

/KAP1

FULL PAPER

DOI: 10.1002/ejoc.201200898

Stereoselective Synthesis of *cis*-Fused Perhydrofuro[2,3-*b*]furan Derivatives from Sugar-Derived Allyl Vinyl Ethers

Pages: 9

Perali Ramu Sridhar,*^[a] Gadi Madhusudhan Reddy,^[a] and Kalapati Seshadri^[a]

Keywords: Oxygen heterocycles / Carbohydrates / Cyclization / Sigmatropic rearrangement / Chiral pool

6

1

A stereoselective methodology has been developed for the construction of *cis*-fused perhydrofuro[2,3-b]furans, via 3-Cbranched glycal derivatives, involving Claisen rearrangement of sugar-derived allyl vinyl ethers, followed by a onepot ozonolysis and acid-mediated acetalization. The methodology was used for the stereoselective synthesis of the P_2 ligand in the recently FDA approved HIV protease inhibitor darunavir (Prezista). The methodology was also successfully used for the synthesis of cis-fused perhydro-5-oxofuro[2,3-b]furan derivatives.

Introduction

- Carbohydrates, the most naturally abundant molecules in 16 the chiral pool, have played a pivotal role in the enantiospecific synthesis of many intricate biologically active molecular frameworks.^[1] Fused-ring systems are an integral part of numerous natural products, and they confer a conforma-21 tion on the molecules that can have consequences for their
- biological properties. Many linearly fused molecules, espe-

OMe Ĉ ó (-)-Aflatoxin B1 Sterigmatocystin Rhyacophiline OMe 0. ÓН ŌAc AcÓ Clerodin (+)-Asteltoxin

Figure 1. Natural products possessing a cis-fused perhydrofuro [2,3-b]furan subunit.

[a] School of Chemistry, University of Hyderabad, Hyderabad 500046, India Fax: +91-40-2301-2460 E-mail: prssc@uohyd.ernet.in Homepage: chemistry.uohyd.ernet.in/~prs/index.htm

- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201200898.

cially of marine origin, show extremely high activity against microorganisms and enzymes. In this context, several bioactive natural products contain a *cis*-fused furo[2,3-b]furan ring system as an essential component of their architecture. Such compounds include aflatoxin,^[2] sterigmatocystin,^[3] rhyacophiline,^[4] clerodin,^[5] and asteltoxin,^[6] etc. (Figure 1).

On the other hand, the cis-fused perhydro-5-oxofuro[2,3b]furan system is also an important structural unit present in a number of biologically active spongiane diterpenoids.^[7] 31 Such structures include norrisolide^[8] (which induces irreversible vesiculation of Golgi membranes),^[9] macfarlandin C,^[10] spongionellin,^[11] dendrillolides A and E,^[12] and cheloviolenes A and B^[13] etc. (Figure 2). Surprisingly, to the best of our knowledge, the total syntheses of none of 36 the above-named spongiane diterpenoids was reported, except for norrisolide.^[14] More recently, sugar-fused γ -butyrolactones have been shown to be potential GABA_A inhibitors.^[15] Despite their wide occurrence, very few methods are available for the stereoselective synthesis of cis-fused per-41

Figure 2. Natural products possessing a cis-fused perhydro-5-oxofuro[2,3-b]furan subunit.

26

Pages: 9

FULL PAPER

46

71

furan^[17,14b] frameworks. As part of our continuing efforts towards the development of stereoselective methods for the construction of sugar-fused bicycles and spirocycles,^[18] we report in this paper a stereoselective synthesis of carbo-hydrate-derived perhydrofuro[2,3-*b*]furan derivatives, starting from sugar-derived allyl vinyl ethers.

hydrofuro[2,3-*b*]furan^[16] and perhydro-5-oxofuro[2,3-*b*]-

Results and Discussion

- Ferrier rearrangement^[19] of 3,4,6-tri-O-acetyl-D-glucal
 (1) with 2-(phenylselenyl)ethanol as a nucleophile provided 2,3-unsaturated glycoside 2,^[20] which, upon oxidation with NaIO₄, gave selenone glycoside 3. Base-mediated thermal fragmentation of 3 provided the required allyl vinyl ether derivative 4 in good yield. Claisen [3,3]-sigmatropic re-
- ⁵⁶ arrangement of compound **4** effected by heating in nitrobenzene/*N*,*N*-dimethylaniline provided the expected 3-*C*branched glucal derivative (i.e., **5**). Selective reduction of the aldehyde functional group using NaBH₄ in ethanol at $5 \,^{\circ}$ C gave alcohol **6**. Ozonolysis of the olefin in alcohol **6** to
- 61 give the dialdehyde, followed by subsequent acid-mediated acetalization in one pot, provided perhydrofuro[2,3-b]furan derivative 7 in excellent yield, and with very high diastereoselectivity (Scheme 1). The stereochemistry at the bridgehead position was assigned by observing the characteristic
- 66 coupling constant (${}^{3}J = 5.0 \text{ Hz}$) of an acetal hydrogen as a doublet, as well as by a NOESY experiment.

After the successful preparation of 7, the protocol was extended to synthesize a number of perhydrofuro[2,3-*b*]-furan systems. Thus, allyl vinyl ethers **8**, **12**, **16**, and **20**, synthesized from the corresponding glycals 3,4,6-tri-*O*-acetyl-D-galactal, 3,4-di-*O*-acetyl-L-rhamnal, 3,4-di-*O*-acetyl-L-arabinal, respec-

acetyl-L-arabinal and 3,4-di-*O*-acetyl-D-arabinal, respectively,^[21] upon Claisen rearrangement, provided the 3-*C*branched aldehyde derivatives **9**, **13**, **17**, and **21**, respectively as single diastereomers in good yields. Reduction of the aldehydes to alcohols gave glycal-derived 3-*C*-branched alcohols **10**, **14**, **18**, and **22**. A one-pot ozonolysis and acidcatalyzed acetalization of these alcohols provided the perhydrofuro[2,3-*b*]furan derivatives, the so-called bis-THF moieties, **11**, **15**, **19**, and **23**, as single diastereomers (Table 1, entries 1–4). Allyl vinyl ether **24**, in which 4-OH was protected with a benzyl group, also underwent Claisen rearrangement smoothly, and provided 3-*C*-branched aldehyde derivative **25**. Reduction of aldehyde **25** to alcohol **26**, followed by ozonolysis and cyclization, provided bis-THF derivative **27** as a single diastereomer (Table 1, entry 5).

The important role played by the perhydrofuro[2,3-*b*]furan bicyclic system as an effective P₂ ligand in HIV protease inhibitors is well documented.^[22] The significance of the current methodology was further increased by synthesizing (3*R*,3a*S*,6a*R*)-hexahydrofuro[2,3-*b*]furan-3-ol **30**,^[23] the important bis-THF moiety present in the HIV protease inhibitor darunavir (Prezista)^[24] as well as in brecanavir.^[25] Very few stereoselective synthetic methods have been reported for the preparation of bis-THF **30**. To this end, deprotection of the acetate in **23** gave alcohol **28**, which, upon Mitsunobu inversion provided compound **29**. Hydrolysis of this ester provided target molecule **30** as a single diastereomer (Scheme 2).

Furthermore, we envisaged that oxidation of aldehyde **5** 101 to the corresponding carboxylic acid, followed by a one-pot ozonolysis and acid-mediated cyclization would provide the *cis*-fused perhydro-5-oxofuro[2,3-*b*]furan framework. Thus, aldehyde **5** was oxidized to acid **31** under Pinnick oxidation^[26] conditions. Ozonolysis of compound **31** followed by cyclization in AcOH/MeOH (3:2) provided the expected perhydro-5-oxofuro[2,3-*b*]furan derivative (i.e., **32**), but in very low yield (18%). Optimized reaction conditions of catalytic *p*TsOH in CH₂Cl₂ resulted in an improvement in the yield to 48% over three steps (Scheme 3). 111

Scheme 1. Synthesis of glucal-derived *cis*-fused perhydrofuro[2,3-*b*]furan. Reagents and conditions: a) PhSeCH₂CH₂OH, BF₃·OEt₂, benzene, 0–25 °C, 5 min, 88%; b) NaIO₄, NaHCO₃, MeOH/H₂O (6:1), 1 h; c) DIPA, benzene, reflux, 30 min, 55% over two steps; d) *N*,*N*dimethylaniline, nitrobenzene, 160 °C, 3 h, 85%; e) NaBH₄, EtOH, 5 °C, 30 min, 95%; f) O₃, Me₂S, CH₂Cl₂, –78 °C; g) CH₃COOH/ MeOH (3:2), reflux, 3 h, 62% over two steps (DIPA = diisopropylamine).

