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Total Synthesis and Structural Revision of Clavilactone D 
 Ken-ichi Takao,* Ryuichi Nemoto, Kento Mori, Ayumi Namba, Keisuke Yoshida, and Akihiro Ogura 

 

Abstract: A structural revision of clavilactone D, a potent inhibitor of 
protein tyrosine kinases, was achieved by total syntheses of two 
newly proposed structures. The syntheses relied on ring-
opening/ring-closing metathesis, which transformed a 
cyclobutenecarboxylate into a γ-butenolide. The syntheses 
confirmed that the correct structure of clavilactone D has an amino 
group at C-3 instead of a hydroxy group at C-2 in the originally 
proposed structure. 

Clavilactone D is a potent inhibitor of protein tyrosine kinases,[1,2] 
but its structure has remained unsolved. First, antifungal and 
antibacterial clavilactones A–C (1–3) were discovered from 
cultures of the Basidiomycetous fungus Clitocybe clavipes by 
Arnone and co-workers in 1994 (Figure 1A).[3] Their structures 
were determined as having a 10-membered carbocycle 
connected to a hydroquinone or benzoquinone and an α,β-
epoxy-γ-lactone. In 2000, Merlini and co-workers isolated related 
compounds, clavilactones D and E (5), from the same fungus by 
using different culture conditions.[1] Because the NMR spectra of 
clavilactone D and 2 were similar, the structure of clavilactone D 
was originally assigned as 4 substituted with a hydroxy group in 
the quinone ring of 2. The position of the hydroxy group was 
elucidated by the HMBC spectrum. Studies of the biological 
activity of 1, 2, and clavilactone D showed inhibitory activity 
against epidermal growth factor tyrosine kinases,[2] and 
clavilactone D was the most potent inhibitor (IC50 5.5 µM). The 
unique structures of clavilactones coupled with their important 
biological activities have inspired several synthetic 
investigations.[4,5] Barrett and co-workers achieved the first total 
synthesis of (+)-clavilactone B (the antipode of 2).[6] Next, we 
completed the enantioselective total synthesis of the natural 
enantiomers of 1 and 2.[7] In collaborative research with a 
biology group, we showed that synthetic analog 6, called seco-
clavilactone B, is a novel actin polymerization inhibitor and can 
serve as a bioprobe for clarifying cytoskeletal dynamics.[8] Later, 
two total syntheses of clavilactones were published by the Li 
group[9] and the Yoshimitsu group.[10] Notably, Li and colleagues 
reported that neither the spectroscopic data for synthesized 4 
(the originally proposed structure) nor its regioisomer 7 matched 
those of natural clavilactone D.[9] The correct structure should be 
revealed to advance both natural product chemistry and 
biological research. We herein demonstrate the correct structure 
of clavilactone D to be 9 (Figure 1B) by total syntheses of two 
newly proposed structures. 

 

Figure 1. Structures of clavilactones. 

Based on the re-evaluation of the published data for 
clavilactone D,[1] we had doubts about the molecular weight of 
clavilactone D. In its mass spectrum, the molecular ion was 
recorded as 302 for M+ by chemical ionization (CI) MS using 
CH4 and no HRMS data was described. The molecular ion in 
CIMS is usually observed as [M + H]+. Therefore, we assumed 
that the correct molecular weight of clavilactone D would be 301, 
one less than the proposed weight. Next, we compared the NMR 
data of natural clavilactone D with those of 4 and 7 synthesized 
by Li and colleagues.[9] The signal peak of H-3 (δ 6.15) for 4 or 
H-2 (δ 6.17) for 7 appeared at a lower field than the 
corresponding peak (δ 5.90) of natural product. A similar 
difference was also observed in the 13C NMR spectra (δ 109.2 
for C-3 of 4 or δ 109.5 for C-2 of 7 vs. δ 101.7 for natural 
product). These facts indicate that clavilactone D has a stronger 
electron-donating group in the quinone ring than the hydroxy 
group. Consequently, we considered that the revised structure 
for clavilactone D should be 8 or 9, containing an amino group at 
C-2 or C-3, and that the structural revision could be 
unambiguously confirmed by total syntheses of 8 and 9. 

In recent years, we have been interested in ring-
rearrangement metathesis, a conceptually new method involving 
domino metathesis.[11,12] To achieve the total synthesis of 1 and 
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2, we developed a ring-opening/ring-closing metathesis 
(ROM/RCM) of cyclobutenecarboxylate derivatives for concise 
access to γ-butenolides.[4,7] Our strategy has been successfully 
used for butenolide synthesis by other groups.[13] Therefore, we 
envisioned an approach that would exploit the ROM/RCM of 
cyclobutenecarboxylate 12 or 13 to construct γ-butenolide 10 or 
11, which would be transformed into 8 or 9 by a similar 
sequence of reactions to our previous synthesis of 2 (Scheme 1). 
The nitro group would be used as a precursor of the amino 
group at C-2 or C-3. To prepare 12 or 13, penta-substituted 
benzene 14 or 15 would be required as a starting material. 

