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Abstract: A new approach to secoiridoids, based on the sgiglof the key functionalized
intermediates4 and 5, is presented. These compounds were tested inafofB#3]
cycloadditions. Acyl-chloridel5 was transformed into enelf-unsaturated estel6 which
was involved in d-Heterocyclic Carbene rearrangement to give anrazaiprecursot7 in

the total synthesis of secoiridoids

Keywords. Secoiridoids / Gentiopicroside / Organocatalysig+3] Cycloadditions /N-

Heterocyclic-Carbenes.

1. Introduction

The iridoid monoterpenes represent a large fanfityyolopentanopyran natural produfs.
They usually occur as glucoside derivatives. Amdahgm loganin is the biosynthetic
precursor of secologanin, a secoiridoid playingnaportant role in the biosynthesis of indole
alkaloids'? Moreover secologanin is also a key intermediatetie biosynthesis of



secoiridoids, such as sweroside, swertiamarin amtiapicrosidd® The synthesis of this
class of bioactive natural produétsontinues to be an active area of research. Antioesp
compounds, no total synthesis of gentiopicrd3ides been realized to date, and so, is still a

challenge for organic chemists.
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Figure 1. Chemical structures of Loganin and sebtksecoiridoids.

The main strategies to the access to the 3,4-dipydan ring systems of iridoids or
secoiridoids are depicted in Scheme 1. G. Buchisug presented the first synthesis of an
iridoid glucoside (loganin) in 1970, the first stepthe synthesis was a photochemical [2+2]
cycloaddition between 2-formylmalonaldehydic acidethyl ester and a cyclopentene
derivative followed by a rearrangment leading tgaloin aglycone via an acetalization of the
transient formed &di-aldehyde® Similarly, Grée synthesized (-)-verbenalol and- (-)
epiverbenalol by ozonolysis of a diquinane interratd which led to the formation of the
iridoids!” The same strategy was also used by [Fligo synthesize (+/-)-forsythide. Chadflg
synthesized secologanoside aglycone and Hfoptepared loganine aglycone, respectively.
In fact, R. T. Brown was the first chemist who deped this strategy (oxidation and further
acetalization ofddi-aldehyde intermediates to form 3, 4-dihydropyrings)!** A second
strategy adopted by Tietze relied on an hetero][4y2loaddition reaction as a key step for
the convergent synthesis of thg-6weroside aglycone O-Ef!

The intramolecular formal [4+2] enamine-enal cydididon, first described by
Schreibet® has been used for the entry into the iridoid carbkeletonHe demonstrated
that iridoid systems could be obtained by dominaneine Michael addition-acetalisation.
MacMillan™ took advantage of this strategy in the total sgsih of brasolide and
littoralisone using catalytic amount of prolinea@ganocatalystJsing the same formgd+2]
enamine-enal cycloadditiorsimilar iridoid scaffolds (without the ester function) were
synthesized by C. Garcia’s grdtihand J. E. Hofferbertlf!, respectively. More recently D.
W. Lupton usedN-heterocyclic carbenes to catalyze rearrangement gfunsaturated enol-
esters allowing the access to dihydropyranonesegesy) the monoterpene skeleton of the

iridoid’s family.l'"!
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Scheme 1. Different strategies towards synthesisdaiid or secoiridoid aglycones.

Few [3+3] cycloadditions have been described buy tetween activategsdiketones
(coumarin derivativeSf' or unsaturateq3-ketoesterd® with unsaturated aldehydes under
organocatalysis (with proline derivatives). In aast non-activated3-diketones or [
ketoesters reacted with unsaturated aldehydes toe gtyclopentanon&d and

cyclohexenone¥ respectively. To the best of our knowledge no farrdirect [3+3]



cycloaddition between two aldehydes; (RH) was explored in order to get 3,4-dihydropyran
scaffolds (Scheme 2).
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Scheme 2. [3+3] cycloaddition strategies.

