Iodonium ion-assisted synthesis of a haptenic tetrasaccharide fragment corresponding to the inner cellwall glycopeptidolipid of *Mycobacterium avium* serotype 4

Helene M. Zuurmond, Gerrit H. Veeneman, Gijs A. van der Marel and Jacques H. van Boom *

Gorlaeus Laboratories, Department of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)

(Received July 24th, 1992; accepted September 3rd, 1992)

ABSTRACT

Condensation of ethyl 2,4-di-O-benzoyl-1-thio- α -L-rhamnopyranoside with ethyl 3-O-benzyl-4-Ochloroacetyl-2-O-methyl-1-thio- β -L-fucopyranoside in the presence of iodonium di-sym-collidine perchlorate afforded exclusively ethyl 2,4-di-O-benzoyl-3-O-(3-O-benzyl-4-O-chloroacetyl-2-O-methyl- α -Lfucopyranosyl)-1-thio- α -L-rhamnopyranoside. This disaccharide derivative was extended at C-1 with 3-benzyloxycarbonylaminopropyl 6-deoxy-3,4-O-isopropylidene- α -L-talopyranoside, using N-iodosuccinimide and triflic acid as the catalyst, to furnish 3-benzyloxycarbonylaminopropyl 6-deoxy-2-O-[2,4-di-O-benzoyl-3-O-(3-O-benzyl-4-O-chloroacetyl-2-O-methyl- α -L-fucopyranosyl)- α -L-rhamnopyranosyl]-3,4-O-isopropylidene- α -L-talopyranoside (20). Selective removal of the chloroacetyl group from 20, followed by condensation with ethyl 2,3-di-O-benzoyl-4-O-methyl-1-thio- α -L-rhamnopyranoside in the presence of the same thiophilic promoter, yielded a fully protected tetrasaccharide derivative. Deprotection of the latter gave the target compound 3-aminopropyl 6-deoxy-2-O-[3-O-[2-O-methyl-(4-O-methyl- α -Lrhamnopyranosyl)- α -L-fucopyranosyl]- α -L-rhamnopyranosyl]- α -L-rhamnopyranosyl]- α -L-rhamnopyranosyl]- α -L-rhamnopyranosyl]- α -L-rhamnopyranosyl]- α -L-fucopyranosyl]- α -L-fucopyranosyl]- α -L-rhamnopyranosyl]- α -L-fucopyranosyl]- α -L-rhamnopyranosyl]- α -L-fucopyranosyl]- α -L-fucopyra

INTRODUCTION

It is well documented¹ that opportunistic members of the *M. avium* complex can be the causative agents of pulmonary and other organ infections. Renewal of interest in "atypical" mycobacteria stems from the observation that patients with an acquired immunodeficiency syndrome (AIDS) are vulnerable to disseminated infections by several serovariants of the *M. avium* complex². For example, it has been established³ that *M. avium* serotype 4 presents the majority of *M. avium* isolates from patients with AIDS from the eastern part of the USA. The structure of the serotype 4 haptenic oligosaccharide was established^{3,4} as 4-O-Me- α -L-Rha *p*-(1 \rightarrow 4)-2-O-Me- α -L-Fuc *p*-(1 \rightarrow 3)- α -L-Rha *p*-(1 \rightarrow 2)-6-deoxy-L-Tal *p*, the reducing

^{*} Corresponding author.

end of which is α -linked to the hydroxyl group of an internal D-allo-threonine moiety of an invariant 3,4-di-O-methylrhamnopyranosylpeptidolipid.

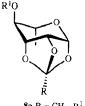
As part of a programme⁵ on the design and preparation of immunodiagnostic reagents and synthetic vaccines, we now report the synthesis of the tetrasaccharide glycoside **1**, which contains a spacer to serve as a precursor of neoglycoproteins.

4-*O*-Me-α-L-Rha p-(1 → 4)-2-*O*-Me-α-L-Fuc p-(1 → 3)-α-L-Rha p-(1 → 2)-6-deoxy-L-Tal p-O(CH₂)₃NH₂

1

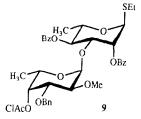
RESULTS AND DISCUSSION

Preliminary studies⁵ indicated that stereoselective formation of the 1,2-*cis* linkage between the fucose and rhamnose units in 1 was feasible using appropriately protected alkyl 1-thioglycosides. Thus, the presence of the 4-*O*-chloroacetyl group in ethyl 3-*O*-benzyl-4-*O*-chloroacetyl-2-*O*-methyl-1-thio- β -L-fucopyranoside (5) plays a pivotal role in the stereoselective introduction of the α linkage in the key disaccharide derivative 9. Further, replacement of the 4-*O*-benzyl and 2-*O*-acetyl groups of the ethyl 1-thiorhamnopyranoside derivative 6 by benzoyl groups will exert the following beneficial effects. In the iodonium di-*sym*-collidine perchlorate (IDCP)-assisted glycosylation of ethyl 2,4-di-*O*-benzoyl-1-thio- α -L-rhamnopyranoside (7) with 5, BzO-4 decreases the rate of cyclisation of 7 to give


