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C34-epi and C34-epi-C35-trifluoro analogues of solamin, a mono-THF annonaceous acetogenin, were syn-
thesized. Their inhibitory activity, along with previously synthesized analogues (C35-fluoro, C35-difluoro,
and C35-trifluorosolamins), against bovine mitochondrial NADH-ubiquinone oxidoreductase (complex I)
was determined. The present study revealed that the methyl group on the y-lactone moiety is critical to
the potent inhibition of complex I by natural acetogenins.

© 2013 Elsevier Ltd. All rights reserved.

More than 500 annonaceous acetogenins have been isolated
from the plant family Annonaceae since the discovery of uvaricin
in 1982.1-3 Acetogenins have very potent and diverse biological ef-
fects such as antitumor, antimalarial, and pesticidal activities.>>
Annonacin, the major acetogenin in the tropical plant Annona muri-
cata, is highly toxic to cultured neurons and may play a role in
some neurodegeneration in humans.*® The inhibitory effect of ace-
togenins on mitochondrial NADH-ubiquinone oxidoreductase
(complex I) is of particular importance since their diverse biologi-
cal activities are thought to be attributable to this effect.

The chemical structure of most natural acetogenins is charac-
terized by four segments: (i) an o,B-unsaturated y-lactone ring,
(ii) one to three tetrahydrofuran (THF) rings with flanking OH
group(s), (iii) a long alkyl tail, and (iv) an alkyl spacer linking the
two pharmacophores (i.e., y-lactone and THF moieties) (Fig. 1).
On the basis of structure-activity relationship studies carried out
by ourselves and other groups, the roles of each segment in the
inhibitory action against bovine complex I have been elucidated
as follows: (i) a natural y-lactone ring itself is not crucial for the
activity and is substitutable with other structures,5-!° (ii) neither
the number of THF rings nor the stereochemistry around the THF
ring moiety with the flanking hydroxy group is an essential fac-
tor,'’"1* and the presence of either of two OH groups adjacent to
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the THF ring(s) sufficiently sustains the potent activity,!® and (iii)
a long alkyl tail is preferable, but not essential since even a methyl
derivative elicited strong inhibition at the nanomolar level.!® Thus,
the crucial structural factors of acetogenins are ambiguous, sug-
gesting that complex I recognizes each of the multiple functional
groups of the inhibitors in a fairly loose way. It is however note-
worthy that acetogenins act as strong inhibitors only when the
v-lactone and THF moieties are directly linked by a long alkyl
spacer:!” the optimal length of the spacer for exhibiting the inhibi-
tion is approximately 13 carbon atoms.'®'®

Kojima et al. synthesized three C35-fluorinated solamin ana-
logues (C35-fluoro, C35-difluoro, and C35-trifluorosolamins 1-3,
Fig. 2) and investigated their growth inhibitory activities against
human cancer cell lines.2%2! Interestingly, the activity decreased
as the number of fluorine atoms increased, though it remained to
be clarified whether the decrease is due to a reduction of the activ-
ity at the target enzyme level (i.e., complex I) or to other factors
such as differences in metabolic stability. If the former is a cause,
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Figure 1. Representative structure of natural acetogenins.
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Figure 2. C35-fluorinated solamins and their epimer.

it means that the vy-lactone moiety is strictly recognized by the en-
zyme, and hence a critical structural factor required for the inhibi-
tion, but we did not examine the inhibition of complex I in that
report. To further elucidate the inhibitory action of acetogenins,
we here synthesized C34-epi- and C34-epi-C35-trifluorosolamins,
and determined the inhibitory activity of all fluorinated analogues,
C34-epi-solamin, and solamin against bovine heart mitochondrial
complex L.

To clarify the effect of stereochemistry of the methyl group in
the y-lactone on the biological activity,?? we planned the synthesis
of C34-epi-solamin 4 and C34-epi-C35-trifluorosolamin 5. Deriva-
tive 5 was synthesized using the same procedure as that for C35-
trifluorosolamin 3,2° as shown in Scheme 1. A commercially avail-
able (S)-3,3,3-trifluoro-1,2-epoxypropane 6 was converted to io-
dide 7 by reported procedures. The Sonogashira coupling of 7
and the THF-ring fragment 8 followed by hydrogenation with
Wilkinson’s catalyst gave sulfide 10. Oxidation of 10, followed by
thermal elimination of the resulting sulfoxide, afforded o,B-unsat-
urated y-lactone 11. The synthesis of C34-epi-C35-trifluorosolamin
5 was completed via deprotection of TBS ether with acidic
conditions.