Date: 24-09-12 17:04:34

Pages: 9

Synthesis of Perhydrofuro[2,3-b]furans

Table 1. Synthesis of *cis*-fused perhydrofuro[2,3-*b*]furan derivatives.

[a] Isolated yields after column chromatography.

Scheme 2. Stereoselective synthesis of (3R,3aS,6aR)-hexahydrofuro[2,3-*b*]furan-3-ol. a) K₂CO₃, MeOH room temp., 1 h, 97%; b) Ph₃P, DIAD, PNBA, THF, -10 °C to r.t., 99%; c) NaOMe, MeOH, 82%. DIAD = diisopropyl azodicarboxylate, PNBA = *p*nitrobenzoic acid.

Scheme 3. Synthesis of glucal-derived *cis*-fused perhydro-5-oxofuro[2,3-*b*]furan. a) NaH₂PO₄·2H₂O, NaClO₂, 2-methyl-2-butene, *t*BuOH, room temp., 30 min; b) (i) O₃, Me₂S, CH₂Cl₂, -78 °C. (ii) *p*TsOH, CH₂Cl₂, reflux, 10 h, 48% over three steps.

This methodology could also be used for the synthesis of several 3-*C*-branched carboxylic acids. Thus, aldehydes **9**,

13, 17, 21, and 25 were oxidized to the corresponding carboxylic acids (i.e., 33, 35, 37, 39, and 41, respectively). All the acid derivatives were converted into the corresponding *cis*-fused perhydro-5-oxofuro[2,3-*b*]furans (i.e., 34, 36, 38, 40, and 42) with high stereoselectivity and in good yields (Table 2).

Table 2. Synthesis of *cis*-fused perhydro-5-oxofuro[2,3-*b*]furan derivatives.

[a] Yield represents crude product obtained after oxidation. [b] Yield represents pure compound isolated by column chromatography after three steps.

Conclusions

In conclusion, an efficient and stereoselective protocol 121 for the synthesis of *cis*-fused perhydrofuro[2,3-*b*]furan derivatives was developed by implementing a Claisen rearrangement of 2,3-unsaturated vinyl glycosides and a onepot oxidative acetalization as key steps. The generality of the reaction was investigated by synthesizing a number of bis-THF derivatives. The methodology was also successfully extended to construct several *cis*-fused perhydro-5-oxo-

Date: 24-09-12 17:04:34

Pages: 9

FULL PAPER

furo[2,3-*b*]furan derivatives. The application of this method to the stereoselective total synthesis of natural products is in progress.

131

136

Experimental Section

General Methods: All reactions were carried out under an inert atmosphere with dry solvents under anhydrous conditions unless otherwise stated. Dichloromethane, methanol, and benzene were initially dried and stored over molecular sieves (4 Å). TLC was run on silica gel 60 F254 (Merck) plates, and the spots were detected by staining with H₂SO₄ in methanol (5%, v/v) or phosphomolybdic acid in ethanol (5%, w/v) and heating. Silica gel (100–200 mesh) was used as the stationary phase for column chromatography.

141 NMR spectra were recorded at 25 °C with Bruker Avance III 400 (400 MHz for ¹H and 100 MHz for ¹³C) or 500 (500 MHz for ¹H and 125 MHz for ¹³C) instruments in CDCl₃, using residual CHCl₃ ($\delta_{\rm H} = 7.26$ ppm) as internal standard for ¹H, and CDCl₃ ($\delta_{\rm C} = 77.0$ ppm) as internal standard for ¹³C. Chemical shifts are given

146 in δ (ppm) and coupling constants (*J*) in Hz. IR spectra were recorded with a JASCO FTIR-5300 instrument. High resolution mass spectra were recorded with a Bruker maXis ESI-TOF spectrometer. A Welsbach Ozonizer was used for all ozonolysis reactions.

- 151 General Procedure for the Oxidation and Thermal Fragmentation of 2-(Phenylselenenyl)ethyl Glycosides To Obtain Vinyl Glycosides 4, 8,12,16,20 and 24: Sodium periodate (1.5 equiv.) and sodium hydrogen carbonate (1.1 equiv.) were added to a solution of a 2-(phenylselenenyl)ethyl glycoside 2 (2 mmol) in methanol/water (6:1). After
- 156 complete trasformation of the starting material (1 h), the suspension was filtered through a plug of Celite 545, and the filtrate was concentrated in vacuo. The crude material was dissolved in ethyl acetate and washed with water, and the organic phase was concentrated in vacuo. The crude selenoxide thus obtained was dissolved
- 161 in benzene (20 mL), diisopropylamine (5 equiv.) was added, and the mixture was heated at reflux for 30 min. After the reaction was complete, the solvent was evaporated, and the crude product was purified by column chromatography eluting with hexanes and ethyl acetate to obtain pure vinyl glycoside in good yield.
- 166 **[(2***R***,3***R***,6***S***)-3-Acetoxy-6-(vinyloxy)-3,6-dihydro-2***H***-pyran-2-yl]methyl Acetate (8): Yield 65%. R_{\rm f} = 0.70 (silica gel, 30% EtOAc in hexanes). ¹H NMR (400 MHz, CDCl₃): \delta = 6.50 (dd, J = 6.8, 14.0 Hz, 1 H), 6.22 (dd, J = 5.6, 10.0 Hz, 1 H) 6.08 (dd, J = 3.2, 10.0 Hz, 1 H), 5.38 (d, J = 3.2 Hz, 1 H), 5.07 (dd, J = 2.4, 5.6 Hz,**
- 171 1 H), 4.59 (dd, J = 1.2, 14.0 Hz, 1 H), 4.36–4.32 (m, 1 H), 4.23 (s, 1 H), 4.22 (dd, J = 1.6, 5.6 Hz, 1 H), 2.08 (s, 3 H), 2.05 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.5$, 170.2, 148.8, 129.2, 126.1, 92.9, 92.2, 67.3, 62.3, 62.3, 20.7, 20.7 ppm. IR (neat): $\tilde{v} = 3366$, 2924, 1736, 1645, 1510, 1458, 1371, 1230, 1049, 829,
- 176 756 cm⁻¹. $[a]_D^{25} = -140.8$ (c = 0.5, CHCl₃). HRMS (ESI): calcd. for $C_{12}H_{16}O_6Na [M + Na]^+$ 279.0845; found 279.0845.

(2*S*,3*R*,6*R*)-2-Methyl-6-(vinyloxy)-3,6-dihydro-2*H*-pyran-3-yl Acetate (12): Yield 74%. $R_f = 0.30$ (silica gel, 10% EtOAc in hexanes). ¹H NMR (400 MHz, CDCl₃): $\delta = 6.47$ (dd, J = 6.4, 14.0 Hz, 1 H),

- 181 5.92 (d, J = 10.0 Hz, 1 H), 5.83 (td, J = 2.4, 10.4 Hz, 1 H), 5.24 (s, 1 H), 5.06 (dd, J = 1.6, 9.2 Hz, 1 H), 4.54 (dd, J = 1.6, 14.0 Hz, 1 H), 4.17 (dd, J = 1.2, 6.4 Hz, 1 H), 3.97–3.90 (m, 1 H), 2.06 (s, 3 H), 1.20 (d, J = 6.4 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.3$, 149.1, 130.6, 126.3, 93.4, 91.6, 70.4, 65.4, 20.9, 17.7 ppm.
- 186 IR (neat): $\tilde{v} = 2982$, 2934, 1743, 1641, 1375, 1236, 1101, 1033, 916, 842 cm⁻¹. $[a]_D^{25} = -98.2$ (c = 1.0, CHCl₃). HRMS (ESI): calcd. for $C_{10}H_{14}O_4Na$ [M + Na]⁺ 221.0790; found 221.0790.