At the origin of our study towards the total syrdiseof gentiopicroside, we envisaged
such original approaches based on an organocathiygermolecular [3+3] cycloaddition
between aldehydB and enol este€ or an intramolecular [3+3] cycloaddition versiagnrh
precursor D. We thought that either an intermolecular [3+3]clogddition or an
intramolecular [3+3] cycloaddition relying on a dmm enamine Michael addition
acetalisation (using secondary amines as catalystid operate. These approaches were
unfortunately inoperative. Nevertheless we wispresent here our study related to these two
approaches (pathways | and Il, scheme 3) and imien time the efficient synthesis of the
a,funsaturated estet (A) and a,funsaturated aldehyd® (B) which could be easily
prepared in few steps from D-(-)-manitol and methgiionate. These compounds could be
useful synthons in diverse cycloaddition procesard were finally used in the third
retrosynthetic strategy (pathway lll). This ondo@&sed on &l-heterocyclic carbene catalyzed
rearrangement ofa,f-unsaturated enol-estefls (Scheme 3) which gave an advanced

intermediateH toward the synthesis of gentiopicroside.
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Scheme 3. Retrosynthetic analysis of gentiopiceasid

2. Resultsand Discussion

The Michael acceptds was synthesized starting from D-(-)-manitol. Pctiten in standard
conditions led to diacetonide After an oxidative cleavad® addition of methyl crotonate
enolate onto the aldehydewas performed. The alcohol function 3nwas mesylated and
eliminated to obtain the,funsaturated estdrwith a 3:2E:Z ratio (established by NOESY).
However, slow change in the diastereomeric rabmf:2 to 8:2 was observed in favortof
isomer over some days even at’Q Finally the ester function of the mixture of both
diastereoisomers was reduced to alcohol using DHBAthen oxidized to afford aldehyde
5.2 Oxidation using PC&? MnO* or Dess-Martin conditiof€! gave the desired
aldehyde5 in less then 20% yield whereas Parikh-Doering doomaé gave the desired
aldehyde5 in 81% vyields over two steffS! The Michael acceptds was thus obtained on a
gram scale (> 5g) stereoselectively as the thermaxdycally more stabl& isomer in 34%

overall yield from D-(-)-manitol (Scheme 4).
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Scheme 4. Synthesis of the Michael acceptor

In order to investigate the best conditions for tfwermal intermolecular [3+3]
cycloaddition, reactions between aldehydand methylacetoacetaba or the aldehyde-ester
6b as partners were tested using four different sgemgnamines derived from proline as
catalyst [-proline, ©-prolinol, (§-t-butylester proline, §-diaryl prolinol trimethylsilyl
etherf?”! (Scheme 5).

With methylacetoacetatéa (R;=Me) as Michael donor, the combination of benzai a
and diaryl prolinol trimethylsilyl ethe8 as catalyst allowed, after acetylation of the drant
hemi-acetal, the formation of dihydropyréa

1) cat.8 (10 mol%), PhCO,H,
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+ kf( R EtsN (1.4 eq.), DCM, 2 h, r.t. Ph
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Scheme 5. Formal [3+3] cycloaddition wtkketoester.

This [3+3] cycloaddition worked moderately and flreduct7a was isolated as a mixture
of two diastereoisomers in 40% vyield. The observighh stereoselectivity (d.r. > 90/10) in
favor of syn product could be explained by a cooperative effettveen a Felkin contfgt
and the chiral R)-organocatalyst’”! The relative configuration of the double bond was n
unambiguously determined on each isomer. We obdehgmigration of the vinylic double
bond, which could be explained by the protonatibthe intermediate enamine at the delta

carbon (Scheme 6).
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In spite of the moderate yield obtained in the madaction with crotonaldehyd@a, we
explored the reaction with the aldehyde-es@fr. Unfortunately, no traces of 3,4-
dihydropyran compound~( pathway I, Scheme 3) could be detected in thdecmgaction
mixture. At this stage we concluded that the orgatadyzed reaction, for the formal [3+3]
cycloaddition between the two aldehydeand6b did not work. The normal course of the
reaction, that is the formation of the unsaturateiciium from enals, is overwhelmed by the
formation of Z-enamines from the condensation of aldehgbeand proline derivatives.
Indeed, we observed, the rapid formation of stZbémamines arising from the condensation
between aldehydéb and the various catalysts.

At this stage we sought to test the feasibilitynfintramolecular cycloaddition (Scheme 3,
pathway ). Deprotection of acetdlwas realized in the presence of copper chidfii&he
primary alcohol function 09 reacted with formyl-Meldrum acitiO to give the expected ester
11 which was unambiguously detected as a mixturewa tiastereocisomers as major
products in the crude. All attempts to purify were unsuccessful. Treatment of the crude in
acidic media (NHOAc, TsOHF? or with proline gave complex reaction mixtures. tie
presence of catalytic amount of MeONa in THF, Basomer of1l gave they-lactonel3
arising from intramolecular transesterification aeid theE-isomerll unreacted (Scheme 7).
NaOMe

or proline
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————————— HoO"
64%

Benzene, reflux, 2 h
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Scheme 7. Intramolecular approach towards syntleésigyclic lactone.