We previously reported the total synthesis of solamin by
asymmetric alkynylation of o-tetrahydrofuranyl aldehyde 12,
which was stereoselectively synthesized by our method, >4 with
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methyl 13-tetradecynoate followed by the construction of o,B-
unsaturated y-lactone moiety.>> When synthesizing C34-epi-sol-
amin 4, a more efficient method was examined (Scheme 2). Direct
asymmetric alkynylation®® of 12 with the alkyne 13,2 which has
a 7y-lactone moiety, proceeded smoothly to give propargyl
alcohol 14 in good yield with high diastereoselectivity (95:5).
Hydrogenation of 14 with Pd-C in EtOAc afforded a saturated
alcohol 15 in 64% yield. Oxidation of 15 followed by thermal
elimination of the resulting sulfoxide afforded a crude product
including alcohol 16. Deprotection of TBS ether was proceeded
by purification of the reaction mixture by column chromatogra-
phy over silica gel giving C34-epi-solamin 4.

We determined the inhibitory activity of all fluorinated ana-
logues (1-3, 5), C34-epi-solamin 4, and solamin against complex
I using bovine heart submitochondrial particles (Table 1). The
activity decreased in the following order: C35-fluoro > C35-difluor-
0 > C35-trifluorosolamin. This tendency is consistent with that of
the growth inhibitory activity against human cancer cell lines.°
A structural ‘bulkiness’ of fluorine, which often replaces hydrogen
in organic molecules but the size and stereoelectronic influences of
the two atoms are quite different,?®2° may disturb the intermolec-
ular interaction between the y-lactone ring and the enzyme. It is
worth noting that both C34-epi- and C34-epi-C35-trifluorosola-
mins remarkably lost the activity; the loss due to epimerization
was greater for the former. These results unambiguously indicate
that both the bulkiness and the stereochemistry of C34-CHj; are
very important structural factors for interacting with the enzyme:
in other words, the y-lactone moiety is strictly recognized by the
enzyme.

The present results are inconsistent with our previous work. We
had performed a structure-activity relationship study concerning
the y-lactone moiety using bis-THF acetogenin derivatives (not
mono-THF derivatives), indicating that a natural y-lactone ring it-
self is not crucial for the activity and can be substituted with other
structures.® We concluded therefore that the enzyme might not
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Scheme 1. Reagents and conditions: (a) Pd(PPhs),Cl,, Cul, EtsN, rt, 87%; (b) Rh(PPhs)sCl, H, (1 atm), benzene-MeOH (1:1), rt, 55%; (c) mCPBA, CH,Cl,, 0 °C; (d) toluene, 60—

65 °C, 57% in two steps; (e) 48% HF aq, MeCN-THF (1:2), rt, 93%.
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Scheme 2. Reagents and conditions: (a) Zn(OTf),, (1R,2S)-N-methylephedrine, i-Pr,NEt, toluene, rt, 81%, dr=95:5; (b) Pd-C, H, (3 atm), EtOAc, rt, 64%; (c) mCPBA, CH,Cl,,

0°C; (d) toluene, 80 °C then silicagel column chromatography, 68% in two steps.
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Table 1

Inhibition of bovine heart mitochondrial complex I by solamin analogues
Compounds ICso (NM)
Natural solamin (C35-CH3) 2.1+0.20
C35-Fluorosolamin 1 2.9+0.22
C35-Difluorosolamin 2 31+19
C35-Trifluorosolamin 3 310+28
C34-epi-Solamin 4 270+ 20
C34-epi-C35-Trifluorosolamin 5 570+ 49

The ICsg values, which is the molar concentration (nM) needed to reduce the control
NADH oxidase activity (0.63-0.75 umol NADH/min/mg of protein) in bovine heart
submitochondrial particles by half. Values are means + SD of three independent
experiments.

recognize this moiety in a strict sense. To further elucidate the
inhibitory mechanism of acetogenins as well as important struc-
tural factors required for the inhibitory action, a discussion of pos-
sible causes of the discrepancy is needed.

There is a point to be made before the discrepancy is discussed
however. We produced ‘Alac-acetogenins’ by deleting the
y-lactone ring from natural bis-THF acetogenins.>°-32 It is worth
noting that Alac-acetogenins elicit an inhibitory effect on complex
[ as strongly as natural acetogenins do, whereas the binding site of
the inhibitors differs from that of natural acetogenins;>'3? in other
words, deletion of the y-lactone ring converts natural acetogenins
to a different type of complex I inhibitor. By contrast, deletion of
the y-lactone ring from mono-THF acetogenins results in an almost
complete loss of the activity.?° Thus, Alac-acetogenin-like inhibi-
tory behavior occurs only in the case of bis-THF derivatives. This
complicates the profile of structure-activity relationship for natu-
ral bis-THF acetogenins: a decrease in the inhibitory activity due to
structural modifications of the y-lactone moiety is apparently
masked by the inhibitory activity elicited as Alac-acetogenin since
the two separate events cannot be distinguished.>* To overcome
this problem and to examine the effects of structural modifications
of the y-lactone moiety on the inhibitory activity, mono-THF ace-
togenins are better than bis-THF derivatives as control compounds.
Altogether, the present study unambiguously indicates that the y-
lactone moiety, which binds to the region spanning the fourth to
fifth transmembrane helices (Val144-Glu192) in the ND1 subunit
of bovine complex 1* is strictly recognized by the enzyme, and
hence a critical structural factor of natural acetogenins required
for the potent inhibition.
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