SYNTHESIS OF THE OPTICALLY ACTIVE FORMS OF 4,10-DIHYDROXY-1,7-DIOXASPIRO[5.5]UNDECANE AND THEIR CONVERSION TO THE ENANTIOMERS OF 1,7-DIOXASPIRO[5.5]UNDECANE, THE OLIVE FLY PHEROMONE[†]

Келл Мокі,*a Тамон UEMATSU,‡a KAZUNORI YANAGib and MASAO MINOBEb "Department of Agricultural Chemistry, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan bTakatsuki Research Laboratory, Sumitomo Chemical Co., Ltd., Tsukahara 2-10-1, Takatsuki-shi, Osaka 569, Japan

(Received in Japan 10 September 1984)

Abstract—Both the enantiomers of 1,7-dioxaspiro[5.5] undecane, the major component of the pheromone of the olive fly (*Dacus oleae*), were synthesized from (S)-malic acid.

The olive fruit fly, Dacus oleae Gmelin, is the major pest of olive in Mediterranean countries such as Greece, Israel, Italy and Spain. Haniotakis was the first to show that the female of this species produces a pheromone that attracts males.¹ Subsequently Rossi claimed that (Z)-6-nonen-1-ol was active as an attractant.² The claim, however, was later challenged by Baker, Francke and their respective co-workers.³ They found 1,7dioxaspiro[5.5]undecane 1 to be the major component of the sex pheromone of the olive fly.³ The proposed structure 1 was confirmed by the synthesis of its racemate, which was active as an attractant against the olive fly.^{3,4} The spiroacetal 1 was also obtained as a minor component of the secretion of male Tephritid fruit fly, Dacus cucumis.⁵ Nothing is known, however, concerning the absolute configuration of the natural pheromone itself. We therefore became interested in synthesizing both the enantiomers of 1 so as to provide reference samples for the determination of the stereochemistry of the natural pheromone. This paper describes the full account of our synthesis of the enantiomers of 1 via 4,10-dihydroxy-1,7dioxaspiro[5.5]undecane 3a.6 At the time when we began this work, only a synthesis of (R)-spirobi-1,4dioxane from D-fructose had been recorded.⁷ After the completion of the present work, Redlich and Francke preliminarily reported the synthesis of both the enantiomers of 1 starting from D-glucose.⁸

1,7-Dioxaspiro[5.5]undecane 1 is the proto-type of several spiroacetals isolated from insects,⁹ fungi,¹⁰ and bacteria.¹¹ In the case of the substituted spiroacetals such as 2,8-dimethyl-1,7-dioxaspiro-

‡ Research Fellow on leave from Sumitomo Chemical Co., Ltd. (1981–1983). [5.5] undecane 2, its stable conformation is that which is depicted as 2 with two equatorial Me groups.¹² The absolute configuration of its spiro carbon atom is fixed due to the oxygen anomeric effect.¹³ It therefore should be possible to synthesize the enantiomers of 1, if one can temporarily attach substituents on the tetrahydropyranyl rings to control the stereochemistry at the spiro center. The substituent must be removed readily without causing any racemization at the spiro center. As such a substituent we chose an OH group, whose reductive removal is a well-established process. Consequently, (4S,6S,10S)-4,10-dihydroxy-1,7-dioxaspiro[5.5]undecane 3a and its antipode were the key-intermediates in the present synthesis as shown in Fig. 1. An immediate precursor of 3a must be a tetrahydroxy ketone 14, which could be prepared from (S)-(-)-malic acid 4a via 8a.

Our conversion of the readily available (S)-(-)-4a to the dihydroxy spiroacetal 3a is shown in Fig. 2. The natural enantiomer of malic acid 4a was treated successively with AcCl followed by EtOH to give a known half ester 4b after chromatographic purification.¹⁴ Reduction of 4b with BH₃ • THF yielded 5a. To obtain 6, 5a was submitted to the ester-exchange with NaOEt/EtOH to give 5b contaminated with a ylactone 7a. Treatment of the crude 5b with 2,2dimethoxypropane and TsOH gave 5d, which was contaminated with a considerable amount of 7b and therefore unsuitable for further manipulation. The successful preparation of 6 was accomplished as follows. Firstly, protection of the primary OH group of 5a was effected with 2-methoxypropene and PPTS to give 5c. Then treatment of 5c with NaOEt/EtOH gave 5d, which gradually isomerized to 6 during the storage. Therefore without isolation, 5d was treated with a small amount of $BF_3 \cdot Et_2O$ in ether to give 6. An attempt to isolate 6 resulted in a poor yield owing to the high volatility of 6. To circumvent this, the reaction mixture containing 6 and $BF_3 \cdot Et_2O$ in ether was neutralized with solid NaHCO₃ and added to LAH suspension in ether to give 8a, which could be isolated in a good yield. Conventional tosylation of 8a gave crystalline 8b, which gave an iodide 9 upon treatment with NaI in acetone in the presence of NaHCO₃. The overall yield of 9 from 4a was 35.9%. Alkylation of 7,8-dimethyl-1,5-

[†] Pheromone Synthesis – 74. Part 73, K. Mori, M. Kato and S. Kuwahara, *Liebigs Ann. Chem.* (1985), in press. This work was presented by K.M. as a part of his lecture at XVIIth International Congress of Entomology, Hamburg, F.R.G. (August 1984) and at the International Symposium on Recent Advances in the Chemistry of Insect Control, Cambridge, U.K. (September 1984). The chemical experimental part of this work was taken from the doctoral dissertation of T.U. The Xray crystallographic work was done by K.Y. and M.M.

Fig. 1. Synthetic plan.

dihydro-2,4-benzodithiepin¹⁵ with 9 using n-BuLi as the base gave 10 in 60% yield. It should be added that the alkylation of the conventional Corey-Seebach's 1,3-dithiane¹⁶ with 9 using n-BuLi as the base gave the alkylation product in only 12.6% yield. Further alkylation of 10 with 9 gave 11. Treatment of 11 with $CuCl_2 \cdot 2H_2O$ and CuO in aq acetone under reflux¹⁷ gave the key-intermediate (4S,6S,10S)-3a, m.p. 153-154°; $[\alpha]_D^{21.5} + 121.4°$ (acetone), as a single crystalline product in 28.7% overall yield from 9. The depicted structure 3a was confirmed by an X-ray analysis. The structure was solved by MULTAN 11/82 with the final agreement values of R = 0.033 and $R_W = 0.051.^{18}$ The ORTEP computer drawing of (4S,6S,10S)-3a is shown in Fig. 3a. The known (S)-configuration at C-4 and C-10 enabled us to assign (S)-configuration to the spiro center at C-6. The crystal structure of (4S,6S,10S)-3a is shown in Fig. 3b. The OH groups of (4S,6S,10S)-3a participate in intermolecular hydrogen bonds [O(12)-H(12)...O(13) = 2.708(3) and O(13)-H(13)...O(12) = 2.775(3) Å]. The high m.p. of the crystal must be due to this intermolecular hydrogen bonding. The optical purity of (4S,6S,10S)-3a was estimated to be 100% by the HPLC analysis of the corresponding bis-MTPA ester 3b.