In view of the unsuccessful precedent approachebef8e 3, pathway | and Il), we
considered the unsaturated egters a possible intermediate in the synthesis ofester16
(E in Scheme 3, pathway lll). This approach was mgpby Lupton’s work on similar enol-
ester§” and could be envisaged as a formal [3+3] cycldamdiif we consider the latest
steps of the mechanism (scheme 9).

The synthesis began with saponification of there$t@ith aqueous LIOH to provide the
corresponding acidl4 as a 3:1 mixture of diastereoisomers (Scheme 8¢ further
transformation into acyl-chlorid&5 was difficult and standard conditions (S@@GI oxalyl-
chloride) were unsuccessful. Eventually the usedcydnuric chloride which has been
described in the literatuF&! allowed us to obtain the expected acyl-chloiién moderate
yield. It was not purified and directly engagedtie esterification of the aldehyde-estbf™®
in the presence of Hlnig's base. Some degradafitimegoroduct decreased the yield to 16%
in this two steps reaction. To our delight treatmehenol-esterl6 with N-Heterocyclic-
Carbene (NHC, formed by deprotonation of the pydrom salt) as catalyst, provided the
lactone 17 in 58% vyield as a 3:2 mixture of two diastereoisosnE-syn/E-anti). The E-
configurations were determined by NOESY experime@sncerning the lowsyn/anti
stereoselectivity, the Felkin control which shou&hd to syn product seems not to be

operative (segideinfra).

(CICN)3 (0.5 eq.),
LIOH (4.5 eq.), EtoN (1 eq.), O
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8%
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DCM,1 h, 0T o i’ 2 (02€q)
-
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58%

16% over two steps

Scheme 8. NHC catalyzed strategy for the syntleggasecurson?.

Once again the migration of the vinyl moiety wassated. We speculate that the
migration of the double bond occurred after the-dddition to the activated Michael



acceptof: " The observed totdE-configuration arised from the protonation of caygted

enolate with intramolecular 1,5-proton transfer@uae 9).

CO,Et
) EtOC ~
ob =0
SN\ H \
NHC cat. N 1,4-addition éf N 1,5-proton transfer Cyclization
16 ———> | /\> E—— /\> _— N /\> —_—> 17
NP APPS A <
N ® N@ N
oy | o) | |©
©

Scheme 9. Proposed mechanism for the vinyl migratio

Nevertheless, precursot7 could eventually be used further in the synthesis
secologanin, sweroside or gentiopicroside. Actuyallyrequires several key steps among
others, deconjugation of the latter isomerized Minpiety*? in addition to lactonisation and

deoxygenation or elimination of the secondary hygréunction.

3. Conclusion

In summary, the synthesis of synthahand5 has been achieved in excellent yield and
should be a valuable tool in the synthesis of selmd derivatives. The formal [3+3]
cycloaddition between en&land aldehydéb did not provide the expected cycloadduct even
if on a model reaction, the 3,4-dihydropyrémwas formed. The NHC induced rearrangement
of unsaturated enol-est®8 gave access to compoutbdthat could be an advanced precursor

in the synthesis of different secoiridoids as fxaraple the challenging gentiopicroside.

4. Experimental Section

4.1. General information

All reactions were performed under nitrogen atmesphReagents were all analytically or
chemically pure and used without further purifioatunless specified. Solvents were reagent
grade and, when necessary, were purified and dyestandard method$H NMR and**C
NMR spectra were recorded on a Bruker 400 spectemusing CDC as solvent with its
residual peaks as internal standard. Chemicalssait reported in parts per milliod),(and
signals are expressed as s (singlet), d (doublérjplet), g (quartet) or m (multiplet). High
resolution mass spectral (HRMS) analyses were takena Bruker micrOTOF mass



spectrometer using electron spray ionization. @ptiotations were determined with a
JASCO P-2000 polarimeter. TLC was performed ornc&ilbel GF254 for TLC (Merk) and
spots were visualized by irradiation with UV ligf&54 nm) or by CAM containing Cerium
Sulfate (1.0 g) and ammonium molybdate (VI) tetddaye (25.0 g) in 10% 450, (500 mL)
followed by heating. Flash column chromatography \warformed on column packed with
Silica Gel 60 (200-300 mesh, Merk).