 

Scheme 1. Retrosynthetic analysis of newly proposed structures 8 and 9 of 
clavilactone D. 

We initially aimed to obtain 8, which is substituted with an 
amino group at the same position (C-2) as the hydroxy group in 
originally proposed structure 4. The synthesis started with a 
regioselective preparation of 14 (Scheme 2). According to the 
known procedure, a nitrated benzaldehyde derivative 17 was 
regioselectively prepared from 2,5-dimethoxybenzaldehyde 
(16).[14] Despite extensive efforts, corresponding bromide 14 
could not be directly obtained from 17. However, compound 18 
underwent a regioselective bromination. Thus, selective 
demethylation of dimethyl ether 17 with concentrated sulfuric 
acid[15] provided monomethyl ether 18.[16] Treatment of 18 with 
pyridinium tribromide produced desired brominated product 19, 
which was re-methylated to 14. The vinyl Grignard reaction of 14 
provided allylic alcohol 20.[17] Cyclobutenecarboxylate 12 was 
obtained by acylation of 20 with anhydride 21.[7] The ROM/RCM 
reaction of 12 proceeded using the method developed by our 
group.[7] A solution of the first-generation Grubbs catalyst and 
benzoquinone 22[18] was slowly added to a solution of 12 in 
toluene using a syringe pump. After stirring, the mixture was 
treated with ethylene and the second-generation Grubbs catalyst 
to provide γ-butenolide 10 in 80% yield. 

 

Scheme 2. Synthesis of γ-butenolide 10. Reagents and conditions: a) conc. 
H2SO4, 50 °C, 40 h, 31% (57% based on recovered starting material); b) 
PyHBr3, MS 4Å, Py, –30 °C, 1 h, 87%; c) MeI, K2CO3, DMF, RT, 14 h, 100%; 
d) CH2=CHMgBr, THF, –78 °C, 1 h, 73%; e) NaHMDS, 21, THF, –78 °C, 45 
min, 80%. Py = pyridine, MS = molecular sieves, DMF = N,N-
dimethylformamide, THF = tetrahydrofuran, HMDS = hexamethyldisilazide, Cy 
= cyclohexyl, Mes = mesityl. 

The next stage of the synthesis involved construction of the 
10-membered carbocycle of 8 (Scheme 3). Reduction of the γ-
lactone in 10, followed by protection of the resulting diol as a 
silylene acetal, provided 23. Chemo- and stereoselective 
epoxidation of 23 was achieved by using mCPBA.[19] Major 
product 24 was subjected to Stille coupling with allylstannane 
25[20] to afford diene 26. Ring-closing metathesis (RCM) of 26 
with the second-generation Grubbs catalyst proceeded, giving 
10-membered carbocycle 27. The newly formed olefin had the 
desired geometry.[21] At this stage, the nitro group in 27 was 
chemoselectively reduced to an amino group under transfer 
hydrogenation conditions and the resulting product was 
protected as t-butyl carbamate 28. Removal of the silylene 
acetal from 28 and subsequent Ley oxidation of the diol 
reconstructed the γ-lactone, furnishing 29. Treatment of 29 with 
CAN, followed by deprotection of the amino group, provided the 
first target molecule (8). 
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Scheme 3. Synthesis of the first target molecule (8). Reagents and conditions: 
a) DIBAL-H, THF, 0 °C, 2 h; b) tBu2Si(OTf)2, Py, CH2Cl2, RT, 30 min, 73% (2 
steps); c) mCPBA, CH2Cl2, phosphate buffer, 0 °C to RT, 4 h, 54% 24, 16% 
regioisomer, and 30% di-epoxide (2 cycles); d) 25, Pd(PPh3)4, CuCl, 1,4-
dioxane, reflux, 12 h, 73%; e) 2nd Grubbs cat. (40 mol %), 22 (60 mol %), 
toluene (0.7 mM), reflux, 16 h, 74%; f) Pd/C, 1,4-cyclohexadiene, EtOH, 70 °C, 
2 h; g) (Boc)2O, Et3N, 1,4-dioxane, 85 °C, 48 h, 86% (2 steps); h) nBu4NF, 
THF, RT, 16 h; i) TPAP, NMO, MS 4Å, MeCN, RT, 1 h, 74% (2 steps); j) CAN, 
MeCN–H2O, RT, 10 min; k) TFA, CH2Cl2, RT, 3.5 h, 54% (2 steps). DIBAL-H = 
diisobutylaluminum hydride, Tf = trifluoromethanesulfonyl, mCPBA = meta-
chloroperbenzoic acid, Boc = t-butoxycarbonyl, TPAP = tetra-n-
propylammonium perruthenate, NMO = N-methylmorpholine oxide, CAN = 
cerium(IV) ammonium nitrate, TFA = trifluoroacetic acid, NOE = nuclear 
Overhauser effect. 

