# TWO STEROIDAL GLYCOSIDES, ACULEATISIDE A AND B FROM SOLANUM ACULEATISSIMUM\*

# REIKO SAIJO, CHIAKI FUKE, KOTARO MURAKAMI, TOSHIHIRO NOHARA† and TOSHIAKI TOMIMATSU

Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi 1-78, Tokushima 770, Japan

#### (Revised received 30 July 1982)

Key Word Index—Solanum aculeatissimum; Solanaceae; steroidal glycosides; aculeatiside A; aculeatiside B; nuatigenin; isonuatigenin.

Abstract—Two new steroidal glycosides, named aculeatiside A and B, were isolated in yields of *ca* 0.1 and 3.0%, respectively, from the root of *Solanum aculeatissimum* and their structures were determined as  $26-O\beta$ -D-glucopyranosyl nuatigenin  $3-O\beta$ -chacotrioside and  $26-O\beta$ -D-glucopyranosyl nuatigenin  $3-O\beta$ -solatrioside respectively. Therefore, this plant is considered to be a useful source of pregnane derivatives.

#### INTRODUCTION

Solanum aculeatissimum has been used to treat bronchitis and rheumatism in China and solasodine, solasonine and solamargine are known as constituents of this plant [1, 2]. In our studies on the oriental Solanum plants, we have now isolated two new steroidal glycosides, named aculeatiside A and B, from the roots of S. aculeatissimum and elucidated their structures.

## **RESULTS AND DISCUSSION**

The isolation and separation of aculeatiside A (1) and B (2) were carried out by a combination of CC on Amberlite



\*Part 3 in the series "Studies on the Constituents of Solanum Plants". For Part 2 see Saijo, R., Murakami, K., Nohara, T., Tomimatsu, T., Sato, A. and Matsuoka, K. (1982) Yakugaku Zasshi 102, 300.

†To whom correspondence should be addressed.

XAD-2, Sephadex LH-20, alumina and Si gel followed by crystallization.

Aculeatiside A (1), colorless needles, mp 196–204°,  $[\alpha]_D - 96.7^\circ$ , FDMS m/z 1069  $[M]^+$ , showed strong IR absorption due to hydroxyls and gave on acid hydrolysis nuatigenin (3) [3], mp 206–216°,  $[\alpha]_D - 86.9^\circ$ , and isonuatigenin (4) [3], mp 256–258°,  $[\alpha]_D - 111.6^\circ$ , as the aglycone part and glucose and rhamnose as the sugar part. The permethyl ether derived from 1 by the Hakomori method [4] gave on methanolysis a mixture of methyl glycosides of 2,3,4,6-tetra-0-methyl-D-glucopyranose, 2,3,4-tri-0-methyl-L-rhamnopyranose and 3,6-di-0-methyl-D-glucopyranose. The <sup>13</sup>C NMR spectra of 3 and 4 were assigned as shown in Table 1. Compound 1 exhibited four peaks ascribable to the anomeric carbons

Table 1. <sup>13</sup>C NMR data (pyridine-d<sub>5</sub>) of aculeatiside A (1), aculeatiside B (2), nuatigenin (3) and isonuatigenin (4)

| Carbon No. | 1     | 2     | 3     | 4     |
|------------|-------|-------|-------|-------|
| 1          | 37.5  | 37.5  | 37.8  | 37.8  |
| 2          | 30.1  | 30.1  | 31.7  | 31.8  |
| 3          | 78.1  | 78.1  | 71.3  | 71.2  |
| 4          | 40.5  | 40.5  | 43.5  | 43.4  |
| 5          | 140.7 | 140.9 | 142.0 | 141.9 |
| 6          | 120.1 | 120.2 | 120.3 | 120.9 |
| 7          | 32.2  | 32.2  | 32.6* | 32.6* |
| 8          | 31.6  | 31.7  | 32.2  | 32.3  |
| 9          | 50.2  | 50.3  | 50.5  | 50.4  |
| 10         | 37.0  | 37.1  | 37.0  | 37.0  |
| 11         | 21.0  | 21.1  | 21.2  | 21.2  |
| 12         | 38.9  | 38.6  | 40.0  | 40.0  |
| 13         | 39.8  | 39.8  | 40.6  | 40.5  |
| 14         | 56.4  | 56.5  | 56.6  | 56.8  |
| 15         | 32.2  | 32.2  | 32.3* | 32.2* |
| 16         | 80.9  | 80.9  | 81.1  | 81.3  |
| 17         | 62.6  | 62.7  | 62.6  | 63.0  |
| 18         | 16.1  | 16.2  | 16.2  | 16.4  |
| 19         | 19.3  | 19.4  | 19.6  | 19.6  |
| 20         | 38.6  | 38.6  | 38.5  | 42.0  |