The next task was to find out a proper condition for the successful deoxygenation of (4S,6S,10S)-3a to (S)-1. As shown in Fig. 4, various attempts were made in vain.

Fig. 2. Synthesis of (4S,6S,10S)-3a.

Fig. 3. a. (left) The molecular and b. (right) crystal structures of (4S,6S,10S)-3a.

First, tosylation of 3a was followed by the LAH reduction of the resulting ditosylate 3c, which did not work to give (S)-1. Attempted replacement of the TsO group in 3c with LiI to yield the corresponding axial diiodide resulted in the recovery of 3c. Radical-type deoxygenation of neither a xanthate $3d^{cf 19}$ nor a thiocarbonyl diimidazole derivative $3e^{cf 20}$ with n-Bu₃SnH was successful. We then turned our attention to the reduction of a crystalline diketone 12a readily available by the pyridinium chlorochromate (PCC) oxidation²¹ of 3a. The attempted Wolff-Kishner reduction of 12a with N₂H₄-KOH^{cf 22} was unsuccessful. Then the diketone 12a was converted to the

corresponding bistosylhydrazone 12b and its reduction with catecholborane²³ was attempted in vain. Attempted conversion of 12b to a diene mixture by the Shapiro reaction with n-BuLi as the base^{cf 24} was again unsuccessful.

With a hope that the axial ditosylate 13b might be reduced successfully, the diketone 12a was treated with LiB(sec-Bu)₃H and the reaction mixture was worked up under alkaline condition to give a crystalline diol (4R,6S,10R)-13a, m.p. $57-61^{\circ}$; $[\alpha]_D^{23} + 111.1^{\circ}$ (CHCl₃), in 58% yield. The depicted structure 13a with two axial OH groups was supported by an X-ray analysis with the final agreement values of R = 0.045

Fig. 4. Conversion of (4S,6S,10S)-3a to (S)-(+)-1.

Fig. 5. a. (left) The molecular and b. (right) crystal structures of (4R,6S,10R)-13a.

and $R_w = 0.065$. The ORTEP drawing of (4R,6S,10R)-13a is shown in Fig. 5a. The crystal structure of (4R,6S,10R)-13a is shown in Fig. 5b. The OH groups in (4R,6S,10R)-13a participate in intramolecular hydrogen bonds [O(12)-H(12)...O(13) = 2.860(4) and O(13)-H(13)...O(12) = 2.837(3) Å], which stabilize the axial orientation of the OH groups. Intermolecular hydrogen bonds are not observed in the crystal of (4R,6S,10R)-13a. Hence the crystal showed the low m.p. The existence of an intramolecular hydrogen bond in a similar system was also reported by Ley.²⁵ The corresponding ditosylate 13b, however, did not yield 1 upon reduction with LAH.

The final solution to this deoxygenation problem was brought about by another observation in our group^{6.26} that the deoxygenation of 4-hydroxy-1,7-dioxaspiro[5.5]undecane to 1 was possible by the

reduction of its N,N,N',N'-tetramethylphosphorodiamidate with Li/EtNH₂ according to the method of Ireland *et al.*²⁷ Thus, (4S,6S,10S)-3a was first treated with n-BuLi and $(Me_2N)_2POCI$ in THF-TMEDA to give 3f. Reduction of 3f with Li/EtNH₂-t-BuOH-THF gave (S)-1,7-dioxaspiro[5.5]undecane 1, $[\alpha]_{D}^{23} + 109.3^{\circ}$ (n-pentane), in 73% yield. The overall yield of (S)-(+)-1 from (S)-(-)-malic acid 4a was 6.1% in 13 steps.

With this success in hand, the synthesis of (R)-(-)-1 was accomplished as shown in Fig. 6. The key-step of the synthesis was the facile acid-catalyzed conversion of the thermodynamically unstable (4R,6S,10R)-13a to the more stable (4R,6R,10R)-3a via 14. When (4R,6S,10R)-13a was treated with dil HCl in THF, or when the reaction mixture after the reduction of 12a with LiB(sec-Bu)₃H was worked up under acid

Fig. 6. Conversion of 13a to (R)-(-)-1.

condition (pH 3), (4R,6R,10R)-3a, m.p. 150–151°; $\lceil \alpha \rceil_{D}^{23}$ - 121.7° (acetone), was obtained in 60% yield, whose IR and ¹H-NMR spectra were identical with those of (4S,6S,10S)-3a, The optical purity of (4R,6R,10R)-3a was estimated to be 100% by the HPLC analysis of the corresponding bis-MTPA ester 3b. Deoxygenation of (4R,6R,10R)-3a by Ireland's method proceeded without any accident via (4R,6R,10R)-3f to give (R)-1, $[\alpha]_{D}^{21} - 121.6^{\circ}$ (n-pentane). The overall yield of (R)-(-)-1 was 21% from (4S,6S,10S)-3a, or 2.2% from (S)-(-)malic acid 4a in 15 steps. The ¹H- and ¹³C-NMR (δ 19.4. 26.2, 36.6, 60.6, 95.3) data of both (R)- and (S)-1 were in good accord with the published data by Baker et al.³ The MS of (R)-1 coincided with the authentic spectrum provided by Dr T. E. Bellas. Prof. V. Schurig kindly determined the optical purities of our (R)- and (S)-1 by his complexation GLC technique, and found them to be 73% and 100% respectively. The observed low optical purity of (R)-1 might be due to the racemization during the storage of the sample prior to the GLC analysis.