(3R,6R)-6-(Vinyloxy)-3,6-dihydro-2H-pyran-3-yl Acetate (16) and (3S,6S)-6-(Vinyloxy)-3,6-dihydro-2H-pyran-3-yl Acetate (20): Yield 68% for 16 and 73% for 20. $R_{\rm f} = 0.70$ (silica gel, 20% EtOAc in 191 hexanes). ¹H NMR (400 MHz, CDCl₃): $\delta = 6.47$ (dd, J = 6.4, 14.0 Hz, 1 H), 6.15 (dd, J = 5.2, 10.0 Hz, 1 H), 6.06 (dd, J = 3.2, 10.4 Hz, 1 H), 5.30 (d, J = 3.2 Hz, 1 H), 4.96 (dd, J = 2.8, 5.2 Hz, 1 H), 4.55 (dd, J = 1.6, 14.0 Hz, 1 H), 4.19 (dd, J = 2.6, 6.8 Hz, 1 H), 4.13 (dd, J = 2.8, 13.2 Hz, 1 H), 3.87 (dd, J = 1.2, 13.2 Hz, 1 196 H), 2.06 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 170.3, 149.0, 129.3, 125.7, 92.0, 91.7, 62.7, 61.6, 20.9 ppm. IR (neat): $\tilde{v} =$ 3445, 2920, 1726, 1364, 1232, 1078, 739 cm⁻¹. $[a]_{D}^{25} = -128.6$ (c = 0.60, CHCl₃) for 16 and +130.4 (c = 0.67, CHCl₃) for 20. HRMS (ESI): calcd. for $C_9H_{12}O_4Na [M + Na]^+ 207.0364$; found 207.0364. 201

(35,6*R*)-3-(Benzyloxy)-6-(vinyloxy)-3,6-dihydro-2*H*-pyran (24): Yield. 72%. $R_f = 0.70$ (silica gel, 15% EtOAc in hexanes). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37-7.30$ (m, 5 H), 6.49 (dd, J = 6.4, 14.0 Hz, 1 H), 6.18 (qd, J = 1.2, 2.8, 10.4 Hz, 1 H), 5.83 (td, J =2.0, 10.4 Hz, 1 H), 5.23 (d, J = 0.8 Hz, 1 H), 4.66–4.54 (m, 3 H), 206 4.20 (dd, J = 1.2, 6.4 Hz, 1 H), 4.17–4.13 (m, 1 H), 3.87 (ddd, J =1.2, 5.6, 10.8 Hz, 1 H), 3.79 (d, J = 9.6 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.2$, 137.9, 132.4, 128.4, 127.8, 127.6, 125.5, 93.2, 91.5, 71.0, 69.3, 60.9 ppm. IR (neat): $\tilde{v} = 3032$, 2922, 2885, 1639, 1454, 1392, 1317, 1168, 1099, 1024, 912, 839, 734, 211 698 cm⁻¹. $[a]_{D}^{25} = +53.0$ (c = 1.0, CHCl₃). HRMS (ESI): calcd. for C₁₄H₁₆O₃Na [M + Na]⁺ 255.0997; found 255.0997.

General Procedure for the Claisen Rearrangement of Vinyl Glycos-ides To Obtain 3-C-Branched Aldehydes 5, 9, 13, 17, 21, and 25:N,N-Dimethylaniline (0.2 mL) was added to the vinyl glycoside 4,2168, 12, 16, 20 or 24 (2.4 mmol, 1 equiv.) in nitrobenzene (10 mL),and the mixture was heated at 150–170 °C until the complete con-sumption of starting material was observed (5–6 h). The resultingsolution was directly loaded onto a silica gel column, and the product was purified eluting with hexanes and ethyl acetate to obtain221the 3-C-branched glycal derivative in good yield.221

[(2*R***,3***R***,4***S***)-3-Acetoxy-4-(2-oxoethyl)-3,4-dihydro-2***H***-pyran-2-yl]methyl Acetate (9): Yield 65%. R_{\rm f} = 0.40 (30% EtOAc in hexanes). ¹H NMR (400 MHz, CDCl₃): \delta = 9.77 (s, 1 H), 6.41 (dd,** *J* **= 1.2, 6.0 Hz, 1 H), 4.83 (s, 1 H), 4.76–4.73 (m, 1 H), 4.21 (d,** *J* **= 6.0 Hz, 226 2 H), 4.08–4.05 (m, 1 H), 2.73–2.70 (m, 1 H), 2.61 (ddd,** *J* **= 1.6, 6, 17.2 Hz, 1 H), 2.51 (ddd,** *J* **= 1.2, 8.8, 17.2 Hz, 1 H), 2.08 (s, 3 H), 2.07 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta = 199.4, 170.6, 170.1, 142.9, 101.1, 70.3, 68.9, 62.5, 48.8, 29.9, 20.8, 20.7 ppm. IR (neat): \tilde{v} = 3368, 2918, 1741, 1651, 1373, 1232, 231 1043 cm⁻¹. [***a***]₂₅²⁵ = +84.6 (***c* **= 0.3, CHCl₃). HRMS (ESI): calcd. for C₁₂H₁₆O₆Na [M + Na]⁺ 279.0845; found 279.0845.**

 $\begin{array}{ll} (3R,4S)-4-(2-Oxoethyl)-3,4-dihydro-2H-pyran-3-yl Acetate (17) and \\ (3S,4R)-4-(2-Oxoethyl)-3,4-dihydro-2H-pyran-3-yl Acetate (21): 246 \\ Yield 82\% for 17 and 80\% for 21. <math>R_{\rm f}=0.50~(20\% {\rm ~EtOAc~in~hex})^{-1}{\rm H~NMR}~(400 {\rm ~MHz}, {\rm CDCl}_3): \delta=9.76~({\rm s}, 1 {\rm ~H}), 6.39~({\rm dd}, J=1.6, 6.0 {\rm ~Hz}, 1 {\rm ~H}), 4.80~({\rm dd}, J=5.6, 8.0 {\rm ~Hz}, 1 {\rm ~H}), 4.65~({\rm dd}, J=3.6, 6.0 {\rm ~Hz}, 1 {\rm ~H}), 3.96~({\rm dd}, J=2.8, 11.2 {\rm ~Hz}, 1 {\rm ~H})$ 3.88 $({\rm dd}, J=1.6, {\rm ~Hz}, 1 {\rm ~H}), {\rm ~Hz}, 1 {\rm ~H})$

Pages: 9

Synthesis of Perhydrofuro[2,3-b]furans

- 251 6.6, 11.2 Hz, 1 H), 2.80 (d, J = 2.8 Hz, 1 H), 2.60 (dd, J = 1.2, 6.0 Hz, 1 H), 2.56 (dd, J = 1.2, 6.0 Hz, 1 H), 2.07 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 199.9$, 170.1, 143.7, 100.8, 69.2, 64.0, 48.2, 30.4, 20.8 ppm. IR (neat): $\tilde{v} = 3430$, 2876, 2728, 1736, 1643, 1364, 1250, 1090, 1046, 964, 926 cm⁻¹. $[a]_D^{25} = +120$ (c = 0.55,
- 256 CHCl₃) for **17** and -116.5 (c = 0.52, CHCl₃) for **21**. HRMS (ESI): calcd. for C₉H₁₂O₄Na [M + Na]⁺ 207.0634; found 207.0634.