| Table 1. | (contd.) |
|----------|----------|
|----------|----------|

| Carbon No. | 1     | 2     | 3     | 4     |
|------------|-------|-------|-------|-------|
| 21         | 15.0  | 15.1  | 15.2  | 15.1  |
| 22         | 121.7 | 121.6 | 120.9 | 109.5 |
| 23         | 33.1* | 33.1* | 32.6* | 27.8  |
| 24         | 33.8* | 33.8* | 33.8* | 33.8* |
| 25         | 83.8  | 83.8  | 85.6  | 65.9  |
| 26         | 77.2  | 77.3  | 70.1  | 69.7  |
| 27         | 24.3  | 24.3  | 24.1  | 26.9  |
| 1′         | 100.2 | 100.4 |       |       |
| 2′         | 79.0  | 74.7† |       | · —   |
| 3′         | 76.6  | 85.0  | _     | _     |
| 4'         | 77.8  | 69.9  |       |       |
| 5′         | 78.1  | 74.9† | —     |       |
| 6'         | 61.4  | 62.2‡ | —     | _     |
| 1″         | 101.8 | 102.0 | _     |       |
| 2″         | 72.5† | 72.6§ | —     |       |
| 3″         | 71.6† | 72.2§ | —     |       |
| 4″         | 73.6‡ | 73.9  |       |       |
| 5″         | 69.3§ | 69.3  | —     |       |
| 6″         | 18.3  | 18.5  |       |       |
| 1″′        | 102.7 | 105.5 | _     | _     |
| 2″′        | 72.5† | 76.0  | —     |       |
| 3″ ′       | 72.2† | 78.1  |       |       |
| 4″ ′       | 73.9‡ | 71.6  | _     | _     |
| 5″ ′       | 70.3§ | 77.7  | —     | —     |
| 6" '       | 18.4  | 61.7‡ | _     | —     |
| 1‴‴        | 105.1 | 105.1 |       | _     |
| 2‴″        | 75.1  | 75.2  |       | _     |
| 3‴         | 78.1  | 78.1  | _     |       |
| 4""        | 72.2  | 71.6  |       |       |
| 5″ ″       | 78.1  | 78.1  | _     | _     |
| 6" "       | 62.4  | 62.4‡ | —     | _     |

\*,  $\dagger$ ,  $\ddagger$ , \$,  $\parallel$  Data with the same sign within each column may be reversed.

of the sugar moiety and the signals due to the aglycone part were in good agreement with those of 3 except C-3 and C-26. The above evidence suggested that 1 was a nuatigenin tetraglycoside, whose sugar component consisted of two moles of glucose and two moles of rhamnose, and that the glycosyl residues were linked to the hydroxyls at C-3 and C-26 of 3 from consideration of the glycosidation shift [5, 6]. Production of isonuatigenin (4) was artificially derived from nuatigenin (3) during acid hydrolysis [3]. Furthermore, application of the Baeyer-Villiger reaction [7] on 1 using hydrogen peroxide and formic acid followed by treatment with alkali afforded a pregnane oligoside (5) and (S)-4,5-dihydroxy-4-methyl-pentanoic acid 5-O- $\beta$ -D-glucopyranoside (6). Compound 5 gave on acid hydrolysis  $5\alpha$ -pregnane- $3\beta$ , 5,  $6\beta$ ,  $16\beta$ ,  $20\alpha$ -pentol (7) [8] and glucose and rhamnose, while the structure of  $\mathbf{6}$ was substantiated by the <sup>13</sup>C NMR spectrum and enzymic hydrolysis with almond emulsin to give D-glucose. Therefore, 1 must be a bisdesmoside having  $\beta$ -chacotriose linked at C-3 and one mole of glucose at C-26. It thus belongs to the avenacoside-type of glycoside [9, 10], and be designated the structure 3-0-[α-Lcan rhamnopyranosyl- $(1 \rightarrow 2_{glu})$ - $\alpha$ -L-rhamnopyranosyl- $(1 \rightarrow 4_{glu}) - \beta - D - glucopyranosyl]$  nuatigenin 26-0- $\beta$ -Dglucopyranoside.

