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CONCISE ASYMMETRIC ROUTES TO 2,2,4-TRISUBSTITUTED TETRAHYDROFURANS VIA CHIRAL TITANIUM 
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Abstract: Two complimentary approaches to the key (-)-(2R)-cis-tosylate 1 and its (+)-(2S)-enantiomer 15 via generation of chiral 
imide enolates having a 2,2-disubstituted olefin functionality in the p-position, are described. In a "protecting group free" sequence, 
reaction of the titanium enolate generated from (4R)-benzyl-2-oxazolidinone derived imide 5b with s-trioxane provided a convenient 
intermediate 19 which could be directly subjected to 2,4-diastereoselective iodocyclization. Copyright © 1996 Elsevier Science Ltd 

As part of an extensive search for orally effective antifungal agents we recently described a practical synthesis 

of Sch 56592 which posesses improved therapeutic potential over Sch 51048 and other clinically useful agents against 

a variety of systemic fungal infections in normal and immunocompromised infection models.l,2 Both compounds belong 

to an uncommon 2,2,4-trisubstituted cis-tetrahydrofuran family of orally active broad-spectrum antifungals. In our earlier 

chemoenzymatic route to these compounds, the key (-)-(2R)-cis-tosylate 1 was secured via an unprecedented and 

remarkably efficient 2,4-diastereoselective 5-exo-halocyclization process. The (4S)-diol monoester synthons 3a and 3b 

of high optical purity (~99% ee) were obtained in this case by organic-phase enzymatic acylation of 2 in the presence of 

Novo SP 435 (Novozyme 435 from Novo Nordisk). 2 
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Enantioselective chemical routes to 1 and its corresponding (+)-(2S)-enantiomer 15 were viewed as being 

directly accessible via the chiral imide enolate technology developed independently by the Evans 3 and Oppoizer 4 

groups. At the outset it was not clear in what manner the unsaturation (arrow) 13 to the site of enolate derived from 5 

would influence the efficiency of electrophilic substitutions; to the best of our knowledge these type of substrates have 

not been studied earlier. The wide choice of electrophiles, excellent diastereoselectivities for both alkylations and aldol 

condensations, and easy access to chiral auxiliaries led us to choose the Evans methodology. 5 We now describe two 

complimentary routes to 1 using chiral oxazolidinones derived from (S)-valinol and (R)-phenylalaninol respectively. 

Synthesis of the desired olefinic acid 7 was accomplished quite simply and in high yields from the allyl alcohol 6 

available in bulk from our original chiral epoxide route to 1.6 In a one-pot sequence 6 was subjected to Claisen-Johnson 

orthoester rearrangement 7 with triethyl orthoacetate followed by basic hydrolysis of the resulting ethyl ester to provide 7 
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as a crystalline solid, m.p. 65 ° C in 86% yield. 8 Treatment of the acid chloride 8 with the lithium salt of (4S)-(-)-4- 

isopropyl-2-oxazolidinone according to standard conditions 5 readily provided the chiral imide 5a in over 80% yield. 8,9 

Our first experiments to introduce the benzyloxmethyl funtionality were conducted with the lithium enolate of 5a using 

benzyloxymethyl bromide as the alkylating reagent. Although excellent diastereofacial selectivity for the desired benzyl 
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Reagents: (a) (EtO)3C.Me, EtCOOH (cat.), 120°; (b) KOH, MeOH, R.T.; 
(c) 6 Na-salt, oxalyl chloride, 0°C; (d) oxazolidinone Li-salt, THF, -78°C; 
(e)4a, 0H2012, TiCI 4, 0°C, then Et3N, BnOCH2CI, 0°C; (f) LAH, THF, 0°C; 
(g) 12, MeCN, pyridine, 0-5°C; (h) Na-triazole, DMF, DMPU, 100°C, 24 h; 
(i) H2/10% Pd/C; (j) TsCI, pyridine; (k) acetylation; (I) 12, MeCN; 

ether 9 10 (over 98:2) was realized, the chemical yields were unacceptably low (~30%). Under these conditions -40% 

unchanged 5a was recovered, plus intractable products. Under the same conditions, saturated substrates have been 

reported to provide the corresponding benzyl ethers in over 70% yields. 5 

Titanium enolates of N-acyloxazolidinones have been utilized with greatly improved results over Li-enolates in 

terms of operational simplicity and high diastereofacial selectivity. 11,12 Thus in a marked improvement, alkylation of 5a 

with benzyloxymethyl chloride via Evans' titanium enolate protocol 12 gave the benzyl ether 9 in 84% yields (>98% de). 