In conclusion, we synthesized both the enantiomers of 1,7-dioxaspiro[5.5]undecane starting from the natural enantiomer of malic acid as the single chiral starting material. Our alternative synthesis of both (R)and (S)-1 via 4-hydroxy-1,7-dioxaspiro[5.5]undecane in 99.5 and 92% optical purities will be reported in due course.²⁵ Bioassay of the enantiomers of 1 from both the Hamburg⁸ and the Tokyo⁶ groups is now under way by Dr G. Haniotakis of Greek Atomic Energy Commission.

EXPERIMENTAL

All b.ps and m.ps were uncorrected. IR spectra were measured as film for oils and as Nujol mull for solids on a Jasco A-102 spectrometer. NMR spectra were recorded at 60 MHz with TMS as an internal standard on a Hitachi R-24A spectrometer unless otherwise stated. Optical rotations were measured on a Jasco DIP-140 or DIP-180 polarimeters. GLC analyses were performed on a Jeol JGC-20K, Yanaco GCG-550F or Hitachi GC-163 gas chromatographs. MS were recorded on a Hitachi RMU-6L or a Shimadzu-LKB-9000 mass spectrometers.

(S)-2-Acetoxybutanedioic acid 1-ethyl ester 4b

(S)-(-)-4a (100 g, 0.75 mol) was added to AcCl (320 ml) and the mixture was stirred and heated under reflux at 55°. Crystals of 4a gradually disappeared with evolution of HCl. The heating and stirring was continued for 4 hr until the evolution of HCl ceased. The soln was concentrated in vacuo. The residue was mixed with C_6H_6 (200 ml) and the mixture was concentrated in vacuo to remove CeHe and AcOH. AcOH was further removed by heating and stirring at 70° in vacuo. After cooling to room temp, the residue was mixed with dry EtOH (100 ml) with vigorous shaking. At the end of the exothermic reaction, which sometimes needed cooling, the mixture was heated for 10 min at 70-75° and for 10 hr at 50-55°. Then the solvent was removed in vacuo [40-45° (bath temp)/0.5-1 mm]. The crude residue was chromatographed over SiO₂ (Merck The club club result was chromatig applied over solve (where Kieselge 60, 1 kg) in CH₂Cl₂. Elution with CH₂Cl₂-MeOH (50:1) gave (S)-4b (110 g, 72%), m.p. 50-51°; $[\alpha]_{b}^{52} - 29.6°$ (c = 1.1, EtOH) [lit.¹⁴ m.p. 50-51°; $[\alpha]_{b}^{52} - 29.1°$ (c = 10.5, EtOH)]; v_{max} 3150 (m), 1740 (s), 1200 (br s), 1180 (s) cm⁻¹; δ (CDCl₃) 1.30(3H, t, J = 7 Hz), 2.15 (3H, s), 300 (2H, d, 20) J = 6 Hz), 4.30 (2H, q, J = 7 Hz), 5.55 (1H, t, J = 6 Hz), 10.90 (1H, s). For the complete separation of the unwanted regioisomer (S)-3-acetoxybutanedioic acid 1-ethyl ester, it is essential to pack the SiO2 column with CH2Cl2. Then a soln of the mixture in CH_2Cl_2 was adsorbed on the column. Use of the CH₂Cl₂-MeOH mixture for the packing of the column resulted in non-separation of the mixture.

Ethyl (S)-2-acetoxy-4-hydroxybutanoate 5a

A soln of BH₃ • THF (1 M soln in THF, Aldrich, 700 ml, 0.7 mol) was added dropwise to a stirred and ice-cooled soln of 4b (136 g, 0.67 mol) in dry ether (1000 ml). The mixture was stirred overnight at 35°. Then excess BH₃ • THF was destroyed by careful and dropwise addition of water (400 ml) to the stirred and ice-cooled mixture. The ether soln was washed with sat NaHCO₃ aq, water and brine, dried (MgSO₄) and concentrated *in vacuo*. The residue was distilled to give 106.4 g (84%) of 5a, b.p. 89.5°/0.12 mm, $n_D^{20.8}$ 1.4316; $[\alpha]_D^{20.8} - 52.3°$ (c = 2.3, EtOH); v_{max} 3500 (m), 1745 (s), 1220 (s) cm⁻¹; δ (CCl₄) 1.24 (3H, t, J = 7 Hz), 1.70-2.10 (2H, m), 2.09 (3H, s), 3.14 (1H, tr s) a.58 (2H, t, J = 6 Hz), 4.10 (2H, q, J = 7 Hz), 4.94 (1H, t, J = 7 Hz); MS: m/z 191 (M⁺+1), 145 (M-EtO), 117 (M-CO₂Et).

Ethyl (S)-2-acetoxy-4-(1',1'-dimethyl-1'-methoxy)methoxybu-tanoate Sc

A trace amount of PPTS was added to a stirred and icecooled soln of **5a** (56.4 g, 296 mmol) in 2-methoxypropene (100 ml). The ice-bath was removed after 30 min and the mixture was stirred for 20 hr at room temp. The excess 2methoxypropene was removed *in vacuo* and the residue was dissolved in ether. The ether soln was washed with water, dried (MgSO₄) and concentrated *in vacuo* to give 70.1 g (90%) of **5**c. This was directly employed in the next step without further purification. A purified analytical sample was obtained by SiO₂ chromatography, n_D^{-1} 1.4248; $[\alpha]_D^{-1} - 26.5^{\circ}$ (c = 2.2, CHCl₃); ν_{max} 1750(s), 1375(s), 1220(s), 1085(s), 1055(s) cm⁻¹; δ (CCl₄) 1.20 (6H, s), 1.24 (3H, t, J = 7 Hz), 1.70-2.20 (2H, m), 2.05 (3H, s), 3.08 (3H, s), 3.42 (2H, t, J = 6 Hz), 4.14 (2H, q, J = 7 Hz), 4.98 (1H, t, J = 6 Hz); MS: *m/z* 231 (M - MeO), 230 (M - MeOH), 173 (M - OCMe₂OMe).