4.2. Methyl 2-((2,2-dimethyl-1,3-dioxolan-4-yl)(hydroxy)methyl)but-3-enoate (3): A 1.6

M solution ofn-BuLi in hexane (108 mL, 173.6 mmol, 2.3 equiv) vealkled to a solution of
di-iso-propylamine (27 mL, 197.5 mmol, 2.5 equiv) in adigus THF (300 mL) at -20 °C,
and the resulting solution stirred for 20 min amnsatemperature. The reaction mixture was
then cooled to -78 °C, HMPA (30.9 mL, 177.5 mmoR 2quiv) was added, after stirring for
an additional 30 min, a solution of methyl crotanét6.7 mL, 157.9 mmol, 2.0 equiv) in THF
(40 mL) was added dropwise at -T8 After stirring for 5 min, a solution & (10.26 g, 78.9
mmol, 1 equiv) in THF (15 mL) was added in one jport The mixture was allowed to reach
-20 °C, then cooled again to -70 °C and quencheat agueous NECI (320 mL). The
organic layers were extracted with dichlorometh@@»200 mL), dried over MgSg)filtered
and evaporated to obtain crude product. Flash aolcinomatography was performed (Ethyl
Acetate/Cyclohexane 25/75 35/65). Finally the produ@ was obtained in 99% yield as a
mixture of diasterecisomersR; = 0.53 (Ethyl Acetate/Cyclohexane, 1:1). Major
diastereoisomerH NMR (400 MHz, CDGJ): 5= 5.95 (ddd,J = 17.1, 10.3, 9.1 Hz, 1 H),
5.24-5.39 (m, 2 H), 3.94-4.10 (m, 4 H), 3.74 ($4)33.38 (ddJ = 9.1, 2.3 Hz, 1 H), 1.40 (s,
3 H), 1.33 (s, 3 H) ppmC NMR (101 MHz, CDGJ): 5 = 174.1, 130.7, 121.2, 109.4, 75.6,
72.9, 67.0, 52.3, 52.0, 26.9, 25.4 ppm. HRMS (E$blcd. for G;HigNaQ; [M+Na]”
253.1046; found 253.1038.

4.3. (2)/(E)-Methyl 2-((49)-(2,2-dimethyl-1,3-dioxolan-4-yl)methylene)but-3-enoate (4):
Mesyl chloride (4 mL, 51.7 mmol, 1.2 equiv) was eddlowly to a solution a8 (10.78 g,
46.9 mmol, 1.0 equiv) in anhydrous dichloromethah® °C under argon atmosphere. Then
triethylamine (34 mL, 244 mmol, 5.0 equiv) was atid#ropwise to the solution and
precipitation occurred. The mixture was allowedvirm up to room temperature and stirred
for 4 h. The solution was quenched with water (b®0) and product was extracted with
dichloromethane (850 mL). Combined organic layers were washed witheyrdried over
MgSO, and solvent was evaporated under reduced pressget the product (9.94 g, 99%)
E/Z ratio 3:2 (determined by'H NMR) in quantitative yield after flash column

10



chromatography (Ethyl Acetate/Cyclohexane, 1F),= 0.34 (Ethyl Acetate/Cyclohexane,
1:3). Pure diastereoisomer [a]zoz +34.4 (c 1.0, CHG). *H NMR (400 MHz, CDCJ): & =

6.61 (d,J = 8.4 Hz, 1 H), 6.39 (ddl = 17.2, 11.7 Hz, 1 H), 5.37 (m, 2 H), 4.86 (m, 1 #p7
(dd,J=8.1, 6.4 Hz, 1 H), 3.71 (s, 3 H), 3.63 (dd; 8.1, 7.3 Hz, 1 H), 1.39 (s, 3 H), 1.33 (s,
3 H) ppm.}*C NMR (101 MHz, CDGJ): & = 166.5, 139.3, 133.5, 128.9, 121.3, 110.0, 72.3,
69.2, 52.0, 26.5, 25.6 ppm. DiatereoisometH NMR (400 MHz, CDCJ): & = 6.35 (dd,J =
17.2,11.0 Hz, 1 H), 6.11 (d,=6.9 Hz, 1 H), 5.42 (d] = 17.2 Hz, 1 H), 5.18 (dJ = 11.0 Hz,

1 H), 4.21-4.27 (dd, J = 8.4, 6.9 Hz, 1 H), 3.783(#1), 3.62 (ddJ = 8.4, 6.9 Hz, 1 H), 1.35
(s, 3 H) 1.41 (s, 3 H}C NMR (101 MHz, CDGJ): & = 166.5, 139.4, 133.5, 133.3, 117.1,
109.6, 73.9, 69.4, 51.8, 26.5, 25.4 ppm. HRMS (E8#icd. for GiHigNaQ, [M+Na]”
235.0941; found 235.0933.