H₃C
$$OR^{2}$$

R³O
2 R¹ = Me, R²₇R³ = Me₂C
3 R¹ = Me, R² = R³ = H
4 R¹ = Me, R² = Bn, R³ = H
5 R¹ = Me, R² = Bn, R³ = ClAc

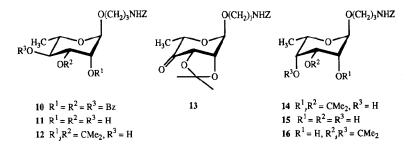
$$H_{3}C \longrightarrow OR^{1}$$


$$OR^{2} \rightarrow OR^{1}$$

$$R^{3}O \longrightarrow OR^{2} \rightarrow R^{3} \rightarrow R^{3}$$

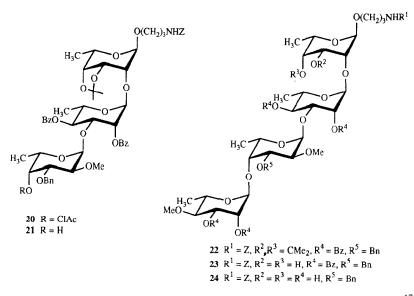
 $R^1 = R^3 = Bz, R^2 = H$ $R^1, R^2 = CMe_2, R^3 = Me$ $R^1 = R^2 = H, R^3 = Me$ $R^1 = R^2 = Bz, R^3 = Me$

8a R = CH₃, $R^1 = B_R$ 8b R = Ph, $R^1 = B_Z$



4-O-benzoyl- β -L-rhamnopyranose 1,2,3-orthobenzoate (8b) [the conversion of 6 into 8a proceeds rapidly]. On the other hand, the coupling efficacy of 9 with the talose derivative 16 to give the trisaccharide derivative 20 rises⁶ by the protection of HO-2 in 9 with a benzoyl group.

Synthesis of the requisite fucosyl acceptor 5 comprised methylation of known ethyl 3,4-O-isopropylidene-1-thio- β -L-fucopyranoside⁷ (\rightarrow 2), followed by deacetonation (\rightarrow 3, 89% over the two steps), regioselective benzylation of the intermediate stannilydene complex of 3 with benzyl bromide in the presence of cesium fluoride⁸ (\rightarrow 4, 85%), and finally acylation with chloroacetic anhydride using sodium hydrogen carbonate⁹ as the base.


Condensation of ethyl 2,4-di-O-benzoyl-1-thio- α -L-rhamnopyranoside¹⁰ with **5** in the presence of IDCP afforded exclusively the α -linked key disaccharide derivative **9** (61%). The ¹H NMR data for **9** are given in Table I.

Further extension of 9 at C-1 and C-4' involved the respective synthons 3-benzyloxycarbonylaminopropyl 6-deoxy-3,4-O-isopropylidene- α -L-talopyranoside (16) and ethyl 2,3-di-O-benzoyl-4-O-methyl-1-thio- α -L-rhamnopyranoside (19). Coupling of ethyl 2,3,4-tri-O-benzoyl-1-thio- α -L-rhamnopyranoside with 3-benzyloxycarbonylamino-1-propanol¹¹, using N-iodosuccinimide and catalytic triflic acid (NIS-TfOH)¹² as a promoter, afforded the glycoside 10. Zemplén debenzoylation of 10 (\rightarrow 11, 95%), followed by acetonation (\rightarrow 12, 73%), and oxidation with tetrapropylammonium per-ruthenate in the presence of 4-methylmorpholine

N-oxide¹³ gave 3-benzyloxycarbonylaminopropyl 6-deoxy-2,3-*O*-isopropylidene- α -*L-lyxo*-hexopyranosid-4-ulose (13, 85%). Stereoselective reduction of the ketone function in 13, using sodium borohydride in ethanol (\rightarrow 14, 90%), then deacetonation (\rightarrow 15), and kinetically controlled acetonation with 2,2-dimethoxypropane catalysed by camphorsulfonic acid¹⁴ afforded 16 (79% from 14). Methylation of ethyl 2,3-*O*-isopropylidene-1-thio- α -L-rhamnopyranoside¹⁵ with methyl iodide in the presence of sodium hydride and acid hydrolysis of the resulting crude 17 gave 18 that was benzoylated to give 19 (67% over the three steps).

Coupling of the disaccharide derivative 9 with 16 in dry 1,2-dichloroethane-ether at 20°C, using NIS-TfOH as a promoter, gave the trisaccharide derivative 20 (70%). The ¹H NMR data for 20 are given in Table I. Attempts to remove the chloroacetyl group from 20 with hydrazine dithiocarbonate¹⁶ gave an intractable

mixture of products. However, treatment of **20** with hydrazine acetate¹⁷ proceeded smoothly to afford **21** (79%).