Ethyl (S)-2-hydroxy-4-(1',1'-dimethyl-1'-methoxy)methoxybutanoate 5d

(S)-5c (70.1 g, 270 mmol) was added to a stirred soln of NaOEt [from 1.0 g (43 mg atom) of Na] in dry EtOH (500 ml). The soln was stirred for 30 min at room temp. It was then poured into sat NH₄Cl aq (200 ml). The mixture was concentrated *in vacuo* to remove EtOH. The residue was diluted with water to dissolve inorganic salt and extracted with ether. The ether soln was washed with brine, dried (MgSO₄) and concentrated *in vacuo* to give 55.2 g (94%) of 5d, v_{max} 3500 (m), 1740 (s), 1215 (s), 1190 (s), 1155 (s), 1125 (s), 1080 (s), 1050 (s) cm⁻¹; δ 1.27 (6H, s), 1.30 (3H, t, J = 7 Hz), 1.70-2.20 (2H, m), 3.16 (3H, s), 3.52 (2H, t, J = 6 Hz), 4.25 (2H, q, J = 7 Hz), 4.00-4.30 (1H, overlapped with the 2H-signal at δ 4.25). This gradually isomerized to 6 and was used immediately for the next reaction.

Ethyl (S)-2,4-dihydroxybutanoate 2,4-acetonide 6

Ten drops of BF₃ · Et₂O (47% in Et₂O) was added to a soln of **54** (55 g, 0.25 mol) in dry ether (400 ml). The soln was stirred overnight at room temp. Then NaHCO₃ powder (5 g) was added to the soln and the mixture was stirred for 2 hr. This ether soln of 6 was filtered and the filtrate was directly employed in the next step. Isolation of 6 in another run resulted in 28% yield to give 6 as a volatile oil, v_{max} 1760(s), 1730(s), 1190 (s), 1115(s) cm⁻¹; δ 1.28(3H, t, J = 7 Hz), 1.35(3H, s), 1.40(3H, s), 1.50-2.00 (2H, m), 4.12 (2H, q, J = 7 Hz), 3.70-4.45(3H, m).

(S)-Butane-1,2,4-triol 2,4-acetonide 8a

To a stirred and ice-cooled suspension of LAH (19 g) in dry ether (200 ml) was added a soln of 6 (prepd from 55 g of 5d as described above) in dry ether (400 ml). The mixture was stirred for 1 hr at room temp. The excess LAH was destroyed by the successive addition of water (19 ml), 15% NaOH aq (57 ml) and water (19 ml) to the stirred and ice-cooled mixture. The stirring was continued for 3 hr at room temp. The mixture was filtered. The filter-cake was heated with CH₂Cl₂ for 30 min and filtered again. The combined filtrate was concentrated *in vacuo*. The residue was mixed with C₆H₆ and the mixture was concentrated *in vacuo* to give 30 g(82% from 5d) of 8a. This was directly employed in the next step. An analytical sample was obtained by chromatographic purification over SiO₂ (elution with ether), n_D^{c1} 1.4487; $[\alpha]_D^{c1}$ + 16.3° (c = 3.2, CHCl₃); v_{max} 3450 (s), 1385 (s), 1370 (s), 1200 (s), 1165 (s), 1100 (s) cm⁻¹; δ (CCl₄) 1.30 (3H, s), 1.42 (3H, s), 1.40–2.00 (2H, m), 3.20–3.60 (3H, m), 3.70–4.30 (3H, m); MS: m/z 147 (M⁺+1), 131 (M–Me), 115 (M–CH₂OH).

(S)-Butane-1,2,4-triol 2,4-acetonide 1-tosylate 8b

A soln of TsCl (15.6 g, 81.8 mmol) in dry C₃H₃N (20 ml) was added dropwise to a soln of **8a** (10 g, 68.4 mmol) in dry C₃H₃N (8 ml) with stirring and ice-cooling under Ar. After stirring for 3 hr at 0-5°, the mixture was poured into iced sat NH₄Cl aq (100 ml) and extracted with CHCl₃. The CHCl₃ soln was washed with sat CuSO₄ aq, sat NaHCO₃ aq and brine, dried (MgSO₄) and concentrated in vacuo to give 19.2 g (93%) of **8b**, m.p. 57.5-59°; $[\alpha]_{D}^{22} + 1.7°$ (c = 1.2, CHCl₃); v_{max} 1600 (m), 1500 (w), 1360 (s), 1190 (s), 1170 (s), 1110 (s), 1100 (m), 990 (s), 975 (s), 875 (m), 840 (m), 835 (m), 820 (m), 810 (m) cm⁻¹; δ (CDCl₃) 1.28 (3H, s), 1.37 (3H, s), 1.30–1.70 (2H, m), 2.43 (3H, s), 3.60–4.30 (5H, m), 7.32 (2H, d, J = 8 Hz), 7.80 (2H, d, J = 8 Hz). (Found : C, 56.00; H, 6.70. Calc for C₁₄H₂₀O₅S: C, 55.97; H, 6.72%)

(S)-1-Iodobutane-2,4-diol acetonide 9

NaHCO₃ (55 g, 656 mmol) and 8b (19.7 g, 65.6 mmol) were added to a soln of NaI (98.3 g, 656 mmol) in dry acetone (300 ml). The mixture was vigorously stirred and heated under reflux for 12 hr. It was then concentrated in vacuo. The residue was diluted with CHCl₃ and filtered. The filter-cake was washed with CHCl₃. The combined CHCl₃ soln was washed with water, 10% Na₂S₂O₅ aq, water and sat NaHCO₃ aq, dried (MgSO₄) and concentrated in vacuo. The residue was distilled to give 15.5 g(92%) of 9, b.p. 94–95°/9 mm, n_D^{22} 1.5114; $[\alpha]_{2}^{21\cdot3} + 24.3^{\circ}(c = 2.3, \text{CHCl}_3); v_{\text{max}} 1380(\text{s}), 1240(\text{s}), 1195(\text{s}), 1150(\text{s}), 1120(\text{s}), 1090(\text{s}), 970(\text{s}) \text{ cm}^{-1}; \delta(\text{CCl}_4) 1.30(\text{3H, s}), 1.38$ (3H, s), 1.50-1.90 (2H, m), 2.90-3.30 (2H, m), 3.60-4.20 (3H, m). (Found : C, 32.71; H, 5.17. Calc for C₇H₁₃O₂I : C, 32.83; H, 5.13%.) In this reaction, the vigorous stirring and a great excess of NaI were essential in realizing a good yield. Without vigorous stirring, 8b decomposed to give butane-1,2,4-triol 1tosylate and other unidentified products.