4.4. (E)-2-((49)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methylene)but-3-enal (5): To a solution
of ester4 (3.18 g, 15 mmol, 1.0 equiv) in anhydrous DCM ¢hk) at -78 °C was added
slowly DIBAL-H (1 M in hexane, 33 mL, 2.0 equiv)h& solution was stirred for 15 min at -
78 °C. The reaction was quenched with the dropaasbition of methanol until effervescence
ceased. The reaction mixture was diluted with 5unwds of diethyl ether and stirred
vigorously for 1 h with a saturated solution of Relte’s salt. The organic layers were
separated and the aqueous layer extracted oncedietthyl ether. Combined organic layers
were dried over MgSg) filtered and the solvent carefully removed uncetuced pressure.
The obtained alcohol (2.75 g, 99%) was used afeshfcolumn chromatography (Ethyl

Acetate/Cyclohexane, 1:6R; = 0.22 (Ethyl Acetate/Cyclohexane, 1:@()1]2;: -4.6 (c 1.0,

CHCls). HRMS (ESI): calcd. for gH:1gNaO; [M+Na]* 207.0997; found 207.0992.

To a stirred solution of alcohol (7.21 g, 39.2 mmbD equiv) in anhydrous DCM/DMSO
(2:1) were added Bl and sulfur trioxide pyridine complex (24.91 g0lfamol, 4.0 equiv) at

0 °C. The mixture was stirred for 1 h at room terapge before it was quenched with water
and extracted with Ethyl Acetate. The combined nigayers were dried with MgSGand
concentrated in vacuum. The aldehyde was purifiefldsh column chromatography (Ethyl
Acetate/Cyclohexane 1/8) and the prodboivas yielded (5.74 g, 81%).t R 0.57 (Ethyl

Acetate/Cyclohexane, 1:3a .= + 25.2 (¢ 1.0, CHG). 'H NMR (400 MHz, CDC)): 3 =

9.54 (s, 1 H), 6.37-6.46 (m, 2 H), 5.84 = 18.8 Hz, 1 H), 5.55 (d] = 10.0 Hz, 1 H), 5.10
(q,J=7.5Hz, 1 H), 4.25 (] = 7.5 Hz, 1 H), 3.76 (] = 7.5 Hz, 1 H), 1.50 (s, 3 H), 1.44 (s, 3
H) ppm.**C NMR (101 MHz, CDGJ): 6 = 193.1, 150.0, 139.8, 126.4, 122.9, 110.4, 72.4,

11



69.0, 26.6, 25.6 ppmHRMS (ESI): calcd. for @HisNaO; [2M+Na]" 387.1778; found
387.1777.

45.  (3E)-Methyl 2-acetoxy-4-((4S)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-ethylidene-6-
methyl-3,4-dihydro-2H-pyran-5-carboxylate (7a): To a solution of aldehyde (200 mg, 1.1
mmol, 1.0 equiv) in DCM (2 mL), R- (+g;a-diphenyl-2-pyrrolidine methanol trimethylsilyl
ether (32.5 mg, 0.11 mmol, 0.1 equiv) and benzoid 6.3 mg, 0.11 mmol, 0.1 equiv) were
added. After 5 min stirring, methylacetoacetatetZ0mL, 1.1 mmol, 1.0 equiv) was also
added to the reaction mixture. After 40 h, DCM (R)nacetic anhydride (0.33 mL, 3.3 mmol,
3 equiv), triethylamine (0.21 mL, 1.54 mmol, 1.4usq and 4-dimethylaminopyridine (13
mg, 0.11 mmol, 0.1 equiv) were added and stirred @h at room temperature. The reaction
mixture was quenched with water (20 mL), extractgth DCM (3x10 mL), combined
organic layers were dried over Mgsé@nd solvent was evaporated under reduced pressure.
Purification by flash column chromatography (Etlagdetate/Cyclohexane 15:85) gave the
product7a with traces of impurities in 40% yielB; = 0.31 (Ethyl Acetate/Cyclohexane, 1:5).
[a]ff: -19.4 (c 1.0, CHG). *H NMR (400 MHz, CDC}): 6 = 6.69 (dJ = 1.8 Hz, 1 H), 5.86-
5.75 (m, 1 H), 4.11 (4] = 6.2 Hz, 1 H), 3.98-3.88 (m, 2 H), 3.72 (s, 3 B};1-3.68 (m, 1 H),
2.23 (s, 3H), 219 (s, 3H), 1.81-1.75 (m, 3 H3711.34 (m, 3 H), 1.31-1.28 (m, 3 H) ppm.
3C NMR (101 MHz, CDGJ): 6 = 169.3, 168.2, 162.7, 130.2, 123.0, 109.5, 10804, 79.2,
67.2, 51.5, 36.9, 26.4, 25.7, 21.2, 20.0, 13.8 ppiRMS (ESI): calcd. for GH.sNaO;
[M+Na]" 363.1420; found 363.1426.