2-[(3*S***,4***S***)-3-(Benzyloxy)-3,4-Dihydro-2***H***-pyran-4-yl]acetaldehyde (25): Yield 81%. R_{\rm f} = 0.60 (20% EtOAc in hexanes). ¹H NMR (400 MHz, CDCl₃): \delta = 9.76 (t, J = 1.6 Hz, 1 H), 7.36–7.29 (m, 5**

- 261 H), 6.35 (dd, J = 2.0, 6.0 Hz, 1 H), 4.63 (d, J = 12.0 Hz, 1 H), 4.59 (dd, J = 3.6, 6.0 Hz, 1 H), 4.52 (d, J = 11.6 Hz, 1 H), 3.91 (d, J = 5.2 Hz, 2 H), 3.84 (dd, J = 4.8, 10.0 Hz, 1 H), 3.09–3.04 (m, 1 H), 2.79 (ddd, J = 1.2, 7.6, 17.6 Hz, 1 H), 2.42 (ddd, J = 1.2, 6.0, 17.6 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.2$, 143.7,
- 266 137.7, 128.4, 127.8, 127.7, 101.56, 71.3, 71.1, 63.7, 45.2, 30.0 ppm. IR (neat): $\tilde{v} = 3481$, 3414, 2926, 2883, 1720, 1647, 1454, 1242, 1091, 916, 738, 698 cm⁻¹. $[a]_{D}^{25} = +53.0$ (c = 1.0, CHCl₃). HRMS (ESI): calcd. for C₁₄H₁₆O₃Na [M + Na]⁺ 255.0997; found 255.0997.
- General Procedure for the Reduction of the Aldehyde Functionality To Obtain Alcohols 6, 10, 14, 18, 22 and 26: NaBH₄ (1.45 mmol, 1.2 equiv.) was added to a solution of aldehyde 5, 9, 13, 17, 21 or 25 (1.20 mmol, 1 equiv.) in absolute ethanol (5 mL) at 0–5 °C, and the mixture was stirred for 15 min. After complete disappearance of the starting material, the reaction was quenched by adding aqueous
- 276 NH₄Cl (1 mL), and the mixure was filtered through Celite. The filtrate was concentrated in vacuo and purified by column chromatography over silica gel eluting with hexanes and ethyl acetate to obtain the alcohol in excellent yield.

[(2R,3S,4S)-3-Acetoxy-4-(2-hydroxyethyl)-3,4-dihydro-2H-pyran-2-

- yllmethyl Acetate (6): Yield 95%. R_f = 0.25 (40% EtOAc in hexanes). ¹H NMR (400 MHz, CDCl₃): δ = 6.28 (dd, J = 2.0, 6.0 Hz, 1 H), 5.07 (t, J = 6.0 Hz, 1 H), 4.66 (dd, J = 4.0, 6.0 Hz, 1 H), 4.26–4.22 (m, 1 H), 4.17–4.11 (m, 2 H), 3.69–3.62 (m, 2 H), 2.61–2.58 (m, 1 H), 2.05 (s, 3 H), 2.04 (s, 3 H), 1.75–1.66 (m, 1 H), 1.51–
- 286 1.42 (m, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 170.7, 170.1, 141.5, 101.5, 71.7, 67.5, 62.4, 59.8, 33.3, 28.8, 20.7, 20.6 ppm. IR (neat): \tilde{v} = 3449, 2947, 1743, 1649, 1437, 1373, 1234, 1045, 738 cm⁻¹. [a]_D²⁵ = +137.3 (c = 0.67, CHCl₃). HRMS (ESI): calcd. for C₁₂H₁₈O₆Na [M + Na]⁺ 281.1001; found 281.1001.
- 291 [(2*R*,3*R*,4*S*)-3-Acetoxy-4-(2-hydroxyethyl)-3,4-dihydro-2*H*-pyran-2yl]methyl Acetate (10): Yield 92%. $R_{\rm f} = 0.25$ (40% EtOAc in hexanes). ¹H NMR (400 MHz, CDCl₃): $\delta = 6.41$ (d, J = 6.0 Hz, 1 H), 4.88 (s, 1 H), 4.72 (t, J = 6.0 Hz, 1 H), 4.20 (d, J = 2.0 Hz, 1 H), 4.18, (s, 1 H), 4.02 (t, J = 6.0 Hz, 1 H), 3.82–3.76 (m, 1 H), 3.72–
- 296 3.67 (m, 1 H), 2.60 (s, 1 H), 2.27 (br. d, J = 5.2 Hz, 1 H), 2.06 (s, 6 H), 1.61 (q, J = 6.0 Hz, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.0$, 170.6, 142.4, 102.4, 69.9, 69.5, 63.1, 59.4, 37.7' 32.6, 20.9, 20.6 ppm. IR (neat): $\tilde{v} = 3447$, 2926, 1739, 1651, 1373, 1232, 1041, 754 cm⁻¹. $[a]_{D}^{25} = +60.0$ (c = 0.31, CHCl₃). HRMS (ESI): calcd. for C₁₂H₁₈O₆Na [M + Na]⁺ 281.1001; found 281.1001.

(2*S*,3*R*,4*R*)-4-(2-Hydroxyethyl)-2-methyl-3,4-dihydro-2*H*-pyran-3-yl Acetate (14): Yield 96%. $R_{\rm f} = 0.30$ (30% EtOAc in hexanes). ¹H NMR (400 MHz, CDCl₃): $\delta = 6.21$ (dd, J = 1.6, 6.4 Hz, 1 H), 4.84 (t, J = 4.8 Hz, 1 H), 4.54–4.51 (m, 1 H), 4.10–4.04 (m, 1 H), 3.65–

- 306 3.60 (m, 2 H), 2.75 (s, 1 H), 2.83 (dd, J = 2.8, 4.8 Hz, 1 H), 2.03 (s, 3 H), 1.69–1.61 (m, 1 H), 1.50–1.43 (m, 1 H), 1.20 (d, J = 6.4 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.6$, 141.3, 100.6, 71.3, 70.3, 59.8, 33.2, 27.8, 20.8, 16.9 ppm. IR (neat): $\tilde{v} = 3449$, 2939, 2885, 1734, 1649, 1439, 1377, 1238, 1138, 1049, 815,
- 311 736 cm⁻¹. $[a]_{D}^{25} = -98.7$ (*c* = 2.0, CHCl₃). HRMS (ESI): calcd. for C₁₀H₁₆O₄Na [M + Na]⁺ 223.0947; found 223.0947.

(3*R*,4*S*)-4-(2-Hydroxyethyl)-3,4-dihydro-2*H*-pyran-3-yl Acetate (18) and (3*S*,4*R*)-4-(2-Hydroxyethyl)-3,4-dihydro-2*H*-pyran-3-yl Acetate (22): Yield 95% for 18 and 92% for 22. $R_{\rm f} = 0.5$ (40% EtOAc in hexanes). ¹H NMR (400 MHz, CDCl₃): $\delta = 6.34$ (d, J = 6.4 Hz, 1 H), 4.79 (s, 1 H), 4.65 (t, J = 4.8 Hz, 1 H), 3.90 (dd, J = 4.0, 11.6 Hz, 1 H), 3.84 (d, J = 11.2 Hz, 1 H), 3.73–3.61 (m, 2 H), 2.76 (s, 1 H), 2.23 (s, 1 H), 2.02 (s, 3 H), 1.61–1.46 (m, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.9$, 142.9, 102.0, 69.9, 63.5, 59.3, 37.5, 32.0, 20.9 ppm. IR (neat): $\tilde{v} = 3398$, 2924, 1736, 1649, 1373, 1240, 1043 cm⁻¹. $[a]_{\rm D}^{25} = +113.2$ (c = 0.68, CHCl₃) for 18 and –111.5 (c = 0.65, CHCl₃) for 22. HRMS (ESI): calcd. for C₉H₁₄O₄Na [M + Na]⁺ 209.0790; found 209.0790.