NIS-TfOH-mediated glycosylation of **21** with **19** in dry 1,2-dichloroethane-ether at 0°C furnished the fully protected tetrasaccharide **22** (84%), the ¹H and ¹³C NMR data for which are given in Tables I and II, respectively. Hydrolysis of **22** with acetic acid-water (\rightarrow **23**), followed by debenzoylation (\rightarrow **24**), and debenzylation gave the target 3-aminopropyl glycoside **1** (66% from **22**). The ¹H NMR data (Table I) of **1**, obtained by 2D COSY¹⁸ and HOHAHA¹⁹ measurements, are in full accord with the proposed structure.

The results of immunological inhibition experiments with 1 will be reported elsewhere.

EXPERIMENTAL

General methods—Pyridine and acetonitrile were dried by boiling under reflux over CaH₂ (5 g/L) and then distilled. Dichloromethane, 1,2-dichloroethane, and toluene were distilled from P₂O₅. *N*,*N*-Dimethylformamide was stirred with CaH₂ at room temperature and distilled under reduced pressure. Ether was distilled from LiAlH₄. Pyridine and acetonitrile were stored over 4A molecular sieves (Aldrich). Toluene and ether were stored over Na wire, and CH₂Cl₂ and 1,2-dichloroethane over alumina. Schleicher and Schüll DC Fertigfolien F 1500 LS 254 (Merck) were used for TLC. Compounds were detected by charring with 20% H₂SO₄ in MeOH. Optical rotations were recorded at 20°C with a Perkin–Elmer 241 polarimeter. Column chromatography was performed on Silica Gel 60 (70–230 mesh, Merck) and GPC was performed on Sephadex LH 20 (Pharmacia). ¹H NMR

1	5	7

TABLE I

The 300- and 400-MHz ¹H NMR data for glycosides 9, 20, 22, and 1

Residue	Proton (J)	δ (ppm) (J in Hz)			
		9 (CDCl ₃) ^a	20 (CDCl ₃) ^{<i>a</i>}	22 (CDCl ₃) ^a	1 (D ₂ O) ^b
Aminopropyl	H-1		3.58, 3.87	3.60, 3.89	3.60
	H-2 $(J_{2,3})$		1.81 (6.3)	1.83	2.00
	H-3		3.30	3.30	3.15
6-Deoxy-α-L-Tal	H-1 $(J_{1,2})$		4.86 (6.3)	4.88 (6.3)	4.95 (1.7)
	H-2 $(J_{2,3})$		3.82 (2.6)	3.81 (2.6)	3.94
	H-3 $(I_{3,4})$		4.62 (7.6)	4.63 (7.6)	4.06
	H-4 $(I_{4,5})$		4.08	4.08 (1.8)	3.72
	H-5 $(J_{5.6})$		4.08 (6.5)	4.25 (6.1)	4.05
	H-6		0.92	0.97	1.31
α-Rha	H-1 $(J_{1,2})$	5.43 (1.7)	5.15 (1.8)	5.17 (1.7)	5.00 (1.7)
	H-2 $(J_{2,3})$	5.56 (3.5)	5.57 (3.5)	5.55 (3.5)	4.15 (3.3)
	H-3 $(J_{3,4})$	4.25 (9.8)	4.36 (9.9)	4.38 (9.9)	3.83
	H-4 $(J_{4.5})$	5.55 (9.8)	5.51 (9.9)	5.54 (9.9)	3.76 (9.7)
	H-5 $(J_{5,6})$	4.47 (6.4)	4.31 (6.3)	4.31 (6.3)	3.83 (6.6)
	H-6	1.33	1.29	1.29	1.24
α-Fuc	H-1 $(J_{1,2})$	5.01 (3.7) ^c	5.05 (3.6)	5.09 (3.6)	5.43 (3.9)
	H-2 $(J_{2,3})$	3.26 (10.1)	3.26 (10.1)	3.45 (10.3)	3.52 (10.6)
	H-3 $(J_{3,4})$	3.68 (3.3)	3.67 (3.4)	3.61 (3.0)	4.05 (3.2)
	H-4 $(J_{4.5})$	5.18 (1.5)	5.18 (1.4)	3.87	3.87
1	H-5 $(I_{5.6})$	4.05 (6.6)	3.75 (6.4)	3.74 (6.4)	4.21 (6.2)
	H-6	0.92	1.20	1.20	1.17
α-Rha	H-1 $(J_{1,2})$			4.83 (1.7)	4.80 (1.8)
	H-2 $(J_{2,3})$			5.54 (3.4)	4.10 (3.4)
	H-3 $(J_{3,4}^{2,5})$			5.55 (9.6)	3.89 (9.6)
	H-4 $(J_{4,5}^{3,7})$			3.37 (6.9)	3.34 (9.6)
	H-5 $(J_{5.6})$			3.91 (6.6)	4.20 (6.6)
	H-6			1.08	1.24

^a Chemical shifts are relative to that for internal Me₄Si. ^b Chemical shifts are relative to that for internal 4,4-dimethyl-4-silapentane-1-sulfonate. ^c $J_{C-1,H-1}$ 168.5 Hz.