Aculeatiside B (2), was an amorphous powder,  $[\alpha]_D$  $82.0^{\circ}$ , which exhibited  $[M + Na]^+$  at m/z 1085 in the FDMS and gave on acid hydrolysis compounds 3 and 4 as the aglycone components and glucose, galactose and rhamnose as the sugar components. The permethyl ether, obtained in the same manner as the permethyl ether of 1, gave on methanolysis a mixture of methyl glycosides of 2,3,4-tri-O-methyl-L-rhamnopyranose, 2,3,4,6-tetra-Omethyl-D-glucopyranose and 4,6-di-O-methyl-Dgalactopyranose and an additional methylated sugar, which was proved to be methyl-2,3,4,6-tetra-O-methyl-β-D-glucopyranosyl- $(1 \rightarrow 3)$ -4,6-di-O-methyl- $\alpha$ -D-galactopyranoside by the <sup>1</sup>H NMR spectrum of its monoacetyl





derivative. The Baeyer–Villiger reaction of 2 afforded a pregnane glycoside (8) and compound 9, the former of which on acid hydrolysis gave galactose, glucose and rhamnose along with 7. Compound 9 was identified as (S)-4 -hydroxymethyl-4-methyl- $\gamma$ -butyrolactone- $\beta$ -D-glucopyranoside by <sup>1</sup>H and <sup>13</sup>C NMR analysis.

Consequently, the structure of **2** is represented as 3- $O-[\alpha-L-rhamnopyranosyl-(1 \rightarrow 2_{gal})-\beta-D-glucopyranosyl-(1 \rightarrow 3_{gal})-\beta-D-galactopyranosyl]$  nuatigenin 26- $O-\beta$ -D-glucopyranoside.

Both steroidal glycosides 1 and 2 have been obtained in a good yields (*ca* 0.1 and 3.0%, respectively) in the crystalline state. The *n*-butanol layer obtained during the separation procedure contains more of 1 and 2 (7.27%). Since 3 and 4 obtained by hydrolysis of 1 and 2 can be transformed into pregnadienolone [3], it is conceivable that the title plant may be a useful source to provide pregnane derivatives.

#### **EXPERIMENTAL**

All mps were uncorr. Optical rotations were taken at  $15-20^{\circ}$  using a 1-dm cell. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded at 100 and 50.01 MHz, respectively, using TMS as int. standard. Chemical shifts are given in  $\delta$  (ppm). The FDMS were measured at ion source potentials of 8 kV for the field anode and -3 kV for the slotted cathode plate, an ion source pressure of *ca*  $10^{-7}$  Torr and an ion source temp. between 50° and 60°. Al<sub>2</sub>O<sub>3</sub> 90 (70-230 mesh) and Si gel 60 (70-230 mesh) were employed for CC. Si gel 60 was used for TLC. The spots were visualized by spraying with 10% H<sub>2</sub>SO<sub>4</sub> followed by heating. GC employed a glass column (3 mm × 2 m) packed with 1% neopentylglycol succinate on Chromosorb W (60-80 mesh).

Plant material. The underground parts of Solanum aculeatissimum Sacq. were collected in December from plants cultivated in the Medicinal Botanical Garden of Tokushima University.