2-[(3*S*,4*S*)-3-(Benzyloxy)-3,4-dihydro-2*H*-pyran-4-yl]ethanol (26): Yield 91%. $R_f = 0.40$ (30% EtOAc in hexanes). ¹H NMR 326 (400 MHz, CDCl₃): δ = 7.35–7.29 (m, 5 H), 6.32 (dd, J = 2.0, 6.0 Hz, 1 H), 4.70 (d, J = 11.6 Hz, 1 H), 4.62 (dd, J = 4.0, 6.0 Hz, 1 H), 4.58 (d, J = 12.0 Hz, 1 H), 4.00 (dd, J = 6.8, 11.2 Hz, 1 H), 3.91-3.88 (m, 1 H), 3.80-3.76 (m, 1 H), 3.72-3.62 (m, 2 H), 2.61-2.58 (m, 1 H), 1.99 (s, 1 H), 1.95–1.86 (m, 1 H), 1.62–1.53 (m, 1 331 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 142.9, 137.8, 128.4, 127.7, 102.2, 72.0, 70.9, 63.8, 60.6, 33.9, 32.1 ppm. IR (neat): $\tilde{v} =$ 3408, 2928, 2878, 1647, 1454, 1240, 1089, 1028, 738, 698 cm⁻¹. $[a]_{D}^{25} = +41.0$ (c = 1.0, CHCl₃). HRMS (ESI): calcd. for $C_{14}H_{18}O_3Na [M + Na]^+ 257.1154$; found 257.1154. 336

General Procedure for the One-Pot Ozonolysis and Acid-Mediated Acetalization of Alcohols To Obtain *cis*-Fused Perhydrofuro[2,3,*b*]furan Derivatives 7, 11, 15, 19, 23 and 27: CH_2Cl_2 (20 mL) was added to the alcohol 6, 10, 14, 18, 22 or 26 (0.46 mmol) in a two-necked round-bottomed flask with a gas outlet on one neck and a gas inlet on the other neck. The solution was cooled to -78 °C using an EtOAc/liquid nitrogen bath. Ozone was bubbled through the gas inlet into the solution until the pale blue color persisted. Then, oxygen followed by nitrogen were passed through the inlet until the pale blue color disappeared. Dimethyl sulfide (0.5 mL) was added to the reaction mixture at -78 °C, which was then allowed to warm to 25 °C. The solvent was evaporated in vacuo to obtain the crude formate ester, which was used in the next step without purification.

The crude formate ester was dissolved in AcOH/MeOH (3:2, 5 mL) and heated at reflux for 3 h. After complete consumption of the starting material, the solvent was evaporated in vacuo and the crude residue was partitioned between diethyl ether and aqueous NaHCO₃. The organic phase was washed with H₂O and dried with anhydrous Na₂SO₄. Evaporation of the solvent followed by purification by column chromatography wluting with hexanes and ethyl acetate gave the *cis*-fused perhydrofuro[2,3-*b*]furan derivative in good yield over two steps.

 $\label{eq:constraint} \begin{array}{ll} \textbf{[(2R,3R,3aR,6aS)-3-Acetoxyperhydrofuro[2,3-b]furan-2-yl]methyl} \\ \textbf{Acetate (11): Yield 65\%. } R_{\rm f} = 0.70 (50\% \mbox{ EtOAc in hexanes). }^{\rm 1} H \\ \textbf{NMR (500 MHz, CDCl_3): } \delta = 5.82 (d, J = 5.0 \mbox{ Hz}, 1 \mbox{ H}), 5.11 (d, \\ J = 3.5 \mbox{ Hz}, 1 \mbox{ H}), 4.32\mbox{-}4.29 (m, 1 \mbox{ H}) 4.21 (dd, J = 4.5, 11.5 \mbox{ Hz}, 1 \\ \textbf{H}), 4.12 (dd, J = 7.5, 12.0 \mbox{ Hz}, 1 \mbox{ H}), 3.90\mbox{-}3.81 (m, 2 \mbox{ H}) 2.81\mbox{-}2.77 \end{array}$

FULL PAPER

(m, 1 H), 2.21–2.13 (m, 1 H), 2.03 (s, 3 H), 2.02 (s, 3 H), 1.85–1.80

- 376 (m, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.5$, 170.0, 108.3, 78.7, 78.3, 67.7, 62.2, 50.0, 28.6, 20.7, 20.6 ppm. IR (neat): $\tilde{v} = 2968$, 2885, 1741, 1452, 1373, 1232, 1045, 931 cm⁻¹. $[a]_{D}^{25} =$ +11.1 (c = 2.0, CHCl₃). HRMS (ESI): calcd. for C₁₁H₁₆O₆Na [M + Na]⁺ 267.0845; found 267.0845.
- 381 **(2***S***,3***R***,3a***S***,6a***R***)-2-Methyl-perhydrofuro[2,3-***b***]furan-3-yl Acetate (15): Yield 64%. R_{\rm f} = 0.50 (30% EtOAc in hexanes). ¹H NMR (400 MHz, CDCl₃): \delta = 5.69 (d, J = 5.2 Hz, 1 H), 4.67 (t, J = 8.4 Hz, 1 H), 4.00–3.86 (m, 3 H), 3.19–3.13 (m, 1 H), 2.09 (s, 3 H), 1.95–1.88 (m, 1 H), 1.86–1.78 (m, 1 H), 1.25 (d, J = 6.0 Hz, 3 H)**
- 386 ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 170.2, 107.8, 78.3, 76.5, 69.3, 44.8, 25.4, 20.7, 18.3 ppm. IR (neat): \tilde{v} = 3414, 2978, 1741, 1616, 1375, 1236, 1043, 937 cm⁻¹. [*a*]_D²⁵ = -94.7 (*c* = 1.0, CHCl₃). HRMS (ESI): calcd. for C₉H₁₄O₄Na [M + Na]⁺ 209.0790; found 209.0790.
- 391 (3*R*,3a*R*,6a*S*)-Perhydrofuro[2,3-*b*]furan-3-yl Acetate (19) and (3*S*,3a*S*,6a*R*)-Perhydrofuro[2,3-*b*]furan-3-yl Acetate (23): Yield 55% for 19 and 67% for 23. $R_{\rm f}$: 0.45 (30% EtOAc in hexanes). ¹H NMR (500 MHz, CDCl₃): δ = 5.80 (d, J = 5.0 Hz, 1 H), 5.01 (d, J = 3.5 Hz, 1 H), 4.01 (dd, J = 4.0, 11.0 Hz, 1 H), 3.91 (dd, J = 11.0,
- 396 15.0 Hz, 1 H), 3.87 (dd, J = 5.0, 8.5 Hz, 1 H), 3.82–3.77 (m, 1 H), 2.83 (q, J = 4.0, 9.5 Hz, 1 H), 2.20–2.11 (m, 1 H), 2.02 (s, 3 H), 1.83–1.77 (m, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 170.4, 108.7, 79.6, 72.5, 67.7, 49.0, 28.9, 20.9 ppm. IR (neat): $\tilde{v} = 3449$, 2926, 1739, 1371, 1240, 1018, 979 cm⁻¹. [α]_D²⁵ = +44.5 (c = 1.0,
- 401 CHCl₃) for **19** and -45.3 (c = 1.0, CHCl₃) for **23**. HRMS (ESI): calcd. for C₈H₁₂O₄Na [M + Na]⁺ 195.0634; found 195.0634.

(3*S*,3*aR*,6*aS*)-3-(Benzyloxy)-perhydrofuro[2,3-*b*]furan (27): Yield 58%. $R_{\rm f} = 0.60$ (20% EtOAc in hexanes). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.38-7.30$ (m, 5 H), 5.71 (d, J = 5.2 Hz, 1 H), 4.57 (q,

406 J = 11.6 Hz, 2 H), 4.21 (dd, J = 8.0, 15.2 Hz, 1 H), 4.00–3.89 (m, 3 H), 3.66 (t, J = 8.4 Hz, 1 H), 2.95–2.89 (m, 1 H), 2.36–2.30 (m, 1 H), 1.91–1.81 (m, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 137.6, 128.4, 127.8, 127.5, 109.2, 77.8, 72.1, 70.5, 69.6, 44.6, 24.8 ppm. IR (neat): $\tilde{v} = 3449, 2955, 2879, 1722, 1454, 1099, 1024,$ 923, 698 cm⁻¹. $[a]_{25}^{25} = +40.2$ (c = 2.0, CHCl₃). HRMS (ESI): calcd.

for $C_{13}H_{16}O_3Na [M + Na]^+ 243.0997$; found 243.0997.

