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Abstract: o~-Oxocarboxylic acids can be reduced to the corresponding ~-hydroxy carboxylic acids 
employing DIP-CI ~ as a reducing agent. The cz-carboxylic substituent exerts a remarkable neighboring 
group effect on the reduction. The reaction presumably proceeds in an intramolecular fashion through a 
"'rigid" bicyclic transition state assembly, which produces enantioselectivities approaching 99%. 
© 1998 The DuPont Merck Pharmaceutical Company. Published by Elsevier Science Ltd. All rights reserved 

Optically active oc-hydroxy acids are important building blocks ill organic synthesis, lbr example, 

in the syntheses of glycols) oc-halo esters 4 and epoxides. 5 o~-Hydroxy acids have also been widely 

employed as stalling materials for the synthesis of complex molecules, such as prostaglandins ~ and 

angiotensin converting enzyme (ACE) inhibitors. 7 Considerable effort in this field has resulted in sever:d 

synthetic 8'9 and enzymatic ~° methods for the synthesis of optically active o~-hydroxy acids. We have been 

interested in developing a simple, smfightforward, and generally applicable method tbr the enantioselectivc 

synthesis of Ix-hydroxy acids. Herein, we wish to report an efficient method to directly convert ot- 

oxocarlx~xylic acids to chiral cc-hydroxy carboxylic acids employing DIP-CI "nst ,xs the reducing agent. 

0 Et3N OH 

R OH + (+)-Ipc2BCI -20 °C-0 °C, 2-3 h, then" OH 85-9975_91%% eeyield 

O H20-OH-, and H20-H + O 

B-Chlorodiisopinocampheylborane is a remarkably versatile reducing agent in asymmetric 

synthesis, n ~'~2 This reagent has been successfully applied to a number of reduction reactions, including 
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asymmetric ketone reductions, ~3'14 flu~'oketone reductions ~5 and the syntheses of C2 -symmetric 

auxiliaries. 1~ Brown recently reported the reduction reactions of a- and [~-hydroxy ketones ~7 employing DIP- 

CI TM as the reducing agent. The reactions apparently took place via ketoaikyl diisopinocamphenyl-borinate 

intermediates. Those observations are consistent with our reports related to allyiboration of ~x-hydroxy 

ketones TM and (x-oxoacids 19 in which we postulated that the allylboration occurred in an intramolecular 

fashion via a neighboring group control involving mixed boronate intermediates after ligands exchange. 

Applying the same concept, we have achieved a methodology for the syntheses of enantiomerically enriched 

~x-hydroxy carboxylic acids using highly enantioselective DIP-CI TM reduction of ot-oxocarboxylic acids. 

In contrast to the DIP-CI TM reduction of ot-keto esters, 2° which occurred rather sluggishly and 

generated low enantioselectivities, the DIP-CI TM reduction of ~x-oxocarboxylic acids, in the presence of 

triethyl amine, proceeds rapidly (in 2-3 h at -20 °C- 0 °C) to afford the desired hydroxy carboxylic acids, 

with high enantioselectivities (85-98% ee) and with predictable absolute configuration. As we reported 

earlier, triethylamine significantly enhances the reaction rate. A plausible mechanism for this reduction 

reaction may involve a "rigid" bicyclic transition state assembly, as shown in Scheme 1 .~s.t9 One of the 

enantiotopic faces of the oc-carbonyl is exposed to the reductive hydrogen via a "locked" transition state. Of 

the two approaches, the Re-face approach of the ct-carbonyl is favored since the R-group assumes an 

equatorial-like position in the six-membered ring which minimizes steric interaction. The Si-face approach, 

on the other hand, is less favored due to the steric interaction between the axial-like oriented R-group with 

the endo-methyi of the campheyl ligand. The preferred Re-face approach yields oc-hydroxy carboxylic acids 

with the S-configuration, which is in consistent with the actual configuration observed in our results. 

Scheme 1 

1, favored 2, disfavored 

As summarized in Table 1, ~x-oxocarboxylic acids in either THF or methylene chloride are treated 

with triethylamine (1.0 equivalent, -20 °C, 5 minutes) and 1.2 equivalent of (+)-DIP-CI TM (-20 °C). Upon 

completion of the reaction (-20 °C to 0 °C for 2-3 h), the mixture is quenched with water. After basic 

hydrolysis, followed by acidic workup, the desired optically active (S)-ot-hydroxy carboxylic acids are 

obtained in 65-91% yield and 85-98% ee (Table 1). The absolute configurations of the products are 

determined by optical rotation through the comparison with the authentic samples. 
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In summary, we have demonstrated that the ~-cad~xylic substituent exerts a remarkable 

neighboring group effect on the reduction of et-oxocarboxylic acid to its corresponding et-hydroxy 

carboxylic acid employing DIP-Ci TM as a reducing agent. This reaction presumably proceeds through a 

"rigid" bicycle transition state assembly, which leads the enantioselectivity excess approaching to 99%. 

Table 1. Synthesis of c¢-Hydroxy Acids via DIP-CI TM Reduction of (x-Oxocarboxylic Acids 

Oxocarboxylic Acid Product Yield %a ee %b 

o OH 

°H e o" 

~ 
V ~ I / O H  ~ O H  

O O 

OH 

H ~ O H  
HO,,,,~.~ QH ~.~H 

~ O H  ~ H  

O O 

O QH 

~ o  °~ ~ o  H 
O OH 

91 96 

70 90 

74 95 

78 93 

65 89 

65 85 

88 98 

(a). Isolated yield. 
Co). The enantiomeric excess were determined either by NMR after converUn 9 the products to their methyl 

esters and then to their corresponding Mosher esters, or by optical rotation with authentic samples. 
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