spectra (300 and 400 MHz) were recorded at 25°C with a Bruker WM 300 or 400 MSL spectrometer. The 600-MHz 1D homonuclear Hartmann-Hahn spectrum (1D HOHAHA) of 1 was recorded with a MLEV-17 mixing sequence of 100 ms¹⁹ on an AMX-600 (Bruker, Karlsruhe) spectrometer. ¹³C NMR spectra (50 and 100 MHz) were recorded with a Jeol JNM-FX 200 or Bruker 400 MSL spectrometer. The ¹H and ¹³C chemical shifts (δ) are given in ppm relative to that of Me₄Si (CDCl₃), or sodium 4,4-dimethyl-4-silapentane-1-sulfonate (D₂O). The liquid chromatography-mass spectrum (LC-MS) of 1 was recorded in the positive ion mode on a TSQ 70 triple quadrupole spectrometer equipped with an HP 59980A Particle Beam LC/MS interface, using ammonia for chemical ionisation.

67.7

17.4

Residue	Carbon atom (J)	δ (ppm) (J in Hz)	
		22 (CDCl ₃) ^{<i>a</i>}	1 (D ₂ O) ^b
Aminopropyl	C-1	65.3	65.7
	C-2	29.7	27.2
	C-3	38.3	38.0
6-Deoxy-a-l-Tal	C-1 $(J_{C-1,H-1})$	99.0	99.7 (168.5)
	C-2	74.3	77.8
	C-3	71.6	
	C-4	76.5	
	C-5	67.6	
	C-6	17.5	16.3
a-Rha	C-1 $(J_{C-1,H-1})$	95.8	103.1 (172.9)
	C-2	72.4	68.8
	C-3	75.4	
	C-4	72.8	70.5
	C-5	67.0	
	C-6	17.4	17.4
a-Fuc	C-1 $(J_{C-1,H-1})$	99.5	98.5 (169.9)
	C-2	77.6	78.0
	C-3	78.9	68.4
	C-4	67.1	81.5
	C-5	65.9	
	C-6	15.4	16.3
α-Rha	C-1 $(J_{C-1,H-1})$	98.7	102.7 (168.5)
	C-2	71.2	71.0
	C-3	71.5	70.8
	C-4	80.9	83.1

and 1

The 400-	MHz ¹³ C	NMR	data	for	22

^{*a*} Chemical shifts are relative to that for internal Me_4Si . ^{*b*} Chemical shifts are relative to that for internal 4.4-dimethyl-4-silapentane-1-sulfonate.

67.1

16.3

C-5

C-6

Ethyl 2-O-*methyl-1-thio-β*-L-*fucopyranoside* (3).—To a stirred solution of ethyl 3,4-O-isopropylidene-1-thio-*β*-L-fucopyranoside⁷ (2.7 g, 10.9 mmol) in DMF (50 mL) were added NaH (0.4 g, 80%, 1.3 equiv) and MeI (0.8 mL, 1.2 equiv). The mixture was stirred for 2 h at 20°C, MeOH (10 mL) was added, and the mixture was concentrated. A solution of the residue in CH₂Cl₂ (50 mL) was washed twice with water, dried (MgSO₄), and concentrated. A solution of the resulting crude 2 in 9:1 HOAc-water (50 mL) was stirred for 2 h at 50°C, then concentrated, and toluene (2 × 50 mL) was evaporated from the residue. Column chromatography (97:3 CH₂Cl₂-MeOH) then yielded 3 (2.2 g, 89% based on ethyl 3,4-O-isopropylidene-1-thio-*β*-L-fucopyranoside); $[\alpha]_{\rm D}$ +32° (*c* 1, CHCl₃). NMR data (CDCl₃): ¹H, δ 1.27 (t, 3 H, J 7.5 Hz, SCH₂CH₃), 1.32 (d, 3 H, J_{5.6} 6.9 Hz, H-6,6,6), 2.74

TABLE II

(ABq, 2 H, SC H_2 CH₃), 3.12 (d, 1 H, $J_{3,4}$ 5.9 Hz, H-4), 3.19 (t, 1 H, $J_{1,2} = J_{2,3} = 9.5$ Hz, H-2), 3.60 (dd, 1 H, H-3), 3.64 (s, 3 H, OMe), 3.77 (q, 1 H, H-5), and 4.32 (d, 1 H, H-1); ¹³C, δ 14.7 (SCH₂CH₃), 16.3 (C-6), 24.7 (SCH₂CH₃), 60.9 (OCH₃), 71.7 (C-5), 74.3, 75.0, 80.4 (C-2,3,4), and 84.3 (C-1). Anal. Calcd for C₉H₁₈O₄S: C, 48.64; H, 8.16. Found: C, 48.49; H, 8.43.