Isolation of aculeatiside A (1) and B (2). The fresh sliced materials (715 g) were extracted with refluxing MeOH (1.51.  $\times$  3). After evaporation of solvent, the MeOH extractives (70 g) were defatted with *n*-hexane to give a residue, which was partitioned between *n*-BuOH (21.) and H<sub>2</sub>O (21.). The organic layer was concd to 20% vol. to afford a ppt (36 g). The filtrate (16 g) was chromatographed on Si gel using CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O (8:2:0.2 $\rightarrow$ 7:3:0.5) to furnish aculeatiside A (1), 638 mg (0.1% based on the fresh root) as colorless needles, while a part (3.12 g) of the ppt was separated by Al<sub>2</sub>O<sub>3</sub> CC using the upper layer of EtOAc-pyridine-H<sub>2</sub>O (3:1:3) as solvent to afford aculeatiside B (2), 1.88 g (3%), as an amorphous powder.

Aculeatiside A (1). Colorless needles from dil. MeOH, mp 196–204° (decomp.),  $[\alpha]_{22}^{22} - 96.7°$  (pyridine; c 1.08), IR v  $_{\text{Max}}^{\text{Max}}$ cm<sup>-1</sup>: 3400 (OH), 919, 870, 840, 818 (spiroketal). FDMS (*m*/*z*): 1069 [M + Na]<sup>+</sup>. <sup>1</sup>H NMR (pyridine-*d*<sub>5</sub>):  $\delta$  0.81 (3H, *s*, Me-18), 1.05 (3H, *s*, Me-19), 1.08 (3H, *d*, *J* = 6 Hz, Me-21), 1.40 (3H, *s*, Me-27), 1.62 (3H, *d*, *J* = 6 Hz, rha-Me-5), 1.76 (3H, *d*, *J* = 6 Hz, rha-Me-5).

Acid hydrolysis of 1. A soln of 1 (360 mg) in 2 N HCl-MeOH (10 ml) was refluxed for 2.5 hr. After cooling the mixture was neutralized with 5% KOH-MeOH, concentrated, and *n*-BuOH and H<sub>2</sub>O added. The BuOH layer was evaporated *in vacuo* to dryness to give a residue, which was separated by Si gel CC with CHCl<sub>3</sub>-MeOH (100:1  $\rightarrow$  30:1) to afford nuatigenin (3) (18 mg) and isonuatigenin (4) (42 mg). While the aq. layer was examined by Si gel TLC to detect glucose and rhamnose (CHCl<sub>3</sub>-MeOH-Me<sub>2</sub>CO-H<sub>2</sub>O, 3:3:3:1).

Nuatigenin (3).  $R_f 0.71$  (CHCl<sub>3</sub>-MeOH, 10:1), colorless needles, mp 212–216°,  $[\alpha]_{D}^{19}$ –86.9° (CHCl<sub>3</sub>; c 0.61) (lit. 210–214°,