General Procedure for the One-Pot Oxidation to Obtain 31, 33, 35, 37, 39 and 41, Ozonolysis and Acid-Mediated Cyclization of Aldehydes To Obtain Perhydro-5-oxofuro[2,3-*b*]furan Derivatives 32, 34,

- 416 36, 38, 40 and 42: Aqueous NaH₂PO₄ (3.4 mL, 2.7 mmol, 5 equiv.) and aqueous NaClO₂ (3.4 mL, 1.65 mmol, 3 equiv.) were added to a vigorously stirred solution of aldehyde 5, 9, 13, 17, 21 or 25 (0.55 mmol, 1 equiv.) and 2-methyl-2-butene (6.15 mmol, 11 equiv.) in *t*BuOH (7.16 mL) at 30 °C, and the mixture was stirred for
- 421 30 min at room temp. After complete consumption of starting material was observed, aqueous NaCl (10 mL) was added, and the solvent was removed by freeze drying. The resulting solid residue was dissolved in MeOH (25 mL) and filtered through Celite 545. The filtrate was concentrated in vacuo. Thus crude residue was dis-
- 426 solved in EtOAc (25 mL) and filtered through Celite 545. The filtrate was concentrated in vacuo to obtain the pure acid derivative, which was used without further treatment in the next step.

 CH_2Cl_2 (20 mL) was added to the acid derivative (0.50 mmol) in a two-necked round-bottomed flask with a gas outlet on one neck

431 and a gas inlet on the other neck. The solution was cooled to -78 °C using a EtOAc/liquid nitrogen bath. Ozone was bubbled through the gas inlet into the solution until the pale blue color persisted. Then, oxygen followed by nitrogen were passed through the inlet until the pale blue color disappeared. Dimethyl sulfide

436 (0.5 mL) was added to the reaction mixture at $-78 \text{ }^{\circ}\text{C}$, and the mix-

ture was allowed to warm to 25 °C. The solvent was evaporated in vacuo to obtain the crude formate ester, which was used in the next step without purification.

p-Toluenesulfonic acid (0.3 equiv.) was added to the crude formate ester in dry CH_2Cl_2 (10 mL), and the mixture was heated at reflux for 10 h. After complete consumption of the starting material was observed, the solvent was evaporated in vacuo and the residue was dissolved in diethyl ether. The solution was washed with aqueous NaHCO₃ and H₂O, and then dried with anhydrous Na₂SO₄. The solvent was removed using a rotary evaporator, and the residue was purified by column chromatography eluting with hexanes and ethyl acetate to give the fused perhydro-5-oxofuro[2,3-*b*]furan derivative in good yield over three steps.

2-[(2*R***,3***S***,4***S***)-3-Acetoxy-2-(acetoxymethyl)-3,4-dihydro-2***H***-pyran-4-yl]acetic** Acid (31): Yield 97% (crude). $R_{\rm f} = 0.40$ (1% MeOH in EtOAc). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.60$ (s, 1 H), 6.32 (d, *J* = 6.0 Hz, 1 H), 5.18 (t, *J* = 5.6 Hz, 1 H), 4.68 (t, *J* = 4.4 Hz, 1 H), 4.68 (t, *J* = 4.4 Hz, 1 H), 4.31 (dd, *J* = 5.6, 11.6 Hz, 1 H), 4.17– 4.07 (m, 2 H), 2.9 (s, 1 H), 2.5 (dd, *J* = 7.6, 16.4 Hz, 1 H), 2.05 (s, 3 H), 2.02 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.3$, 456 170.8, 169.7, 142.6, 100.8, 71.1, 66.6, 62.1, 35.7, 29.3, 20.6, 20.5 ppm. IR (neat): $\tilde{v} = 3292$, 2926, 1741, 1651, 1375, 1099, 1099, 1039, 760 cm⁻¹. HRMS (ESI): calcd. for C₁₂H₁₆O₇Na [M + Na]⁺ 295.0794; found 295.0794.

2-[(3*R***,4***S***)-3-Acetoxy-3,4-dihydro-2***H***-pyran-4-yl]acetic Acid (37) and 2-[(3***S***,4***R***)-3-Acetoxy-3,4-dihydro-2***H***-pyran-4-yl]acetic Acid (39): Yield 93% (crude). R_f = 0.40 (1% MeOH in EtOAc). ¹H NMR (400 MHz, CDCl₃): \delta = 9.33 (s, 1 H), 6.39 (d, J = 6.0 Hz, 1 H), 4.85 (s, 1 H), 4.71 (dd, J = 3.6, 5.2 Hz, 1 H), 3.94–3.87 (m, 2 H), 2.65 (s, 1 H), 2.50 (dd, J = 6.4, 15.6 Hz, 1 H), 2.35 (dd, J = 8.0, 15.6 Hz, 1 H), 2.08 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta = 177.0, 170.6, 143.9, 100.8, 69.25, 63.9, 38.9, 32.4, 20.9 ppm. IR (neat): \tilde{v} = 2924, 1734, 1707, 1648, 1375, 1231, 1043, 928, 874 cm⁻¹. HRMS (ESI): calcd. for C₉H₁₂O₅Na [M + Na]⁺ 223.0583; found 223.0583.**

2-[(3*S***,4***S***)-3-(Benzyloxy)-3,4-dihydro-2***H***-pyran-4-yl]acetic Acid (41): Yield 95% (crude). R_{\rm f} = 0.70 (1% MeOH in EtOAc): IR (neat): \tilde{v} = 3412, 2928, 1732, 1454, 1051, 740, 698 cm⁻¹. HRMS (ESI): calcd. for C₁₄H₁₆O₄Na [M + Na]⁺ 271.0947; found 271.0947. 496**

[(2R,3S,3aR,6aR)-3-Acetoxy-5-oxo-perhydrofuro[2,3-b]furan-2-y]methyl Acetate (32): Yield 48%. $R_f = 0.60 (50\% \text{ EtOAc in hexanes}).$ Date: 24-09-12 17:04:34

Pages: 9

Synthesis of Perhydrofuro[2,3-b]furans

¹H NMR (400 MHz, CDCl₃): $\delta = 6.1$ (d, J = 5.2 Hz, 1 H), 5.09 (dd, J = 6.4, 8.4 Hz, 1 H), 4.37 (dd, J = 3.2, 12.0 Hz, 1 H), 4.30-

- 501 4.27 (m, 1 H), 4.19 (dd, J = 4.4, 12 Hz, 1 H), 3.47–3.40 (m, 1 H), 2.65 (s, 1 H), 2.63 (d, J = 0.8 Hz, 1 H), 2.13 (s, 3 H), 2.09 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 173.6, 170.4, 69.9, 106.8, 80.0, 72.0, 62.5, 41.3, 28.7, 20.7, 20.5 ppm. IR (neat): $\tilde{v} = 3470$, 2961, 2928, 1786, 1739, 1425, 1371, 1228, 1024, 798 cm⁻¹. $[a]_{\rm D}^{25} =$
- 506 +41.4 (c = 0.84, CHCl₃). HRMS (ESI): calcd. for C₁₁H₁₄O₇Na [M + Na]⁺ 281.0368; found 281.0368.