Ethyl 3-O-benzyl-2-O-methyl-1-thio- β -L-fucopyranoside (4).—To a solution of 3 (2.2 g, 9.7 mmol) in dry MeOH was added dibutyltin oxide (3.1 g, 12.6 mmol). The mixture was boiled under reflux for 4 h, then concentrated under reduced pressure, and toluene $(2 \times 50 \text{ mL})$ was evaporated from the residue. A solution of the residue in DMF (50 mL) was stirred with CsF (1.9 g, 12.6 mmol) and benzyl bromide (2.5 g, 14.6 mmol) for 16 h at 20°C, then diluted with CH₂Cl₂ (50 mL), and the organic layer was washed with M KF (50 mL) and water (50 mL), dried (MgSO₄), and concentrated. Column chromatography $[1:0 \rightarrow 0:1]$ light petroleum (bp 40–60°C)–CH₂Cl₂] of the residue gave 4 (2.6 g, 85%); $[\alpha]_{D}$ + 43° (c 1, CHCl₃). NMR data (CDCl₃): ¹H, δ 1.27 (t, 3 H, J 7.5 Hz, SCH₂CH₃), 1.32 (d, 3 H, J_{5.6} 6.7 Hz, H-6,6,6), 2.76 (ABq, 2 H, SCH₂CH₃), 3.32 (t, 1 H, J_{1,2} 9.5 Hz, H-2), 3.44 (ABq, 2 H, CH₂Ph), 3.52 (c, 2 H, H-3,4), 3.62 (s, 3 H, OMe), 3.78 (q, 1 H, H-5), 4.28 (d, 1 H, H-1), and 7.27-7.40 (c, 5 H, Ph); ¹³C, δ 14.2 (SCH₂CH₃), 16.0 (C-6), 23.7 (SCH₂CH₃), 60.2 (OCH₃), 68.5 (C-5), 71.1 (CH₂Ph), 73.3, 78.7, 81.8 (C-2,3,4), 83.7 (C-1), 126.9-127.3 (CH_{aromatic}), and 137.4 (C_{aromatic}). Anal. Calcd for C₁₆H₂₄O₄S: C, 61.51; H, 7.74. Found: C, 61.73; H, 7.62.

Ethyl 3-O-*benzyl*-4-O-*chloroacetyl*-2-O-*methyl*-1-*thio*-β-L-*fucopyranoside* (5).—A suspension of 4 (1.5 g, 5.0 mmol), chloroacetic anhydride (1.7 g, 10.0 mmol), and NaHCO₃ (0.9 g, 10 mmol) in DMF (50 mL) was stirred for 17 h at 20°C, then diluted with CH₂Cl₂ (50 mL), washed with 0.9 M NaHCO₃ (50 mL) and water (50 mL), dried (MgSO₄), and concentrated. Column chromatography (CH₂Cl₂) of the residue gave **6** (1.8 g, 92%); $[\alpha]_D$ + 34° (*c* 1, CHCl₃). NMR data (CDCl₃): ¹H, δ 1.22 (d, 3 H, *J*_{5,6} 6.4 Hz, H-6,6,6), 1.32 (t, 3 H, *J* 7.5 Hz, SCH₂CH₃), 2.72 (ABq, 2 H, SCH₂CH₃), 3.25 (t, 1 H, *J*_{1,2} = *J*_{2,3} = 9.5 Hz, H-2), 3.48 (dd, 1 H, *J*_{3,4} 3.3 Hz, H-3), 3.60 (s, 3 H, OMe), 3.66 (q, 1 H, H-5), 4.18 (s, 2 H, CH₂Cl), 4.34 (d, 1 H, H-1), 4.63 (ABq, 2 H, CH₂Ph), 5.38 (d, 1 H, H-4), and 7.27–7.40 (c, 5 H, Ph); ¹³C, δ 14.7 (SCH₂CH₃), 16.4 (C-6), 24.5 (SCH₂CH₃), 40.6 (CH₂Cl), 61.1 (OCH₃), 71.9 (CH₂Ph), 71.7, 72.3, 79.0, 80.4 (C-2,3,4,5), 84.5 (C-1), 126.9–127.3 (CH_{aromatic}), and 137.4 (C_{aromatic}). Anal. Calcd for C₁₈H₂₅ClO₅S: C, 55.59; H, 6.48. Found: C, 55.71; H, 6.39.