3 - [(S) - 2',4' - Dihydroxybutyl] - 7,8 - dimethyl - 1,5 - dihydro - 2,4 - benzodithiepin 2',4'-acetonide 10

A soln of n-BuLi in n-hexane (1.5 N, 32 ml, 47.5 mmol) was added dropwise to a stirred and ice-cooled suspension of 7,8dimethyl-1,5-dihydro-2,4-benzodithiepin (10.0 g, 47.5 mmol) in dry THF (50 ml) under Ar. After stirring for 1 hr at 0-3°, the mixture was cooled to -35° . To this was added dropwise 9 (12.2 g, 47.6 mmol). After 5 min, the reaction temp was raised to 0-3°. The stirring was continued for 30 min at 0-3° and for 1 hr at room temp. The mixture was concentrated in vacuo at 35°. The residue was diluted with water, neutralized with AcOH, and extracted with CHCl₃. The CHCl₃ soln was washed with sat NaHCO₃ aq, water and brine, dried (MgSO₄) and concentrated in vacuo. The residue was chromatographed over SiO₂ (500 g). Elution with n-hexane-EtOAc (9:1) gave 9.63 g (60%) of 10 as a pale yellow glassy material (1.3 g of starting dithiepine was recovered), $[\alpha]_D^{21} + 23.7^\circ$ (c = 1.1, CHCl₃); v_{max} 1510(m), 1380(s), 1370(s), 1270(s), 1240(s), 1200 (s), 1160 (s), 1125 (s), 1100 (s) cm⁻¹; δ (CCl₄) 1.33 (3H, s), 1.43 (3H, s), 1.50-2.00 (4H, m), 2.23 (6H, s), 3.86 (4H, s), 3.50-4.50 (4H, m), 6.96 (2H, s). (Found: C, 63.76; H, 7.70. Calc for C18H26O2S2: C, 68.86; H, 7.74%)

3.3 - Bis[(S) - 2',4' - dihydroxybutyl] - 7,8 - dimethyl - 1,5 dihydro - 2,4 - benzodithiepin di - 2',4' - acetonide 11

A soln of n-BuLi in n-hexane (1.5 N, 18.5 ml, 27.8 mmol) was added dropwise over 3 min to a stirred and cooled soln of **10** (9.46 g, 27.9 mmol) in THF (84 ml) at -10° under Ar. Subsequently 9 (10.7 g, 41.9 mmol) was added dropwise over 1 min. The mixture was stirred for 2 hr at 0°. It was then poured into ice-water (100 ml), neutralized with AcOH and extracted with CHCl₃. The CHCl₃ soln was washed with sat NaHCO₃ aq and brine, dried (MgSO₄) and concentrated *in vacuo*. The residue was chromatographed over SiO₂ (400 g). Elution with n-hexane-EtOAc(9:1) gave 7.1 g(55%) of 11 (2.4 g of 9 and 2.8 g of 10 were recovered), $[\alpha]_{2^{1.5}}^{21.5} + 15.9^{\circ}$ (c = 1.5, CHCl₃); v_{max} 1510(w), 1200(s), 1165(m), 1125(m), 1095(m), 970(m) cm⁻¹; δ (CCl₄) 1.25 (6H, s), 1.35 (6H, s), 1.00-2.5 (8H, m), 2.15 (6H, s), 3.75 (4H, s), 3.80-4.30 (6H, m), 6.82 (2H, s). This was employed in the next step without further purification.

(4S, 6S, 10S)(+)4,10-Dihydroxy - 1,7 - dioxaspiro[5.5]undecane 3a

CuCl₂ · 2H₂O (5.1 g, 30 mmol) and CuO (4.7 g, 60 mmol) were added to a stirred soln of 11 (7.0 g, 15 mmol) in acetonewater (99: 1, 190 ml). The mixture was stirred and heated under reflux for 30 min, and filtered through Celite. The Celite layer was washed thoroughly with hot acetone. SiO_2 (30 g) was added to the acetone soln and the mixture was concentrated in vacuo. The SiO₂ containing 3a was put on the top of a SiO₂ column (200 g). Elution with ether-MeOH (19:1) gave 2.46 g (87.2%) of 3a. This was recrystallized from acetone to give pure (4S,6S,10S)-3a, m.p. 153-154° (in a sealed capillary tube. Sublimable!), $[\alpha]_D^{21.5} + 121.4^\circ$ (c = 0.5 acetone); ν_{max} 3300 (s), 1260 (m), 1245 (m), 1180 (s), 1160 (w), 1130 (w), 1105 (m), 1080 (w), 1055 (s), 1030 (s), 980 (s), 950 (w), 940 (m), 885 (m), 860 (m), 800 (m), 760 (m) cm⁻¹; δ (acetone-d₆) 0.95–2.10 (8H, m), 3.30– 4.40 (6H, m); ¹³C-NMR (25 MHz, acetone-d₆) 36.07, 46.10, 59.31, 63.99, 99.81. (Found: C, 57.11; H, 8.53. Calc for C₉H₁₆O₄: C, 57.42; H, 8.58%.) The corresponding ditosylate 3c was prepared in the conventional manner, m.p. 94-105° (dec); $[\alpha]_D^{22} + 33.4^\circ$ (c = 1.3, CHCl₃). (Found : C, 56.11; H, 5.72. Calc for $C_{23}H_{28}O_8S_2$: C, 55.62; H, 5.69%.) The xanthate 3d was obtained as an oil, $[\alpha]_D^{21} + 14.6^\circ$ (c = 2.0, CHCl₃). The imidazolylthiocarbonyl derivative 3e was an oil, $[\alpha]_D^{21} + 37.6^\circ$ $(c = 2.2, CHCl_3).$

(S) - 1,7 - Dioxaspiro[5.5]undecane - 4,10 - dione 12a

PCC (13.3 g, 62 mmol) was added to a stirred and ice-cooled suspension of (4S,6S,10S)-3a (0.7 g, 3.7 mmol) in dry CH₂Cl₂ (63 ml). The mixture was stirred vigorously for 1 hr at 5-10° and for 5 hr at room temp. Florisil (60-100 mesh, 30 g) was then added to the mixture and the stirring was continued for 30 min. The mixture was diluted with ether (100 ml) and stirred for 10 min. It was then filtered through Florisil (100 g). The column was washed with ether. The combined organic soln was concentrated in vacuo to give 0.59 g (86%) of 12a. This was recrystallized from EtOH to give pure 12a, m.p. 146.5° (in a sealed capillary tube. Sublimable!), $[\alpha]_D^{22} + 203.4^\circ$ (c = 1.0, CHCl₃); v_{max} 1724 (s), 1258 (m), 1238 (s), 1180 (m), 1154 (m), 1140 (m), 1074 (m), 1048 (s), 986 (m), 940 (m), 870 (m), 764 (m) cm⁻¹; δ (90 MHz, CDCl₃) 2.00–2.90 (8H, m), 3.70–4.20 (4H, m); MS: m/z 184 (M⁺). (Found: C, 58.65; H, 6.72. Calc for C₉H₁₂O₄: C, 58.68; H, 6.58%) The corresponding bistosylhydrazone 12b was prepared in the usual manner, m.p. $130-131^{\circ}$; $[\alpha]_{D}^{23} + 24.1^{\circ}$ (c = 1.1, MeOH). (Found : C, 52.55; H, 5.71; N, 10.35. Calc for C23H28O6N4S2: C, 53.06; H, 5.42; N, 10.76%.)