[α] $^{23}_{D}$ -93° [3]), IR v  $^{\text{Max}}_{\text{max}}$  cm<sup>-1</sup>: 3350 (OH), 920, 874, 860, 836, 804. EIMS (*m*/*z*): 430 [M]<sup>+</sup>, 412 [C<sub>27</sub>H<sub>40</sub>O<sub>3</sub>]<sup>+</sup>, 399 [C<sub>26</sub>H<sub>39</sub>O<sub>3</sub>]<sup>+</sup>, 381 [C<sub>26</sub>H<sub>37</sub>O<sub>2</sub>]<sup>+</sup>, 300 [C<sub>21</sub>H<sub>32</sub>O]<sup>+</sup>, 282 [C<sub>21</sub>H<sub>30</sub>]<sup>+</sup>, 271 [C<sub>19</sub>H<sub>27</sub>O]<sup>+</sup>, 253 [C<sub>19</sub>H<sub>25</sub>]<sup>+</sup>, 155 [C<sub>9</sub>H<sub>15</sub>O<sub>2</sub>]<sup>+</sup>. Nuatigenin (3) was acetylated in the usual manner to afford the diacetate, colorless needles, mp 156–176°, [α] $^{22}_{D}$ -105.6° (CHCl<sub>3</sub>; *c* 0.89) (lit. 156–159°, [α] $^{22}_{D}$ -95° [3]). EIMS (*m*/*z*): 496 [M - H<sub>2</sub>O]<sup>+</sup>, 454 [C<sub>29</sub>H<sub>42</sub>O<sub>4</sub>]<sup>+</sup>, 441 [C<sub>28</sub>H<sub>41</sub>O<sub>4</sub>]<sup>+</sup>, 381 [C<sub>26</sub>H<sub>37</sub>O<sub>2</sub>]<sup>+</sup>, 313 [C<sub>21</sub>H<sub>29</sub>O<sub>2</sub>]<sup>+</sup>, 253 [C<sub>19</sub>H<sub>25</sub>]<sup>+</sup>, 197 [C<sub>11</sub>H<sub>17</sub>O<sub>3</sub>]<sup>+</sup>, 185 [C<sub>10</sub>H<sub>17</sub>O<sub>3</sub>]<sup>+</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 0.76 (3H, *s*, Me-18), 0.96 (3H, *d*, *J* = 6 Hz, Me-21), 1.02 (3H, *s*, Me-19), 1.16 (3H, *s*, Me-27), 2.00, 2.06 (2 × OAc), 3.89, 4.15 (each 1H, *d*, *J* = 11 Hz, H<sub>2</sub>-26), 4.20–4.72 (2H, *m*, H-3 and H-16), 5.33 (1H, *m*, H-6).

Isonuatigenin (4).  $R_f 0.67$  (CHCl<sub>3</sub>-MeOH, 10:1), colorless needles, mp 256-258°,  $[\alpha]_D^{22}$ -111.6° (CHCl<sub>3</sub>; c 1.00) (lit. 248-251°,  $[\alpha]_D^{33}$ -123° [3]). IR  $\nu$   $_{\text{MB}}^{\text{MB}}$  cm<sup>-1</sup>: 3350 (OH). EIMS (m/z): 430 [M]<sup>+</sup>, 412 [C<sub>27</sub>H<sub>40</sub>O<sub>3</sub>]<sup>+</sup>, 399 [C<sub>26</sub>H<sub>39</sub>O<sub>3</sub>]<sup>+</sup>, 381 [C<sub>26</sub>H<sub>27</sub>O<sub>2</sub>]<sup>+</sup>, 300 [C<sub>21</sub>H<sub>32</sub>O]<sup>+</sup>, 282 [C<sub>21</sub>H<sub>30</sub>]<sup>+</sup>, 271 [C<sub>19</sub>H<sub>27</sub>O]<sup>+</sup>, 253 [C<sub>19</sub>H<sub>25</sub>]<sup>+</sup>, 155 [C<sub>9</sub>H<sub>15</sub>O<sub>2</sub>]<sup>+</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub> + CD<sub>3</sub>OD):  $\delta$  0.82 (3H, s, Me-18), 1.04 (3H, s, Me-19), 1.05 (3H, d, J = 6 Hz, Me-21), 1.11 (3H, s, Me-27), 3.27, 3.67 (each 1H, d, J = 12 Hz, H<sub>2</sub>-26), 5.30 (1H, m, H-6). Isonuatigenin (4) was acetylated in the usual manner to afford the monoacetate, colorless needles, mp 197-208°,  $[\alpha]_D^{22}$ -129.0° (CHCl<sub>3</sub>; c 0.85) (lit. 215.5-218.5°,  $[\alpha]_D^{22}$ -140° [3]). <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  0.79 (3H, s, Me-18), 1.02 (3H, d, J = 6 Hz, Me-21), 1.03 (3H, s, Me-19), 1.10 (3H, s, Me-27), 2.00 (3H, s, OAc), 3.20 (1H, dd, J = 2, 10 Hz, H-26\beta), 3.68 (1H, d, J = 10 Hz, H-26\alpha), 4.24-4.68 (2H, m, H-3 and H-16), 5.31 (1H, m, H-6).