4.6. (E)-(45)-4, 5-Dihydroxy-2-vinyl-pent-2-enoic acid methyl ester (9): To a stirred
solution of4 (7.546 g, 35.55 mmol, 1.0 equiv) in anhydrous;CN was added Cugt 2H,0
(18.18 g, 106.65 mmol, 3.0 equiv) at 0 °C. The ometwas allowed to warm up to room
temperature and stirred for 3 h. The reaction métuas quenched with water (100 mL) and
extracted with dichloromethane X3L50 mL). The combined organic extracts were washed
with brine and dried over MgS@nd concentrated under vacuum. The desired pré&diwels
obtained (3.893 g, 64%) after flash column chromphy (Ethyl Acetate/Cyclohexane 3/2).

R = 0.25 (Ethyl Acetate/Cyclohexane, 1:j¥]"= - 14.3 (c 1.0, kD). 'H NMR (400 MHz,

CDCl): 6 = 6.63-6.51 (mJ = 8.7 Hz, 1 H), 6.44 (ddl = 17.6, 11.5 Hz, 1 H), 5.56 (dd,=
17.6, 1.6 Hz, 1 H), 5.41 (dd,= 11.5, 1.6 Hz, 1 H), 4.65 (di,= 8.6, 7.3, 3.5 Hz, 1 H), 3.75
(s, 3 H), 3.65 (ddJ = 11.5, 3.5 Hz, 1 H), 3.56 (dd= 11.5, 7.3 Hz, 1 H) ppni’C NMR (101
MHz, CDCL): & = 167.5, 139.7, 132.8, 128.8, 121.4, 69.1, 6563 ppm. HRMS (ESI):
calcd. for GH10LiO4 [M+Li] * 179.0890; found 179.0883.
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4.7. 2-((49)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methylene)but-3-enoic acid (14): LiOH (82
mg, 33.89 mmol, 4.5 equiv) was solubilized isCH10 mL) and added dropwise to a solution
of 4 (1.60 g, 7.53 mmol, 1.0 equiv) in THF (20 mL). Tinle reaction mixture was stirred at
room temperature for overnight. HCI (1 mol/L) waklad to neutralize the reaction until pH
~3. The reaction mixture was extracted with dictioethane (X30 mL). The combined
organic extracts were washed with brine and driet MgSQ and concentrated under vacuo.
The desired product4 was obtained (1.175 g, 78%) after flash columroetatography

(Ethyl Acetate/Cyclohexane 1/2% = 0.17 (Ethyl Acetate/Cyclohexane, 1:[4)1]2;: +26.4

(c 1.0, CHCJ). 'H NMR (400 MHz, CDCJ): & = 10.62 (s, 1 H), 6.84 (d, = 8.3 Hz, 1 H),
6.50-6.38 (m, 1 H), 5.52-5.40 (m, 2 H), 4.99-4.89 (L H), 4.16 (ddJ = 8.3, 6.5 Hz, 1 H),
3.79-3.67 (m, 1 H), 1.47-1.44 (m, 3 H), 1.40 ($J)3ppm.**C NMR (101 MHz, CDGJ): & =
171.6, 141.9, 132.8, 128.7, 122.0, 110.4, 72.63,6%.7, 25.2 ppm. HRMS (ESI): calcd. for
CioH14NaQ, [M+Na]* 221.0790; found 221.0784.