(4R,6S,10R) - 4,10 - Dihydroxy - 1,7 - dioxaspiro[5.5]undecane 13a

A soln of LiB(sec-Bu)₃H in THF (Aldrich, 1M, 9.2 ml, 9.2 mmol) was added dropwise to a stirred and cooled soln of **12a** (570 mg, 3.1 mmol) in dry THF (8 ml) at -74° under N₂. The mixture was stirred for 1 hr at -74° and for 3 hr at room temp. The gelatinous mixture was diluted with dry THF (20 ml) and stirred for 1 hr. The excess hydride was destroyed by the careful dropwise addition of 1M NaOAc aq (4 ml) to the stirred and ice-cooled mixture. NaOAc (2 g) was then added. Subsequently 30% H₂O₂ (*ca* 9 ml) was added dropwise at $3-5^{\circ}$ until the exothermic reaction ceased. The mixture remained strongly basic. After stirring for 5 hr, the mixture was extracted with CHCl₃. The CHCl₃ soln was washed with sat NaHCO₃ aq and brine, dried (Na₂SO₄) and concentrated *in vacuo*. The residue was chromatographed over SiO₂ (25 g). Elution with CHCl₃-MeOH (19:1) gave 340 mg (58%) of **13a**.

This was recrystallized from n-hexane to give pure 13a, m.p. $57-61^{\circ}$, $[\alpha]_{D}^{23} + 111.1^{\circ}$ (c = 0.38, CHCl₃); $[\alpha]_{D}^{23} + 125.5^{\circ}$ (c = 1.34, acetone); $v_{max} 3524$ (s), 1240(m), 1206(m), 1174(s), 1144 (s), 1104 (s), 1060 (s), 1030 (s), 1004 (s), 972 (m), 928 (m), 902 (m), 888 (m), 822 (m), 802 (s) cm⁻¹; δ (90 MHz, CDCl₃) 1.50-2.10 (8H, m), 3.60-4.30 (6H, m). (Found : C, 57.74; H, 8.93. Calc for C₉H₁₆O₄: C, 57.42; H, 8.58%.) The corresponding ditosylate 13b was prepared in the usual manner, m.p. 97° (dec), $[\alpha]_{D}^{22}$ + 59.2° (c = 0.52, CHCl₃). (Found : C, 55.71; H, 5.73; S, 13.11. Calc for C₂₃H₂₈O₈S₂: C, 55.62; H, 5.69; S, 12.91%.)

(48,68,108) - (+) - 1,7 - Dioxaspiro[5.5]undecane - 4,10 - diol bis -N,N,N',N' - tetramethylphosphorodiamidate **31**

A soln of n-BuLi in n-hexane (1.67 N, 1.6 ml, 2.7 mmol) was added dropwise to a stirred and ice-cooled soln of 3a (150 mg, 0.8 mmol) in dry THF-N,N,N',N'-tetramethylethylenediamine (4:1, 6 ml) under Ar. During the addition, white precipitates of the Li salt appeared. The mixture was stirred for 30 min at room temp and for 1 hr at 40°. It was then ice-cooled and to it was added (Me₂N)₂POCl (1.3 ml, 8.8 mmol). The stirring was continued for 12 hr at room temp. The reaction was quenched by the addition of water (5 ml). After stirring for 30 min, the mixture was poured into sat NaHCO₃ aq (10 ml). It was stirred for 1 hr and extracted with CHCl₃. The CHCl₃ soln was washed with sat NaHCO₃ aq and brine, dried (MgSO₄) and concentrated in vacuo. The residue was purified by medium pressure LC over Merck Lobar Column (Grosse B). Elution with EtOAc-MeOH (9:1) gave 296 mg (81.4%) of 3f, $n_{\rm D}^{21}$ 1.4432; $[\alpha]_{\rm D}^{23}$ + 39.9° (c = 0.8, CHCl₃); $v_{\rm max}$ 1306 (m), 1228 (s), 1190 (m), 1058 (m), 1024 (s), 986 (s), 912 (s), 752 (s) cm $^{-1}$; δ (90 MHz, CDCl₃) 1.35-2.30(8H, m), 2.58(12H, s), 2.71(12H, s), 3.50-3.70 (4H, m), 4.40-4.90 (2H, m). This was employed directly in the next step.