Ethyl 2,4-di-O-benzoyl-3-O-(3-O-benzyl-4-O-chloroacetyl-2-O-methyl- α -L-fucopyranosyl)-1-thio- α -L-rhamnopyranoside (9).—Iodonium di-sym-collidine perchlorate²⁰ (1.2 g, 2.6 mmol) was added to a stirred mixture of 5 (510 mg, 1.3 mmol), ethyl 2,4-di-O-benzoyl-1-thio- α -L-rhamnopyranoside¹⁰ (420 mg, 1.0 mmol), and 4A powdered molecular sieves (1 g) in 1:5 1,2-dichloroethane-ether (12 mL). After 15 min at 20°C, TLC (97:3 CH₂Cl₂-acetone) showed the reaction to be complete. The mixture was filtered, diluted with CH₂Cl₂ (10 mL), washed with M sodium thiosulfate (10 mL), dried (MgSO₄), and concentrated. Column chromatography [1:0 → 0:1 light petroleum (bp 40–60°C)–CH₂Cl₂] of the residue gave **9** (450 mg, 61%); $[\alpha]_{\rm D} - 52^{\circ}$ (*c* 1, CHCl₃). ¹³C NMR data (CDCl₃): δ 14.2 (SCH₂CH₃), 15.0 (C-6^F), 16.8 (C-6^R), 25.1 (SCH₂CH₃), 40.0 (ClCH₂), 58.8 (OCH₃), 65.4, 67.3, 73.0, 74.0, 75.7, 76.8 and 77.0 (C-2^R/5^R and C-2^F/5^F), 82.1 (C-1^R), 99.6 (C-1^F), and 126.7–132.8 (CH_{aromatic} and C_{aromatic}). For the ¹H NMR data, see Table 1. Anal. Calcd for C₃₈H₄₃ClO₁₁S: C, 61.41; H, 5.83. Found: C, 61.73; H, 5.69.

3-Benzyloxycarbonylaminopropyl 2,3,4-tri-O-benzoyl-α-L-rhamnopyranoside (10). —To a solution of ethyl 2,3,4-tri-O-benzoyl-1-thio-α-L-rhamnopyranoside (1.1 g, 2.0 mmol) and 3-benzyloxycarbonylamino-1-propanol¹¹ (400 mg, 1.9 mmol) in 1:1 1,2-dichloroethane–ether (20 mL) were added 4A powdered molecular sieves (2 g), and the mixture was kept for 15 min at 0°C. A solution of *N*-iodosuccinimide (450 mg, 2.0 mmol) and trifluoromethanesulfonic acid (17 µL, 0.2 mmol) in 1:1 1,2-dichloroethane–ether (20 mL) was added and stirring was continued for 15 min. The mixture was filtered and diluted with CH₂Cl₂ (20 mL), and the organic layer was washed with M sodium thiosulfate (20 mL) and 0.9 M NaHCO₃ (20 mL), dried (MgSO₄), and concentrated. Column chromatography (95:5 CH₂Cl₂acetone) of the residue gave 7 (1.1 g, 81%); $[\alpha]_D + 39^\circ$ (*c* 1, CHCl₃). ¹³C NMR data (CDCl₃): δ 17.6 (C-6), 29.2 (C-2 spacer), 37.9 (C-3 spacer), 64.9 (C-1 spacer), 66.3 (CH₂Ph), 68.5 (C-5), 70.6, 71.2 and 72.6 (C-2,3,4), 97.1 (C-1), 127.7–133.1 (CH_{aromatic} and C_{aromatic}), 156.4 (NHCO), 165.3 and 166.1 (PhCOO). Anal. Calcd for C₃₇H₃₅NO₁₀: C, 67.99; H, 5.36. Found: C, 67.76; H, 5.48.

3-Benzyloxycarbonylaminopropyl 2,3-O-isopropylidene- α -L-rhamnopyranoside (12).—Potassium tert-butoxide (50 mg) was added to a solution of 10 (1.1 g, 1.6 mmol) in MeOH (20 mL), and the mixture was stirred for 2 h at 20°C, then neutralised with Dowex (H^+) resin, filtered, and concentrated. To a solution of the residue 11 (550 mg, 1.6 mmol) in acetone were added 2.2-dimethoxypropane and camphorsulfonic acid (20 mg). The mixture was stirred for 2 h at 20°C, then diluted with CH₂Cl₂ (10 mL), washed with 0.9 M NaHCO₃ (10 mL) and water (10 mL), dried (MgSO₄), and concentrated. Column chromatography (95:5 CH₂Cl₂-MeOH) of the residue gave 12 (460 mg, 73% based on 10); $[\alpha]_{\rm D} = 13^{\circ}$ (c 1, CHCl₃). NMR data (CDCl₃): ¹H, δ 1.28 (d, 3 H, J_{5,6} 6.3 Hz, H-6,6,6), 1.35, 1.52 (2 s, 6 H, CMe₂), 1.81 (m, 2 H, H-2 spacer), 3.30 (t, 2 H, J_{2.3} 6.3 Hz, H-3 spacer), 3.35 (m, 1 H, H-4), 3.48 (dt, 1 H, $J_{1a,2}$ 5.7, $J_{1a,1a}$ 11.3 Hz, H-1a spacer), 3.62 (dq, 1 H, $J_{4,5}$ 4.9 Hz, H-5), 3.76 (dt, 1 H, $J_{1b,2}$ 5.7 Hz, H-1b spacer), 4.07 (dd, 1 H, $J_{3,4}$ 6.4, $J_{2,3}$ 5.8 Hz, H-3), 4.10 (d, 1 H, H-2), 5.01 (s, 2 H, CH₂Ph), 5.30 (s, 1 H, H-1), and 7.28-7.35 (m, 5 H, Ph); 13 C, δ 17.2 (C-6), 25.9, 27.8 [C(CH₃)₂], 29.3 (C-2 spacer), 38.3 (C-3 spacer), 64.9 (C-1 spacer), 65.6 (C-5), 66.3 (CH₂Ph), 74.1, 75.6 and 78.3 (C-2,3,4), 96.8 (C-1), 109.1 [C(CH₃)₂], and 126.6–133.1 (CH_{aromatic} and C_{aromatic}), 155.8 (NHCO). Anal. Calcd for C₁₉H₂₆NO₇: C, 60.00; H, 6.84. Found: C, 60.08; H, 6.77.