No isomerization of the 2,2-disubstituted olefin was detected during either lithium or titanium enolate formation, a 

requirement crucial to success in this chiral imide route to 1. Reduction of 9 with LAH in tetrahydrofuran gave the 

desired (-)-(2S)-diol monobenzyl ether 1013 (85% yield) with -80% recovery of the chiral auxiliary. The remaining steps 

from iodocyclization onwards proceeded as expected 2 to provide cis-l-N-triazolyl benzyl ether 13 and the 

corresponding trans-isomer 13a (cis:trans; >90:10). 14 The undesired 13a was readily separated from 13 by 

chromatography. Hydrogenolytic debenzylation of 13 followed by tosylation of the resulting alcohol 14 provided the 

desired (-)-(2R)-cis-tosylate 16 in overall 90% yield and excellent optical purity (>99% e.e.). (Scheme I) 

In principle, synthesis of the enantiomeric (+)-(2S)-cis-tosylate 15 could be easily carried out by following the 

above sequence using an appropriate chiral auxiliary such as (4R)-(+)-4-isopropyl-2-oxazolidinone. This was found 

quite unnecessary as iodocyclization of 11 under the equilibrating conditions according to Rychnovsky and Bartlett 15 

provided the iodoacetate of opposite configuration. As we have reported earlier, 2 under these conditions the 'cis:trans' 

diastereoselectivity was relatively poor (70:30). However following established conditions, the (+)-(2S)-cis-tosylate 15 

could be prepared from the major iodocyclization product after chromatographic separation from the minor trans-isomer. 

The following alternative approach to 1 was undertaken as we were keen to avoid yield limiting protection- 

deprotection operations. The allyl alcohol 6 we had been using so far was prepared in 4-steps from 1,3- 
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difluorobenzene. 6 In this manner synthesis of the olefinic acid 7 used above required a total of 6-steps. We were able 

to synthesize 7 in two simple steps by FriedeI-Crafts reaction of m-difluorobenzene with succinic anhydride to provide 

the crystalline keto acid 18, m.p. 110°C in over 90% yield. Wittig reaction of 18 in tetrahydrofuran with two equivalents 

of methylene triphenyl phosphorane then gave the olefinic acid 7 in ~60% yield over 2 steps. 

The (R)-phenylalaninol derived chiral imide 5b was produced in 90% yield by activation of 7 with pivaloyl 

chloride followed by in-situ reaction of the resulting anhydride with the Li-salt of (4R)-(+)-4-benzyl-2-oxazolidinone. 5 

Diastereofacially selective hydroxymethylation of 5b was best carried out with sym-trioxane using titanium enolate 

chemistry 12 to provide the aldol product 19 in -60% yield. 16 The direct iodocyclization of 19 at room temperature with a 

high degree of diastereoselectivity in favor of the desired cis-iodo imide 20 (cis:trans, >90:10; 90% yield) is 

noteworthy. 17 In contrast iodocyclization of 3a or 10 type substrates required lower temperatures (0-5°C) to achieve 

the same degree of diastereoselectivity, Lithium borohydride reduction of 20 under controlled conditions followed by 

chromatography provided the cis-iodoalcohol 2118 and recovered (4R)-benzyl-2-oxazolidinone in -90% and 71% yields 

respectively. As we have noted earlier, displacement of iodine in a neopentyl-like system by the highly nucleophilic 

triazolyl anion posed no problems. 2 Hydroxyl protection used in our earlier study, proved unnecessary. Indeed direct 

displacement of iodine in 21 with sodium-triazole according to conditions described earlier, 2 provided the alcohol 22 in 

75% yield; tosylation then efficiently provided the (-)-(2R)-cis-tosylate 1, thus saving two steps. (Scheme II) 
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IReagents: (a) FriedeI-Craft; (b) Ph3P=CH 2 (2 equiv,), THF; (c) pivaloyl chloride activation of 6, oxazolidinone Li-salt, 
0 0 0 0 ~ THF, -78 C; (d) 18, CH2CI 2 TiCI4, 0 C, then s-Trioxane, 0 C; (e) 12, MeCN, pyridine, 0-5 C; (f) LiBH4, THF, -78°C to 

L R.T., 2h; (g) Na-triazole, DMF, DMPU, 100°C, 24 h; (h) TsCI, pyridine. 

Notably, no protecting groups were required throughout this entire sequence. This concise new route to 1 offers 

excellent opportunity for large scale operations. These examples further enhance the scope of Evans' imide enolates 

as well as the unprecedented 2,4-diastereoselective halocyclizations 2 reported recently. 

Based on its superior efficacy and pharmacokinetic profile, Sch 56592 is in Phase I clinical trials at the present 

time. 1, 19 We shall report on additional examples of diastereoselective bond constructions with chiral imides of the type 

5a and 5b in future communications. Further chemistry relating to Sch 56592 and structure-activity relationships in this 

series of novel orally active broad-spectrum antifungals will also be reported elsewhere. 
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