4.8. (E)-(E)-3-Ethoxy-3-oxopr op-1-en-1-yl2-(((S)-2,2-dimethyl-1,3-dioxolan-4-
y)methylene)but-3-enoate (16): To a stirred solution af4 (55 mg, 0.28 mmol, 1.0 equiv) in
acetone was added cyanuric chloride (26 mg, 0.14Im@5 equiv) and BN (39 1L, 0.28
mmol, 1.0 equiv) at room temperature. The mixtuies stirred for 3 hours. Acetone was
removed under reduced pressure.

A magnetically stirred solution of acid chloride ICM was cooled to 0 °C then treated
dropwise with Hinig's base followed by intermediakbe reaction was stirred at 0 °C for 1 h.
The reaction mixture was quenched with water (10 amd extracted with dichloromethane
(3X15 mL). The combined organic extracts were washia lvine and dried over MgSO
and concentrated under vacuum. The desired prdéusts obtained (13.3 mg, 16% in two
steps) after flash column chromatography (EthyltAmgCyclohexane 1/6R: = 0.55 (Ethyl

Acetate/Cyclohexane, 1:3a .= + 15.4 (c 0.4, CHG). 'H NMR (400 MHz, CDC)): § =

8.36 (d,J = 12.5 Hz, 1 H), 6.91-6.81 (m, 1 H), 6.45 (dd; 17.4, 11.5 Hz, 1 H), 5.81 (d,=
12.5 Hz, 1 H), 5.61-5.46 (m, 2 H), 4.96 (dds 8.2, 6.9 Hz, 1 H), 4.25-4.16 (m, 3 H), 3.78-
3.70 (m, 1 H), 1.48 (d) = 0.7 Hz, 3 H), 1.42-1.40 (m, 3 H), 1.33-1.24 @nH) ppm.>>C
NMR (101 MHz, CDC)): & = 166.2, 162.0, 149.6, 143.1, 131.4, 128.2, 12P16,6, 106.8,
72.6, 69.3, 60.7, 26.8, 25.8, 14.4 ppHRMS (ESI): calcd. for gH>0NaQs [M+Na]”
319.1158; found 319.1152.
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4.9. (3E)/(32)-Ethyl 4-(2,2-dimethyl-1,3-dioxolan-4-yl)-2-oxo-3-ethylidene-3,4-
dihydro-2H-pyran-5-carboxylate (17): To a stirred solution 0f6 (12 mg, 0.041 mmol, 1.0
equiv) in anhydrous THF was added catalyst (3.5 @m@08 mmol, 0.2 equiv) and potassium
tert-butoxide (1 mg, 0.008 mmol, 0.2 equiv) at roompenature. The mixture was stirred for
46 h. The reaction mixture was then evaporatedthediesired produd7 was obtained (7
mg, 58%) after flash column chromatography (Ethglefate/Cyclohexane 1/6lr; = 0.38
(Ethyl Acetate/Cyclohexane, 1:3H NMR (400 MHz, CDCJ): 6 = 7.62 (d,J = 8.1 Hz, 1 H),
7.24-7.10 (m, 1 H), 4.31-4.23 (m, 3 H), 4.04-4.61, { H), 3.95-3.90 (m, 1 H), 3.72-3.67 (m,
1 H), 1.96-1.92 (dJ = 7.3 Hz, 3 H), 1.34-1.24 (m, 9 H) ppAiC NMR (101 MHz, CDGJ): &
=165.7, 162.7, 151.4, 145.2, 124.6, 111.6, 108877, 65.9, 61.3, 35.6, 29.8, 26.1, 15.3, 14.4
ppm. HRMS (ESI): calcd. for gH,oNaGs [M+Na]* 319.1152; found 319.11509.

Supporting Information (see footnote on the first page of this articledpi@s of*H and**C

NMR spectra of all described compounds.
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1,2: 5,6-Diisopropylidene-D-mannitol (1)
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Fig.1-2 °C NMR (101MHz, 300K) spectrum of 1 in CDCl;



2, 3-O-Isopropylidene-D-glyceraldehyde (2)
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Fig. 2-1 '"H NMR (400MHz, 300K) spectrum of 2 in CDCl;
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Fig.2-2 °C NMR (101MHz, 300K) spectrum of 2 in CDCl;



Methyl 2-((2, 2-dimethyl-1,3-dioxolan-4-yl)(hydroxy)methyl)but-3-enoate (3)
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Fig. 3-1 '"H NMR (400MHz, 300K) spectrum of 3 in CDCl;
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Fig. 3-2 °C NMR (101MHz, 300K) spectrum of 3 in CDCl;