Methylation of 1. NaH (150 mg) in DMF (4 ml) was stirred for 10 min, then 1 (109 mg) and MeI (3 ml) were added, the mixture was stirred overnight and then poured into ice-water. Extraction with CHCl<sub>3</sub> and usual work-up gave a crude product, which was chromatographed on Si gel (*n*-hexane-Me<sub>2</sub>CO,  $5:1 \rightarrow 4:1$ ) to provide the permethyl ether of 1 as an amorphous powder (117 mg),  $[\alpha]_{D}^{22}-68.6^{\circ}$  (CHCl<sub>3</sub>; c 1.05), IR: no OH. EIMS (*m/z*): 777  $[C_{43}H_{69}O_{12}]^+$ , 631  $[C_{37}H_{59}O_8]^+$ , 413  $[C_{27}H_{41}O_3]^+$ , 412  $[C_{27}H_{40}O_3]^+$ , 381  $[C_{26}H_{37}O_2]^+$ , 282  $[C_{21}H_{30}]^+$ , 253  $[C_{19}H_{25}]^+$ , 189 [methylpentose  $\cdot$ 3Me]<sup>+</sup>, 157 [189 - MeOH]<sup>+</sup> <sup>1</sup> H NMR (CDCl<sub>3</sub>):  $\delta 0.77$  (3H, s, Me-18), 0.96 (3H, d, J = 6 Hz, Me-21), 1.02 (3H, s, Me-19), 1.22 (3H, s, Me-27), 1.29, 1.44 (each 3H, s, 2 × methylpentosyl-Me), 3.34–3.60 (OMe), 4.28, 4.36 (each 1H, d, J = 8 Hz, 2 × hexosyl anomeric proton), 4.96, 5.20 (each 1H, br s, 2 × methylpentosyl anomeric proton), 5.32 (1H, m, H-6).

Methanolysis of the permethyl ether of 1. A soln of the permethyl ether of 1 (12 mg) in 2 N HCl-MeOH (1 ml) was refluxed for 2 hr. After cooling the mixture was neutralized with 3% KOH-MeOH, filtered and the filtrate was passed through Sephadex LH-20 (MeOH). The methylated sugars in the eluate were identified as the methylglycosides of 2,3,4,6-tetra-0-methyl-D-glucopyranose, 2,3,4-tri-0-methyl-L-rhamnopyranose and 3,6di-0-methyl-D-glucopyranose by direct comparison on Si gel TLC (EtOAc-EtOH, 25:1) and GC with authentic samples.

Baeyer-Villiger reaction of 1. A mixture of 1 (500 mg),  $(CH_2)_2CI_2$  (10 ml), 90% HCOOH (13 ml), 30%  $H_2O_2$  (0.5 ml) was heated at 55° for 30 min, and then evaporated to give a residue, which was subsequently treated with 3% KOH-MeOH (15 ml) at 50° for 20 min, neutralized with 5% HCl-MeOH and desalted by passing through Sephadex LH-20 with MeOH to give the products. They were chromatographed on a Si gel column to give (S)-4,5-dihydroxy-4-methylpentanoic acid 5-*O*- $\beta$ -Dglucopyranoside (6, 48 mg) and a pregnane derivative (5, 185 mg). Compound 6, a syrup,  $R_f$  0.41 (CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O, 7:3:0.5),  $[\alpha]_{D}^{3-}$  25.5° (MeOH; c 1.10). <sup>13</sup>C NMR (pyridine- $d_5$ ):  $\delta$  182.9, 35.9, 31.2, 72.9, 77.9, 24.3 (C<sub>1-6</sub>), 104.9, 75.2, 78.0, 71.7, 78.0, 62.8 (glucosyl C<sub>1'-6'</sub>). Compound 6 (38 mg) was incubated with almond emulsin at 40° for 4 hr to yield D-glucose,  $[\alpha]_D^{24} + 49.9°$ (MeOH; c 1.11). Compound 5, an amorphous solid,  $[\alpha]_D^{23} - 63.2°$ (MeOH; c 0.95), IR v<sup>KB</sup> cm<sup>-1</sup>: 3350 (OH). <sup>1</sup>H NMR (CD<sub>3</sub> OD):  $\delta$  0.84 (3H, s, Me-18), 1.11 (3H, s, Me-19), 1.20 (9H, d, 2 × rhamnosyl-Me and Me-21). Acid hydrolysis of 5 (120 mg) with 2 N HCl-MeOH (5 ml) in a water bath for 2 hr followed by purification using Si gel CC with CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O (10:2:0.2) gave 5 $\alpha$ -pregnane-3 $\beta$ ,5,6 $\beta$ ,16 $\beta$ ,20 $\alpha$ -pentol (7), colorless needles, mp 251-253°,  $[\alpha]_D^{24}$ -5.4° (MeOH; c 0.93) (lit. mp 250-252° [8]), IR v<sup>KB</sup> cm<sup>-1</sup>: 3400 (OH).