3-Benzyloxycarbonylaminopropyl 6-deoxy-2,3-O-isopropylidene- α -L-lyxo-hexopyranosid-4-ulose (13).—To a mixture of 12 (750 mg, 2.0 mmol), 4A powdered molecular sieves (2 g), and 4-methylmorpholine N-oxide (360 mg, 2.8 mmol) in 1,2-dichloroethane (15 mL) was added tetrapropylammonium per-ruthenate (0.5 mol%, 3 mg). The resulting green mixture was stirred for 10 min at 20°C when TLC (97:3 CH₂Cl₂–MeOH) showed the oxidation to be complete. The mixture was filtered through Celite, diluted with CH₂Cl₂ (10 mL), and washed with brine (2×10 mL), dried (MgSO₄), and concentrated. Column chromatography (98:2 CH₂Cl₂–MeOH) of the residue afforded **13** (630 mg, 85%); $[\alpha]_D - 67^\circ$ (*c* 1, CHCl₃). NMR data (CDCl₃): ¹H, δ 1.35 (d, 3 H, $J_{5,6}$ 6.2 Hz, H-6,6,6), 1.39, 1.47 (2 s, 6 H, CMe₂), 1.80 (m, 1 H, H-2, spacer), 3.28 (t, 2 H, $J_{2,3}$ 6.2 Hz, H-3 spacer), 3.56 (m, 1 H, H-1a spacer), 3.78 (m, 1 H, H-1b spacer), 4.22 (q, 1 H, H-5), 4.41 (2 d, 2 H, H-2,3), 5.01 (s, 2 H, CH₂Ph), 5.27 (s, 1 H, H-1), and 7.28–7.35 (m, 5 H, Ph); ¹³C, δ 15.8 (C-6), 25.3 and 26.6 [C(CH₃)₂], 29.0 (C-2 spacer), 38.2 (C-3 spacer), 65.9 (C-1 spacer), 66.5 (CH₂Ph), 69.9 (C-5), 75.8 and 78.6 (C-2,3), 96.9 (C-1), 111.3 [C(CH₃)₂], 127.9–133.3 (CH_{aromatic} and C_{aromatic}), 156.3 (NHCO), and 204.5 (C-4). Anal. Calcd for C₁₉H₂₅NO₇: C, 60.16; H, 6.60. Found: C, 60.25; H, 6.47.

3-Benzyloxycarbonylaminopropyl 6-deoxy-2,3-O-isopropylidene- α -L-talopyranoside (14).—Sodium borohydride (120 mg, 3.2 mmol) was added to a stirred and cooled (0°C) solution of 13 (630 mg, 1.6 mmol) in EtOH (20 mL). Stirring was continued for 10 min at 20°C, acetone (3 mL) was added, and the mixture was then diluted with CH₂Cl₂ (20 mL), dried (MgSO₄), and concentrated. Column chromatography (98:2 CH₂Cl₂–MeOH) of the residue gave 14 (570 mg, 90%); $[\alpha]_D - 34^\circ$ (*c* 1, CHCl₃). NMR data (CDCl₃): ¹H, δ 1.30 (d, 3 H, $J_{5,6}$ 6.6 Hz, H-6,6,6), 1.37 and 1.57 (2 s, 6 H, CMe₂), 1.80 (m, 2 H, H-2 spacer), 3.31 (t, 2 H, $J_{2,3}$ 5.7 Hz, H-3 spacer), 3.50 (t, 1 H, $J_{3,4}$ 4.8, $J_{4,5}$ 5.3 Hz, H-4), 3.55 (m, 1 H, H-1a spacer), 3.82 (m, 2 H, H-1b spacer and H-5), 4.02 (dd, 1 H, H-2, $J_{1,2}$ 1.4, $J_{2,3}$ 6.4 Hz, H-2), 4.20 (dd, 1 H, H-3), 5.00 (s, 2 H, CH₂Ph), 5.09 (s, 1 H, H-1), and 7.25–7.36 (m, 5 H, Ph); ¹³C, δ 16.3 (C-6), 24.9, 25.5 [C(CH₃)₂], 29.1 (C-2 spacer), 38.1 (C-3 spacer), 64.3 (C-5), 65.1 (C-1 spacer), 66.1 (CH₂Ph), 66.4, 72.7, and 73.0 (C-2,3,4), 97.1 (C-1), 108.9 [C(CH₃)₂], 127.6–133.4 (CH_{aromatic} and C_{aromatic}), and 156.1 (NHCO). Anal. Calcd for C₁₉H₂₆NO₇: C, 60.00; H, 6.84. Found: C, 60.12; H, 6.59.