The NMR data for 8 did not agree with the published natural 
product data.[1] This included discrepancies in the 1H NMR (e.g., 
δ 6.13 for H-6 and δ 3.61 for H-13 of 8 vs. δ 5.99 and δ 3.76 for 
natural product) and the 13C NMR (e.g., δ 144.7 for C-5 of 8 vs. δ 
151.3 for natural product). However, compared with 4 and 7,[9] 
the difference in the chemical shifts of H-3 (δ 5.86 for 8 vs. δ 
5.90 for natural product) and C-3 (δ 149.0 for 8 vs. δ 148.8 for 
natural product) decreased. In addition, although 4 and 7 were 
reported as yellow solids by Li and colleagues,[9] compound 8 
was obtained as a red solid similar to natural product. Therefore, 
we moved on to synthesizing the regioisomer of 8, compound 9, 
in which the amino group is substituted at C-3. 

This synthesis used known bromide 30, which was the 
starting material in our total synthesis of 1 and 2 (Scheme 4).[7] 

Nitration of 30 proceeded with complete regioselectivity to afford 
desired penta-substituted benzene 15 as a single isomer.[22] 
Addition of the vinyl group provided allylic alcohol 31, which was 
acylated to furnish key substrate 13 for the ROM/RCM reaction. 
Cyclobutenecarboxylate 13 was transformed into γ-butenolide 11 
by our method. After conversion to silylene acetal 32, 
epoxidation followed by Stille coupling of epoxide 33 provided 
diene 34. RCM of 34 formed a 10-membered carbocycle to 
afford 35, which was converted into 37 through reduction of the 
nitro group, protection–deprotection, and reconstruction of the γ-
lactone. Finally, CAN oxidation followed by deprotection afforded 
the second target molecule (9). The stereochemistry of 9 was 
confirmed by 1H NMR analysis including NOE experiments. 
Pleasingly, comparison of the 1H and 13C NMR spectra of 
synthetic 9 with those of natural clavilactone D showed excellent 
agreement,[23] indicating that the structure of clavilactone D 
should be revised to be 9, and that we had completed the first 
total synthesis of (±)-clavilactone D. The original 1H NMR 
spectrum showed a broad signal peak corresponding to –NH2 at 
δ 6.59 (δ 6.56 for synthetic 9), which was assigned as impurities 
in the paper on the original isolation of clavilactone D. In the 
original HMBC spectrum, a strong cross peak of the proton in 
the quinone ring with C-5 (4JCH) was detected, whereas a weak 
cross peak with C-14 (3JCH) had been missed, leading to the 
misassignment of the position of the substituent in the quinone 
ring. 

In conclusion, we have synthesized two newly proposed 
structures, 8 and 9, of protein tyrosine kinase inhibitor 
clavilactone D, and we conclude that the true structure of the 
natural product is 9, with an amino group at C-3. The key 
features of the synthesis are regioselective bromination and 
nitration for preparing penta-substituted benzene derivatives 14 
and 15, an ROM/RCM reaction for transforming 
cyclobutenecarboxylates 12 and 13 into γ-butenolides 10 and 11, 
and an RCM for constructing 10-membered carbocycles in 27 
and 35. Our total synthesis has an important role to play in the 
structural elucidation of clavilactone D,[24] and will enable further 
biological studies on this class of natural products. 
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Scheme 4. Total synthesis of (±)-clavilactone D (9). Reagents and conditions: a) conc. HNO3, CH2Cl2, RT, 2.5 h, 96%; b) CH2=CHMgBr, THF, –78 °C, 30 min, 
77%; c) NaHMDS, 21, THF, –78 °C, 1 h, 84%; d) 1st Grubbs cat. (20 mol %), 22 (50 mol %), toluene (0.01 M), 80 °C, 3 h, then ethylene (1 atm), 2nd Grubbs cat. 
(6 mol %), 80 °C, 40 min, 82%; e) DIBAL-H, THF, 0 °C, 3 h; f) tBu2Si(OTf)2, Py, CH2Cl2, RT, 30 min, 65% (2 steps); g) mCPBA, CH2Cl2, phosphate buffer, 0 °C to 
RT, 4 h, 50% 33, 18% regioisomer, and 31% di-epoxide (2 cycles); h) 25, Pd(PPh3)4, CuCl, 1,4-dioxane, reflux, 16 h, 82%; i) 2nd Grubbs cat. (40 mol %), 22 (70 
mol %), toluene (0.7 mM), reflux, 16 h, 64%; j) Pd/C, 1,4-cyclohexadiene, EtOH, 70 °C, 1.5 h; k) (Boc)2O, Et3N, 1,4-dioxane, 85 °C, 64 h, 99% (2 steps); l) nBu4NF, 
THF, RT, 20 h; m) TPAP, NMO, MS 4Å, MeCN, RT, 1 h, 87% (2 steps); n) CAN, MeCN–H2O, RT, 10 min; o) TFA, CH2Cl2, RT 3 h, 65% (2 steps). 
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