Aculeatiside B (2). An amorphous powder,  $[\alpha]_{21}^{21}-82.0^{\circ}$  (pyridine; c 1.02), IR  $v_{max}^{KBr}$  cm<sup>-1</sup>: 3350 (OH). FDMS (*m/z*): 1085 [M + Na]<sup>+</sup>.

Acid hydrolysis of 2. Compound 2 (10 mg) was acid hydrolysed with 2 N HCl-MeOH (2 ml) in the same manner as described for 1 to give a mixture of sapogenols, nuatigenin and isonuatigenin, and a sugar part consisting of methylgalactopyranoside [ $R_f$  0.38 ( $\alpha$ ), 0.35( $\beta$ ) on TLC, CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O (7:3:0.5)], methylglucopyranoside [ $R_f$  0.40( $\alpha$ )] and methylrhamnopyranoside [ $R_f$  0.66( $\alpha$ ), 0.60( $\beta$ )].

Methylation of 2. Compound 2 (214 mg) was methylated according to Hakomori's method as described for 1 to give the permethyl ether (122 mg), colorless needles from dil. MeOH, mp 170-174°,  $[\alpha]_{9}^{19}$ -34.2° (CHCl<sub>3</sub>; c 0.79). EIMS (m/z): 468 [M - solatriose 9Me]<sup>+</sup>, 413 [M - solatriose 9Me - hexose 4Me]<sup>+</sup>, 399 [C<sub>26</sub>H<sub>39</sub>O<sub>3</sub>]<sup>+</sup>, 381 [C<sub>26</sub>H<sub>37</sub>O<sub>2</sub>]<sup>+</sup>, 282 [C<sub>21</sub>H<sub>30</sub>]<sup>+</sup>, 253 [C<sub>19</sub>H<sub>25</sub>]<sup>+</sup>, 189 [methylpentose Me-3]<sup>+</sup>, 187 [hexose 4Me - MeOH]<sup>+</sup>, 157 (methylpentose 3Me - MeOH]<sup>+</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  0.78 (3H, s, Me-18), 0.96 (3H, d, J = 6 Hz, Me-21), 1.03 (3H, s, Me-19), 1.24 (3H, s, Me-27), 1.27 (3H, s, methylpentosyl-Me), 4.28, 4.33, 4.36 (each 1H, d, J = 6 Hz, 3 × hexosyl anomeric proton), 5.18 (1H, br s, methylpentosyl anomeric proton).

Methanolysis of the permethyl ether of 2. The permethyl ether (100 mg) of 2 was methanolysed with 2 N HCl-MeOH (3 ml) to give methyl 2,3,4,6-tetra-O-methyl-D-glucopyranoside, methyl 2,3,4-tri-O-methyl-L-rhamnopyranoside, methyl-4,6-di-O-methylgalactopyranoside and methyl-2,3,4,6-tetra-O-methyl- $\beta$ -Dglucopyranoside (by TLC and GC), the last of which was acetylated to give a monoacetate, <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  2.21 (3H, s, OAc), 3.47-3.60 (21H, m, 7 × OMe), 4.39 (1H, d, J = 8 Hz, glucosyl anomeric proton), 4.86 (1H, d, J = 4 Hz, galactosyl anomeric proton), 5.28 (1H, dd, J = 4, 12 Hz, galactosyl H-2) and on further methanolysis to give methyl-2,3,4,6-tetra-O-methyl-D-glucopyranoside and methyl-4,6-di-O-methyl-D-galactopyranoside (TLC and GC).