Methyl 2-((2,2-dimethyl-1,3-dioxolan-4-yl)methylene)but-3-enoate (4)
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Fig. 4-1 '"H NMR (400MHz, 300K) spectrum of 4 in CDCl;
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Fig. 4-2 C NMR (101MHz, 300K) spectrum of 4 in CDCl;




2-((2, 2-Dimethyl-1,3-dioxolan-4-yl)methylene)but-3-alcohol
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Fig. 5-1 '"H NMR (400MHz, 300K) spectrum of alcohol in CDCl;
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Fig. 5-2 °C NMR (101MHz, 300K) spectrum of alcohol in CDCl;



(E)-2-((2, 2-Dimethyl-1,3-dioxolan-4-yl)methylene)but-3-enal (5)
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Fig.6-1 "H NMR (400MHz, 300K) spectrum of 5 in CDCls
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Fig.6-2 °C NMR (101MHz, 300K) spectrum of 5 in CDCl;



Methyl 2-acetoxy-4-(2,2-dimethyl-1,3-dioxolan-4-yl)-3-ethylidene-6-methyl
-3,4-dihydro-2H-pyran-5-carboxylate (7a)
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Fig. 7-1 '"H NMR (400MHz, 300K) spectrum of 7a in CDCl;
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Fig. 7-2 °C (jmod) NMR (101MHz, 300K) spectrum of 7a in CDCl;



4, 5-Dihydroxy-2-vinyl-pent-2-enoic acid methyl ester (9)
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Fig.8-1 '"H NMR (400MHz, 300K) spectrum of 9 in CDCl;
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Fig. 8-2 °C NMR (101MHz, 300K) spectrum of 9 in CDCl;



2-((2, 2-Dimethyl-1,3-dioxolan-4-yl)methylene)but-3-enoic acid (14)
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Fig.9-1 "H NMR (400MHz, 300K) spectrum of 14 in CDCl;
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Fig.9-2 °C NMR (101MHz, 300K) spectrum of 14 in CDCl;
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(E)-(E)-3-ethoxy-3-oxoprop-1-en-1-yl 2-(((S)-2,2-dimethyl-1,3-dioxolan-4-yl)methylene)
but-3-enoate (16)
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Fig.10-1 'H NMR (400MHz, 300K) spectrum of 16 in CDCl;
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Fig. 10-2 °C NMR (101MHz, 300K) spectrum of 16 in CDCl;
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Ethyl 4-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-ox0-3-vinyl-3,4-dihydro-2H-pyran-5-carboxylate
17)
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Fig.11-1 'H NMR (400MHz, 300K) spectrum of 17 in CDCl;
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Fig. 11-2 °C NMR (101MHz, 300K) spectrum of 17 in CDCl;
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Ethyl-3-oxopropanoate (6b)

0 OH
’
0 ~——= 0
OCH,CHj OCH,CHj

Hydroxymethylene Meldrum’s acid (10.6 g, 62 mmol) and ethanol (4.3 mL, 93 mmol) in benzene
(133 mL) were refluxed for 1h30 under argon atmosphere. The solution was cooled and distilled
under vacuum. Product 6b was collected at 17mbar (T= 35-50 °C) and the desired product was
obtained (3.65 g, 49%).

Enol/Aldehyde ratio 1:2.6 (determined by '"H NMR)

Aldehyde:

'H NMR (400 MHz, CDCl3): 8 =9.82 (t,J=2.5 Hz, 1 H), 4.25 (q, J= 7.5 Hz, 2 H), 3.40 (d, J= 2.5
Hz, 2 H), 1.31 (t, J=7.5 Hz, 3 H) ppm.

BC NMR (101 MHz, CDCl3) & = 194.9, 166.4, 61.3, 48.2, 13.6 ppm.

Enol:

'H NMR (400 MHz, CDCl3) § ppm 11.41 (d, J = 12.5 Hz, 1 H), 7.10 (dd, J = 7.5, 12.5 Hz, 1 H),
5.07(d,J=7.5Hz, 1 H),4.25(q,J=7.5Hz,2 H), 1.31 (t, J=7.5 Hz, 3 H) ppm.
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Fig. 12-1 '"H NMR (400MHz, 300K) spectrum of 6b in CDCls
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Fig.12-2 °C NMR (101MHz, 300K) spectrum of 7 in CDCl;

Hydroxymethylene Meldrum’s acid (10)

70 " 6l
1 (ppm)

Fig. 13 '"H NMR (400MHz, 300K) spectrum of 10 in CDCl;
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