(S)-(+)-1,7-Dioxaspiro[5.5] undecane 1

Li (91 mg, 13 mg atom) was dissolved in dry EtNH₂ (15 ml) at - 74° under Ar. A soln of (4S,6S,10S)-3f (296 mg, 0.66 mmol) in dry THF (1 ml) and t-BuOH (0.4 g) was added dropwise to the stirred Li/EtNH₂ at -74° . The stirring was continued for 1 hr at -74° . The reaction was quenched with water (1 ml), and the temp was raised to room temp. The mixture was poured into water (10 ml) and extracted with n-pentane (30 ml \times 4). The pentane soln was washed with water and brine, dried (MgSO₄) and concentrated in vacuo (20 mmHg) under icecooling. The residue was chromatographed over SiO₂ (3 g). Elution with n-pentane and n-pentane-ether (1:1) gave 74 mg (72%) of (S)-(+)-1, $n_{\rm D}^{21}$ 1.4432; $[\alpha]_{\rm D}^{23}$ + 109.3° (c = 0.28, npentane); vmax 2944 (s), 2872 (s), 1454 (m), 1440 (m), 1386 (m), 1372 (m), 1352 (m), 1336 (w), 1280 (m), 1256 (w), 1230 (m), 1208 (m), 1180 (m), 1110 (m), 1096 (s), 1060 (s), 1040 (s), 990 (s), 934 (m), 914 (w), 876 (m), 796 (m) cm⁻¹; ¹H-NMR (90 MHz, benzene-d₆) 0.60-2.30 (12H, m), 3.30-3.90 (4H, m); ¹³C-NMR (22.4 MHz, benzene-d₆) δ 19.41, 26.19, 36.59, 60.56, 95.30; MS : m/z 157 (1%, M⁺ + 1), 156 (16%, M⁺, C₉H₁₆O₂ = 156), 129 (1%), 128 (11%), 127 (1%), 126 (3%), 125 (1%), 114 (1%), 112 (2%), 111 (20%), 109 (1%), 102 (5%), 101 (98%), 100 (50%), 99 (7%), 98 (100%, base peak), 97 (3%), 95 (2%), 86 (1%), 85 (22%), 84.49() 820 (27%) 84 (4%), 83 (32%), 82 (2%), 81 (1%), 79 (2%), 77 (1%), 72 (1%), 71 (6%), 70(8%), 69(1%), 68(1%), 67(7%), 66(1%), 65(1%), 59(9%), 58 (3%), 44 (6%), 43 (34%), 42 (18%), 41 (72%), 40 (7%), 39 (32%), 38 (1%), 31 (7%), 30 (4%), 29 (27%), 28 (20%), 27 (37%), 26 (4%), 18 (2%), 15 (4%).

(4R,6R,10R) - (-) - 4,10 - Dihydroxy - 1,7 - dioxaspiro[5.5]undecane **3a**

(a) A soln of LiB(sec-Bu)₃H in THF (Aldrich, 1M, 10.8 ml, 11 mmol) was added dropwise to a stirred and cooled soln of **12a** (500 mg, 2.7 mmol) in dry THF (8 ml) at -74° under N₂. The mixture was stirred for 1 hr at -74° and for 3 hr at room temp. The gelatinous mixture was diluted with dry THF (20 ml) and stirred for 1 hr. The excess hydride was destroyed by the careful and dropwise addition of 1 M NaOAc aq to the stirred and ico-cooled mixture. When the vigorous evolution of gas ceased, 30% H₂O₂ (ca 10 ml) was added dropwise to the mixture at 5-

25°. The mixture was stirred for 2 hr. The pH of the mixture was ca 3 during this period. It was then extracted with CHCl₃. The CHCl₃ soln was washed with sat NaHCO₃ aq and brine, dried (Na₂SO₄) and concentrated *in vacuo*. The residue was chromatographed over SiO₂ (25 g). Elution with CHCl₃-MeOH (19:1) gave 308 mg (60%) of (4R,6R,10R)-3a. This was recrystallized from acetone to give pure (4R,6R,10R)-3a, m.p. 150–151° (in a sealed capillary tube. Sublimable!), $[\alpha]_D^{23} - 121.7° (c = 0.5, acetone). (Found : C, 57.73; H, 8.85. Calc for C₉H₁₆O₄: C, 57.42; H, 8.58%). The spectral data of (4R,6R,10R)-3a. were identical with those of (4S,6S,10S)-3a.$

(b) To a soln of (4R,6S,10R)-13a (600 mg) in THF (10 ml) was added two drops of conc HCl, and the mixture was stirred for 48 hr at room temp. It was then neutralized by the addition of solid K₂CO₃ and filtered. The filtrate was concentrated *in* vacuo. The residue was recrystallized from ether to give 450 mg (75%) of (4R,6R,10R)-3a, m.p. 150-151°, $[\alpha]_6^{23.5}$ -121.3° (c = 1.22, acetone). The spectral data of this sample was identical with those of (4R,6R,10R)-3a prepared by the method (a).

(4R,6R,10R) - (-) - 1,7 - Dioxaspiro[5.5] undecane - 4,10 - diol bis - N,N,N',N'-tetramethylphosphorodiamidate 3f

In the same manner as described for (4S,6S,10S)-3f, (4R,6R,10R)-3a (140 mg, 0.74 mmol) yielded 270 mg (79.5%) of (4R,6R,10R)-3f, n_0^{21} 1.4762; $[\alpha]_B^{23}$ -44.0° $(c = 1.0, \text{ CHCl}_3)$. The spectral data of (4R,6R,10R)-3f were identical with those of (4S,6S,10S)-3f.

(R)-(-)-1,7-Dioxaspiro[5.5]undecane 1

In the same manner as described for the preparation of (S)-(+)-1, 270 mg (0.59 mmol) of (4R,6R,10R)-3f yielded 47.1 mg (51%) of (R)-(-)-1, n_D^{21} 1.4552; $[\alpha]_D^{23}$ - 121.6° (c = 0.1, n-pentane); MS: m/z 156 (M⁺, C₉H₁₆O₂ = 156). The spectral data (¹H-NMR, ¹³C-NMR and MS) of (R)-(-)-1 were identical with those of (S)-(+)-1.

Determination of the optical purities of the enantiomers of 3a

The bis-(S)-MTPA esters 3b of (4R,6R,10R)- and (4S,6S,10S)-3a were prepared in the usual manner,²⁸ and analyzed by HPLC (Column, Nucleosil[®] 50-5, 25 cm × 4.6 mm; Solvent, n-hexane-THF (10:1), 1.1 ml/min; Detection at 254 nm): R_t 14.69 min [(4S,6S,10S)-3b], 19.54 min [(4R,6R,10R)-3b]. The optical purities of (4S,6S,10S)- and (4R,6R,10R)-3b were 100%.

Determination of optical purities of the enantiomers of 1

The analysis was carried out by Prof. V. Schurig and will be published separately by him. GLC (Column, Ni-bis(hfbmonoterpenoate) in OV 101; Oven temp 70°; Injection temp 150°; Carrier gas, N₂, 1 atm): $R_t ca$ 42.8 min [(S)-1], 44.5 min [(R)-1]. Our (R)-1 was of 73% e.e. and (S)-1 was of 100% e.e.

X-ray analyses of 3a and 13a

The crystals were mounted in glass capillaries. Unit-cell dimensions and orientation matrices were obtained by leastsquares methods from the setting angles of 25 reflections. Intensities were collected on an Enraf-Nonius CAD 4 diffractometer at room temp. Data were corrected for Lorentz-polarization effects. Absorption corrections were not applied. The crystal data and data collection parameters are summarized in Table 1.