[(2R,3R,3aR,6aR)-3-Acetoxy-5-oxo-perhydrofuro[2,3-b]furan-2-yl]methyl Acetate (34): Yield 52%. $R_f = 0.60 (50\% \text{ EtOAc in hexanes})$. ¹H NMR (400 MHz, CDCl₃): δ = 6.20 (d, J = 4.8 Hz, 1 H), 5.09

- (d, J = 2.4 Hz, 1 H), 4.40 (dd, J = 3.2, 6.4 Hz, 1 H), 4.36 (dd, J = 511 4.0, 12.0 Hz, 1 H), 4.26 (dd, J = 7.2, 11.6 Hz, 1 H), 3.15 (t, J = 6.0 Hz, 1 H), 2.99 (dd, J = 11.6, 19.2 Hz, 1 H), 2.61 (dd, J = 3.6, 18.8 Hz, 1 H), 2.10 (s, 3 H), 2.08 (s, 3 H) ppm. ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 173.6, 170.5, 169.9, 106.4, 77.9, 77.4, 61.1,$
- 46.3, 31.4, 20.7 ppm. IR (neat): $\tilde{v} = 3439$, 2926, 1788, 1741, 1236, 516 1043 cm^{-1} . $[a]_{D}^{25} = +1.2$ (c = 1.0, CHCl₃). HRMS (ESI): calcd. for $C_{11}H_{14}O_7Na [M + Na]^+ 281.0368$; found 281.0368.

(2S,3R,3aS,6aS)-2-Methyl-5-oxo-perhydrofuro[2,3-b]furan-3-yl Acetate (36): Yield 48%. $R_{\rm f} = 0.45$ (40% EtOAc in hexanes). ¹H

- 521 NMR (400 MHz, CDCl₃): δ = 6.06 (d, J = 5.6 Hz, 1 H), 4.74 (t, J = 8.4 Hz, 1 H), 4.12 (dd, J = 6.4, 7.6 Hz, 1 H), 3.49–3.42 (m, 1 H), 2.61 (dd, J = 3.6, 4.8 Hz, 2 H), 2.13 (s, 3 H), 1.36 (d, J = 6.4 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 174.3, 170.0, 106.2, 76.4, 40.7, 28.2, 20.5, 17.4 ppm. IR (neat): $\tilde{v} = 2982, 2935, 1786,$
- 1743, 1379, 1238, 1126, 1087, 974 cm⁻¹. $[a]_{D}^{25} = -80.2$ (c = 1.0, 526 CHCl₃). HRMS (ESI): calcd. for $C_9H_{12}O_5Na [M + Na]^+ 223.0583$; found 223.0583.

(3R,3aR,6aR)-5-Oxohexahydrofuro[2,3-b]furan-3-yl Acetate (38) and (3S,3aS,6aS)-5-Oxo-perhydrofuro[2,3-b]furan-3-yl Acetate (40):

- Yield 50%. $R_{\rm f} = 0.55$ (50% EtOAc in hexanes). ¹H NMR 531 (500 MHz, CDCl₃): δ = 6.20 (d, J = 5.5 Hz, 1 H), 5.01 (d, J = 3.0 Hz, 1 H), 4.13 (dd, J = 0.5, 12.0 Hz, 1 H), 4.07 (dd, J = 3.5, 11.5 Hz, 1 H), 3.17–3.12 (m, 1 H), 2.97 (dd, J = 11.5, 19.0 Hz, 1 H), 2.57 (dd, J = 4.5, 19.5 Hz, 1 H), 2.08 (s, 3 H) ppm. ¹³C NMR
- $(100 \text{ MHz}, \text{CDCl}_3): \delta = 173.9, 170.3, 107.3, 78.7, 71.0, 45.5, 31.6,$ 536 20.8 ppm. IR (neat): v = 3456, 2922, 1784, 1736, 1365, 1242, 1176, 1093, 974 cm⁻¹. $[a]_{D}^{25} = +$ and -21.1 (c = 1.0, CHCl₃). HRMS (ESI): calcd. for $C_8H_{10}O_5Na [M + Na]^+$ 209.0426; found 209.0426.

(3aR,4S,6aR)-4-(Benzyloxy)-perhydrofuro[2,3-b]furan-2(6aH)-one

- (42): Yield 49%. $R_f = 0.50$ (30% EtOAc in hexanes). ¹H NMR 541 (400 MHz, CDCl₃): δ = 7.38–7.29 (m, 5 H), 6.00 (d, J = 5.6 Hz, 1 H), 4.55 (q, J = 12.0 Hz, 2 H), 4.22 (dd, J = 8.0, 14.4 Hz, 1 H), 4.10 (dd, J = 6.4, 9.2 Hz, 1 H), 3.73 (t, J = 9.2 Hz, 1 H), 3.17–3.12 (m, 1 H), 3.05 (dd, J = 3.6, 18.4 Hz, 1 H), 2.54 (dd, J = 10.4,
- 18.8 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 175.0, 136.9, 546 128.6, 128.2, 127.7, 107.3, 76.2, 69.4, 40.8, 27.7 ppm. IR (neat): v $= 3479, 3414, 2924, 1784, 1616, 1456, 1116, 738 \text{ cm}^{-1}$. $[a]_{D}^{25} = +13.5$ $(c = 1.0, \text{ CHCl}_3)$. HRMS (ESI): calcd. for $C_{13}H_{14}O_4Na$ [M + Na]⁺ 257.0790; found 257.0790.
- Supporting Information (see footnote on the first page of this arti-551 cle): Copies of the 1H, 13C, and DEPT NMR spectra of all compounds, and 2D 1H-1H COSY 1H-1H NOESY spectra of all bicyclic compounds.

Acknowledgments

556 This work was supported by Council of Scientific and Industrial Research (CSIR), New Delhi (grant number 01(2408)/10/EMR-II). G. M. R. and K. S. gratefully acknowledge the CSIR for senior research fellowships.

