than those of the corresponding L-arabinoside, such as 4, of the less hindered secondary alcohols.

In contrast, on α -L-arabinosylation to give 7α , and β -L-arabinosylation to give 6β , both C-1 and a-C were found to be less deshielded than those for the corresponding L-arabinosylation of the less-hindered, secondary alcohols

With regard to the sugar-carbon resonances other than that of C-1, the spectra of 6α , 6β , 7α , and 7β exhibited the C-2, -3, -4, and -5 signals at almost the same positions as those of the corresponding L-arabinosides of the less-hindered alcohols, indicating the existence of a similar, conformational equilibrium for the glycosyl group; this conclusion was supported by the ${}^{1}J_{C-1,H-1}$ and $J_{1,2}$ values (see Table III).

EXPERIMENTAL

Synthesis of α -L-arabinopyranosides. — A mixture of 2,3,4-tri-O-acetyl- β -Larabinopyranosyl bromide (340 mg), Hg(CN)₂ (300 mg), and an excess of the aglycon alcohol in anhydrous CH₃CN (10 mL) was stirred for 10 h at room temperature, diluted with CHCl₃, and the precipitate removed by filtration. The filtrate was evaporated to dryness, and the residue was deacetylated with 5% KOH in MeOH (30 mL) by standing for 30 min at room temperature. After de-ionizing with Amberlite MB-3, the solution was evaporated to dryness. The residue was chromatographed on silica gel by eluting with C₆H₆-acetone (gradient elution, from a ratio of 3:1 to 1:2), to give an α -L-arabinopyranoside. The elemental analysis of each glycoside was consistent with the molecular formula expected. The physical constants of each glycoside are summarized in Table I. The yields of α -L-arabinosides were $\sim 90\%$ (from the glycosyl bromide).

Synthesis of β -L-arabinopyranosides. — A mixture of α -L-arabinopyranosyl chloride 2,3,4-tri(chlorosulfate)⁵ (450 mg), Ag₂CO₃ (1.39 g), and an excess of the aglycon alcohol in CHCl₃ (4 mL) was stirred for 10 h at room temperature. After dilution of the mixture with CHCl₃ (30 mL), followed by removal of the precipitate by filtration, the filtrate was evaporated to dryness. The residue was de(chlorosulfated) with NaI in acetone solution in the presence of BaCO₃, according to the procedure reported by Jennings and Jones⁸. The crude product, which consisted of the α and β anomers, was separated by chromatography on a column of silica gel by eluting with the following solvent systems 60:10.1 CHCl₃-MeOH-H₂O for 1β , and 70:10:1 for 2β and 3β , 10:1 CHCl₃-MeOH for 5, and 15:1 for 4β and 6β . The separation of 7α from 7β was achieved as follows: the reaction product was chromatographed on silica gel by eluting with 15:1 CHCl₃-MeOH, to give a mixture of 7α and 7β which was acetylated with 1:1 Ac₂O-C₅H₅N for 10 h at room temperature. After processing in the usual way, the resulting mixture of acetates was subjected to preparative, thin-layer chromatography on silica gel (solvent, CHCl₃), which effectuated the separation of the peracetates of 7α and 7β . The acetate of 7β was deacetylated with 5% methanolic KOH by standing for 30 min at room temperature, to give 7β .

The elemental analysis of each glycoside was consistent with the molecular formula expected, and the physical constants are listed in Table I. The yields of the β -L-arabinosides from the glycosyl chloride were nearly 10%.

N.m.r.-spectral measurements. — Spectra were recorded with a JEOL JNM-PFT-100 spectrometer at 25° for 0.06–2.0M solutions in C_5D_5N , at 25.15 MHz for ¹³C, and 100 MHz for ¹H, spectra. For proton-decoupled, F.t. measurements, spectral width: 4 kHz, pulse flipping-angle: 90°, acquisition time: 0.4 s, number of data points: 4096, transient time: 1–2 s, number of transients: 700–6,000. Conditions for ¹J_{C-1,H-1} measurements by gated decoupling, spectral width: 4 kHz, pulse flippingangle: 90°, acquisition time: 0.2 s, number of data points: 2,000–40,000, computerlimited resolution: 2 Hz.

REFERENCES

- 1 R. KASAI, M. SUZUO, J. ASAKAWA, AND O. TANAKA, Tetrahedron Lett., (1977) 175-178.
- 2 K. TORI, S. SEO, Y. YOSHIMURA, H. ARITA, AND Y. TOMITA, Tetrahedron Lett., (1977) 179-182; J. Am. Chem Soc, 100 (1978) 3331-3339.
- 3 R. KASAI, M. OKIHARA, J. ASAKAWA, K. MIZUTANI, AND O. TANAKA, *Tetrahedron*, 35 (1979) 1427–1432.
- 4 G. M. BEBAULT, G. G. S. DUTTON, AND C. K. WARFIELD, Carbohydr. Res., 34 (1974) 174-179.
- 5 H. J. JENNINGS, Can. J. Chem., 46 (1968) 2799-2805.
- 6 K. BOCK AND C PEDERSEN, Acta Chem. Scand, Ser B, 29 (1975) 258-264.
- 7 R. U. LEMIEUX AND S. KOTO, Tetrahedron, 30 (1974) 1933-1944.
- 8 H. J. JENNINGS AND J. K. N. JONES, Can. J. Chem., 43 (1965) 2372-2386.