The structures were solved by direct methods using MULTAN 11/82.¹⁸ All hydrogen atoms were located on difference Fourier maps. Full-matric least-squares refinement included anisotropic thermal parameters for non-hydrogen atoms as well as isotropic thermal parameters for hydrogen atoms. Convergence was reached at R = 0.033 and Rw = 0.051 for 3a and R = 0.045 and Rw = 0.065 for 13a.

All calculations were performed on a PDP 11/34 computer using Enraf-Nonius SDP-PLUS programs.

Acknowledgements—We thank Dr W. Francke, Hamburg University, for his suggestion to begin this work. We also thank Dr T. E. Bellas, for the authentic MS of 1. We gratefully

	3a	13 a
formula	C ₁₀ H ₁₆ O ₄	C10H16O4
mol. wt.	188.23	188.23
crystal size, mm	0.10 × 0.23 × 0.33	0.30 × 0.30 × 0.50
space group	P2,2,2,	P2,2,2
a, Å	8.800 (1)	9.138 (2)
b, Å	15.367 (1)	13.557 (2)
c. Å	7.496 (1)	7.731 (2)
Ý, Å ³	1013.7	957.7
d _{alad} , g/cm ³	1.233	1.291
Z	4	4
diffractometer	Enraf-Nonius CAD 4	
monochrometer	graphite	
radiation	Cu K α	Μο Κα
scan type	ω/2θ	ω/2θ
2θ deg	140	50
no. of unique		
data	1135	1003
no. of data used		
in refinement	923 (I > $3\sigma(I)$)	740 (I > $3\sigma(I)$)
final R	0.033	0.045
final Rw	0.051	0.065

Table 1. Summary of crystal data and data collection parameters

acknowledge the help of Prof. V. Schurig, Tübingen University, in determining the optical purity of our final products. Our thanks are due to Sumitomo Chemical Co., Ltd. for financial support.

REFERENCES

- ¹G. E. Haniotakis, Environ. Entomol. 3, 82 (1974).
- ² R. Rossi, A. Carpita and G. Vita, *Gazz. Chim. Ital.* 108, 709 (1978).
- ³ R. Baker, R. Herbert, P. E. Howse, O. T. Jones, W. Francke and W. Reith, J. Chem. Soc. Chem. Commun. 52 (1980).
- ⁴S. V. Ley and B. Lygo, Tetrahedron Letters 25, 113 (1984).
- ⁵T. E. Bellas (CSIRO, Division of Entomology, Canberra), personal communications to K.M. dated January 22 and June 7, 1982.
- ⁶ Preliminary communication: K. Mori, T. Uematsu, H. Watanabe, K. Yanagi and M. Minobe, *Tetrahedron Letters* **25**, 3875 (1984).
- ⁷ J. Y. C. Chen, L. Hough and A. C. Richardson, J. Chem. Soc. Chem. Commun. 1151 (1982).
- ⁸H. Redlich and W. Francke, Angew. Chem. Int. Ed. Engl. 23, 519 (1984).
- ⁹ W. Francke, Les médiateurs chimiques agissant sur le comportement des insectes, p. 81, Institut National de la Recherche Agronomique, Paris (1982).
- ¹⁰ Talaromycins: D. G. Lynn, N. Y. Phillips, W. C. Hutton, J. Shabanowitz, D. J. Fennell and R. J. Cole, J. Am. Chem. Soc. 104, 7319 (1982).
- ¹¹ Avermectins: G. Albers-Schönberg, B. H. Arison, J. C. Chabala, A. W. Douglas, P. Eskola, M. H. Fisher, A. Lusi, H. Mrozik, J. L. Smith and R. L. Tolman, J. Am. Chem. Soc. 103, 4216 (1981).
- ¹² K. Mori and K. Tanida, Tetrahedron 37, 3221 (1981).
- ^{13a} P. Deslongchamps, D. D. Rowan, N. Pothier, T. Sauvé and J. K. Saunders, Can. J. Chem. 59, 1105 (1981); ^bP.

Deslongchamps, Stereoelectronic Effects in Organic Chemistry, Chapter 2. Pergamon Press, Oxford (1983).

- ¹⁴ D. H. S. Horn and Y. Y. Pretorius, J. Chem. Soc. 1460(1954).
- ¹⁵ K. Mori, H. Hashimoto, Y. Takenaka and T. Takigawa, Synthesis 720 (1975).
- ¹⁶ E. J. Corey and D. Seebach, Angew. Chem. Int. Ed. Engl. 4, 1075 (1965).
- ¹⁷ K. Narasaka, T. Sakashita and T. Mukaiyama, Bull. Chem. Soc. Jpn. 45, 3724 (1972).
- ¹⁸ P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq and M. M. Woolfson, MULTAN 11/82, A System of Computer Programs for the Automatic Solutions of Crystal Structures from X-ray Diffraction Data, Univs. of York and Louvain (1982). The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K. Any request should be accompanied by the full literature citation for the preliminary communication of this paper.⁶
- ¹⁹D. R. Hicks and B. Fraser-Reid, Can. J. Chem. 53, 2017 (1975).
- ²⁰ K. K. Ogilvie, G. H. Hakimelahi, Z. A. Proba and N. Usman, *Tetrahedron Letters* 24, 865 (1983).
- ²¹ E. J. Corey and J. W. Suggs, Tetrahedron Letters 2647(1975).
- ²² T. Koźluk, L. Cottier and G. Descotes, *Tetrahedron* 37, 1875 (1981).
- ²³G. W. Kabalka and J. H. Chandler, Synth. Commun. 9, 275 (1979).
- ²⁴ R. H. Shapiro, Org. Reactions 23, 405 (1976).
- ²⁵ A. M. Doherty, S. V. Ley, B. Lygo and D. J. Williams, J. Chem. Soc. Perkin Trans. I 1371 (1984).
- ²⁶ K. Mori and H. Watanabe, *Tetrahedron*, to be submitted. H. Watanabe, M.Sc. Thesis, University of Tokyo, March (1985).
- ²⁷ R. E. Ireland, D. C. Muchmore and U. Hengartner, J. Am. Chem. Soc. 94, 5098 (1972).
- ²⁸ J. A. Dale and H. S. Mosher, J. Am. Chem. Soc. 95, 512 (1973).