- [1] a) K. C. Nicolaou, H. J. Mitchell, Angew. Chem. 2001, 113, 1624-1672; Angew. Chem. Int. Ed. 2001, 40, 1576-1624; b) G.-561 J. Boons, K. J. Hale, Organic Synthesis with Carbohydrates, Sheffield Academic Press Ltd., England, 2000, part B, p. 175-333
- [2] B. M. Trost, F. D. Toste, J. Am. Chem. Soc. 2003, 125, 3090-3100.
- [3] E. Bullock, J. C. Roberts, J. G. Underwood, J. Chem. Soc. 1962, 4179-4183.
- [4] M. C. Fernandez, B. Esquivel, J. Cardenas, A. A. Sanchez, R. A. Toscano, L. Rodriguez-Hahn, Tetrahedron 1991, 47, 7199-7208.
- A. T. Merritt, S. V. Ley, Nat. Prod. Rep. Lett. 1992, 243-287.
- [6] a) S. L. Schreiber, K. Satake, J. Am. Chem. Soc. 1984, 106, 4186-4188; b) S. L. Schreiber, K. Satake, Tetrahedron Lett. **1986**, 27, 2575–2578.
- [7] M. A. González, Curr. Bioact. Compd. 2007, 3, 1-36. 576
- [8] J. E. Hochlowski, D. J. Faulkner, G. K. Matsumoto, J. Clardy, J. Org. Chem. 1983, 48, 1141–1142.
- [9] T. P. Brady, E. K. Wallace, S. H. Kim, G. Guizzunti, V. Malhotra, E. A. Theodorakis, Bioorg. Med. Chem. Lett. 2004, 14, 5035-5039
- [10] a) T. F. Molinski, D. J. Faulkner, J. Org. Chem. 1986, 51, 2601-2603; b) T. F. Molinski, D. J. Faulkner, H. Cun-Heng, G. D. Van Duyne, J. Clardy, J. Org. Chem. 1986, 51, 4564-4567.
- [11] L. Mayol, V. Piccialli, D. Sica, Tetrahedron 1986, 42, 5369-5376.
- [12] a) B. Sullivan, D. J. Faulkner, J. Org. Chem. 1984, 49, 3204-3206; b) S. C. Bobzin, D. J. Faulkner, J. Org. Chem. 1989, 54, 3902-3907
- [13] P. R. Bergquist, B. F. Bowden, R. C. Cambie, P. A. Craw, P. Karuso, A. Poiner, W. C. Taylor, Aust. J. Chem. 1993, 46, 623-591 632
- [14] a) T. P. Brady, S. H. Kim, K. Wen, C. Kim, E. A. Theodorakis, Chem. Eur. J. 2005, 11, 7175-7190; b) K. Granger, M. L. Snapper, Eur. J. Org. Chem. 2012, 2308-2311.
- [15] A. C. Araújo, F. Nicotra, B. Costa, G. Giagnoni, L. Cipolla, 596 Carbohydr. Res. 2008, 343, 1840-1848.
- [16] For the use of radical cyclization, see: a) S. Mayer, J. Prandi, T. Bamhaoud, S. Bakkas, O. Guillou, Tetrahedron 1998, 54, 8753-8770; b) T. Harrison, G. Pattenden, P. L. Myers, Tetrahedron Lett. 1988, 29, 3869-3872; c) M.-C. Lamas, S. E. Vaillard, 601 B. Wibbeling, A. Studer, Org. Lett. 2010, 12, 2072-2075; Cycloaddition: d) D. A. Evans, E. J. Olhava, J. S. Johnson, J. M. Janey, Angew. Chem. 1998, 110, 3553-3557; Angew. Chem. Int. Ed. 1998, 37, 3372-3375; e) W. Zhuang, J. Thorhauge, K. A. Jørgensen, Chem. Commun. 2000, 459-460; f) Y. Sugita, K. Ka-606 wai, I. Yokoe, Heterocycles 2001, 55, 135-144; for acid-catalyzed cyclization, see: g) Y. Suzuki, R. Nishimaki, M. Ishikawa, T. Murata, K.-I. Takao, K.-I. Tadano, J. Org. Chem. 2000, 65, 8595-8607; h) P. J. L. M. Quaedflieg, B. R. R. Kesteleyn, P. B. T. P. Wigerinck, N. M. F. Goyvaerts, R. J. Vijn, C. S. M. 611 Liebregts, J. H. M. H. Kooistra, C. Cusan, Org. Lett. 2005, 7, 5917-5920; i) F. Alonso, E. Lorenzo, J. Meléndez, M. Yus, Tetrahedron 2003, 59, 5199-5208; for donor-acceptor cyclopropanes, see: j) T. F. Schneider, J. Kaschel, B. Dittrich, D. B. Werz, Org. Lett. 2009, 11, 2317-2320; k) S. D. Haveli, P. R. 616 Sridhar, P. Suguna, S. Chandrasekaran, Org. Lett. 2007, 9, 1331-1334; 1) C. Su, X. Huang, Adv. Synth. Catal. 2009, 351, 135-140; for a Walker-type reaction, see: m) F. Alonso, D. Sánchez, M. Yus, Adv. Synth. Catal. 2008, 350, 2118-2126.
- [17] a) E. J. Corey, W. G. Su, J. Am. Chem. Soc. 1987, 109, 7534-621 7536; b) R. Petit, R. Furstoss, Synthesis 1995, 1517–1520; c) E. J. Corey, M. A. Letavic, J. Am. Chem. Soc. 1995, 117, 9616-9617; d) R. Weisser, W. Yue, O. Reiser, Org. Lett. 2005, 7, 5353-5356; e) C. Kim, R. Hoang, E. A. Theodorakis, Org. Lett. 1999, 1, 1295-1297; f) C. Kim, T. Brady, S. H. Kim, E. A. The-626

7

581

586

566

FULL PAPER

odorakis, Synth. Commun. 2004, 34, 1951–1965; g) T. P. Brady, S. H. Kim, K. Wen, E. A. Theodorakis, Angew. Chem. 2004, 116, 757–760; Angew. Chem. Int. Ed. 2004, 43, 739–742; h) M. J. Schnermann, C. M. Beaudry, N. E. Genung, S. M. Can-

- ham, N. L. Untiedt, B. D. W. Karanikolas, C. Sütterlin, L. E. Overman, *J. Am. Chem. Soc.* **2011**, *133*, 17494–17503; i) B. M. Trost, F. D. Toste, *J. Am. Chem. Soc.* **2003**, *125*, 3090–3100.
- [18] a) P. R. Sridhar, K. Seshadri, G. M. Reddy, *Chem. Commun.* 2012, 48, 756–758; b) S. D. Haveli, P. R. Sridhar, P. Suguna, S. Chandrasekaran, *Org. Lett.* 2007, 9, 1331–1334.
- 636 Chandrasekaran, Org. Lett. 2007, 9, 1331–1334.
 [19] a) A. de Raadt, R. J. Ferrier, Carbohydr. Res. 1991, 216, 93–107; b) R. J. Ferrier, Top. Curr. Chem. 2001, 215, 153–175.
 [20] P. Rollin, V. V. Bencomo, P. Sinaÿ, Synthesis 1984, 134–135.
- [21] The major diastereomer obtained after Ferrier rearrangement was converted further into the allyl vinyl ether.
 - [22] A. K. Ghosh, P. R. Sridhar, N. Kumaragurubaran, Y. Koh, I. T. Weber, H. Mitsuya, *ChemMedChem* 2006, 1, 939–950.
 - [23] a) M. Pezechk, A. P. Brunetiere, J. Y. Lallemand, *Tetrahedron Lett.* **1986**, *27*, 3715–3718; b) A. K. Ghosh, Y. Chen, *Tetrahe-*
- 646 *dron Lett.* 1995, *36*, 505–508; c) M. Uchiyama, M. Hirai, M. Nagata, R. Kotoh, R. Ogawa, A. Ohta, *Tetrahedron Lett.* 2001, *42*, 4653–4656; d) A. K. Ghosh, S. Leshchenko, M. Noetzel, *J.*

Org. Chem. 2004, 69, 7822–7829; e) A. K. Ghosh, J. Li, P. R. Sridhar, Synthesis 2006, 18, 3015–3018; f) R. H. Yu, P. R. Polniaszek, M. W. Becker, C. M. Cook, L. H. L. Yu, Org. Process 651
Res. Dev. 2007, 11, 972–980; g) M. G. Kulkarni, Y. B. Shaikh, A. S. Borhade, A. P. Dhondge, S. W. Chauhan, M. P. Desai, D. R. Birhade, N. R. Dhatrak, R. Gannimani, Tetrahedron: Asymmetry 2010, 21, 2394–2398; h) D. M. Black, R. Davis, B. D. Doan, T. C. Lovelace, A. Millar, J. F. Toczko, S. Xie, Tetrahedron: Asymmetry 2008, 19, 2015–2019; i) W. L. Canoy, B. E. Cooley, J. A. Corona, T. C. Lovelace, A. Millar, A. M. Weber, S. Xie, Y. Zhang, Org. Lett. 2008, 10, 1103–1106.

- [24] R. Pauwels, Antiviral Res. 2006, 71, 77-89.
- [25] J. F. Miller, C. W. Andrews, M. Brieger, E. S. Furfine, M. R. Hale, M. H. Hanlon, R. J. Hazen, I. Kaldor, E. W. McLean, D. Reynolds, D. M. Sammond, A. Spaltenstein, R. Tung, E. H. M. Turner, R. X. Xua, R. G. Sherrill, *Bioorg. Med. Chem. Lett.* 2006, 16, 1788–1794.
- [26] P. S. Bal, W. E. Childers, H. W. Pinnick, *Tetrahedron* 1981, 37, 666 2091–2096.

Received: July 7, 2012 Published Online: ■

671

98 /KAP1

Synthesis of Perhydrofuro[2,3-b]furans

Date: 24-09-12 17:04:34

Pages: 9

Oxygen Heterocycles

P. R. Sridhar,* G. M. Reddy, K. Seshadri 1–9

Stereoselective Synthesis of *cis*-Fused Perhydrofuro[2,3-*b*]furan Derivatives from Sugar-Derived Allyl Vinyl Ethers

Keywords: Oxygen heterocycles / Carbohydrates / Cyclization / Sigmatropic rearrangement / Chiral pool

synthesis of *cis*-fused perhydrofuro[2,3-*b*]furans has been developed using carbohydrates as chiral-pool starting materials. Depending on the precursor sugar, this

AcO

procedure can provide any stereoisomer of the bis-THF system in a stereoselective fashion. The extension of the methodology for the synthesis of perhydro-5-oxofuro[2,3-*b*]furans is also reported.