Baeyer-Villiger reaction of 2. Compound 2 (360 mg) was treated with (CH<sub>2</sub>)<sub>2</sub>Cl<sub>2</sub> (7.5 ml), 90% HCOOH (10 ml), 30%  $H_2O_2$  (0.3 ml) as described for 1 to yield a pregnane derivative (8, 169 mg) and (S)-4-hydroxymethyl-4-methyl- $\gamma$ -butylolactone- $\beta$ -D-glucopyranoside (9, 35 mg). Compound 8, an amorphous powder,  $[\alpha]_D^{21} - 28.0^\circ$  (MeOH; c 0.93), IR  $v_{\text{max}}^{\text{KBr}}$  cm<sup>-1</sup>: 3350 (OH). <sup>1</sup>H NMR (CD<sub>3</sub>OD):  $\delta$  0.86 (3H, s, Me-18), 1.17 (3H, s, Me-19), 1.29 (3H, d, J = 6 Hz, rhamnosyl-Me), 1.25 (3H, d, J = 7 Hz, Me-21). Acid hydrolysis of 8 gave 7, mp 251-253°,  $[\alpha]_D^{28}$ -5.4° (MeOH; c 0.93), IR  $v_{\max}^{KBr}$  cm<sup>-1</sup>: 3400 (OH). Compound 9, a colorless syrup,  $[\alpha]_D^{22} - 25.5^{\circ}$  (MeOH; *c* 1.10). <sup>13</sup>C NMR (pyridine- $d_5$ ):  $\delta$  177.2, 30.7, 29.8, 85.1, 75.5, 23.6 (C<sub>1-6</sub>), 105.2, 75.0, 78.6, 71.5, 78.6, 62.7 (glucosyl  $C_{1'-6'}$ ). Compound 9 was acetylated to give an acetate, a colorless syrup,  $[\alpha]_D^{28} - 22.0^\circ$ (MeOH; c 2.46). EIMS (m/z): 461  $[M+1]^+$ , 361  $[hexose \cdot 4Ac$  $+ CH_2O]^+$ , 331 [hexose  $\cdot 4Ac]^+$ , 99  $[C_5H_7O_2]^{+}$ . <sup>1</sup>H NMR  $(CDCl_3)$ :  $\delta$  3.50, 3.87 (each 1H, d, J = 11 Hz, H<sub>2</sub>-5), 4.55 (1H, d, J = 8 Hz, glucosyl anomeric proton).

Acknowledgement—We are grateful to the staff of the Central Analytical Room of Tokushima University.

## REFERENCES

- 1. Kadkade, P. G. and Rolz, C. (1977) Lloydia 40, 217.
- 2. Kadkade, P. G. and Rolz, C. (1977) Phytochemistry 16, 1128.
- 3. Tschesche, R. and Richert, K. H. (1964) Tetrahedron 20, 387.
- 4. Hakomori, S. (1964) J. Biochem. 55, 209.
- Kasai, R., Suzuo, M., Asakawa, J. and Tanaka, O. (1977) Tetrahedron Letters 175.
- 6. Tori, K., Seo, S., Yoshimura, Y., Arita, H. and Tomita, T. (1977) Tetrahedron Letters 179.
- Morita, K., Noguchi, S., Kono, H. and Miki, T. (1963) Chem. Pharm. Bull. 11, 90.
- Miki, T., Morita, K., Noguchi, S., Kishi, T., Hiraga, K. and Nawa, H. (1963) Chem. Pharm. Bull. 11, 95.
- Tschesche, R., Tauscher, M., Fehlhaber, H.-W. and Wulff, G. (1969) Chem. Ber. 102, 2072.
- 10. Tschesche, R. and Lauven, P. (1971) Chem. Ber. 104, 3549.