3-Benzyloxycarbonylaminopropyl 6-deoxy-3,4-O-isopropylidene- α -L-talopyranoside (16).—A solution of 14 (570 mg, 1.5 mmol) in 9:1 acetic acid-water (20 mL) was heated to 50°C for 3 h, then concentrated, and toluene was evaporated repeatedly from the residue. To a solution of the resulting triol 15 (580 mg, 1.5 mmol) in acetone (20 mL) were added 2,2-dimethoxypropane (0.7 g, 6.8 mmol) and camphorsulfonic acid (10 mg). The mixture was stirred for 3 h at 20°C, when TLC (97:3 CH₂Cl₂-MeOH) showed the disappearance of 15. The mixture was diluted with CH₂Cl₂ (10 mL), and the organic layer was washed with water and 0.9 M NaHCO₃ (10 mL), dried (MgSO₄), and concentrated. Column chromatography (99:1 CH₂Cl₂-MeOH) of the residue gave 16 (470 mg, 79% based on 14); [α]_D - 34° (c 1, CHCl₃). NMR data (CDCl₃): ¹H, δ 1.20 (d, 3 H, J_{5,6} 6.5 Hz, H-6,6,6), 1.37 and 1.51 (2 s, 6 H, CMe₂), 1.79 (m, 2 H, H-2 spacer), 3.30 (t, 2 H, J_{2,3} 5.7 Hz, H-3 spacer), 3.53 (dt, 1 H, J_{1a,1b} 10.0, J_{1a,2} 5.1 Hz, H-1a spacer), 3.69 (dd, 1 H, J_{1,2} 6.3, J_{2,3} 3.0 Hz, H-2), 3.77 (dq, 1 H, J_{4,5} 1.8 Hz, H-5), 3.86 (dt, 1 H, J_{1b,2} 5.0 Hz, H-1b spacer), 4.11 (dd, 1 H, J₃₄ 7.7 Hz, H-4), 4.52 (dd, 1 H, H-3), 4.69 (d, 1 H,

H-1), 5.08 (s, 2 H, CH_2 Ph), and 7.12–7.48 (m, 5 H, Ph); ¹³C, δ 15.4 (C-6), 24.8 and 25.8 [C(CH_3)₂], 29.3 (C-2 spacer), 37.8 (C-3 spacer), 65.0 (C-1, spacer), 65.3 (C-5), 66.3 (CH_2 Ph), 68.6, 73.8, and 76.2 (C-2,3,4), 100.5 (C-1), 109.6 [$C(CH_3)_2$], 127.7–132.8 ($CH_{aromatic}$ and $C_{aromatic}$), and 156.4 (NHCO). Anal. Calcd for $C_{19}H_{26}NO_7$: C, 60.00; H, 6.84. Found: C, 60.09; H, 6.74.

Ethyl 4-O-methyl-1-thio- α -L-rhamnopyranoside (18).—To a stirred solution of ethyl 2,3-O-isopropylidene-1-thio- α -L-rhamnopyranoside¹⁵ (1.8 g, 7.2 mmol) in DMF (30 mL) were added NaH (0.3 g, 80%, 1.3 equiv) and MeI (0.6 mL, 1.2 equiv). The mixture was stirred for 4 h at 20°C, MeOH was added, and the mixture was concentrated. A solution of the residue in CH_2Cl_2 (50 mL) was washed twice with water, and dried (MgSO₄) to give crude 17, a solution of which in 9:1 acetic acid-water (50 mL) was stirred for 17 h at 50°C. The mixture was concentrated and toluene $(2 \times 25 \text{ mL})$ was evaporated from the residue. Column chromatography (99:1 \rightarrow 97:3 CH₂Cl₂-MeOH) then gave 18 (1.2 g, 73% based on ethyl 2,3-O-isopropylidene-1-thio- α -L-rhamnopyranoside); $[\alpha]_{D} = -235^{\circ}$ (c 1, CHCl₃). NMR data (CDCl₃): ¹H, δ 1.29 (t, 3 H, J 7.5 Hz, SCH₂CH₃), 1.33 (d, 3 H, J_{5.6} 6.2 Hz, H-6,6,6), 2.60 (ABq, 2 H, SC H_2 CH₃), 3.12 (t, 1 H, $J_{3,4} = J_{4,5} = 9.3$ Hz, H-4), 3.57 (s, 3 H, OMe), 3.82 (dd, 1 H, J_{2,3} 3.3 Hz, H-3), 3.95 (m, 1 H, H-5), 4.04 (dd, 1 H, $J_{1,2}$ 1.5 Hz, H-2), and 5.23 (d, 1 H, H-1); ¹³C, δ 14.8 (SCH₂CH₃), 17.8 (C-6), 25.0 (SCH₂CH₃), 60.5 (OCH₃), 67.6, 71.5, 72.5 and 83.4 (C-2,3,4), and 83.8 (C-1). Anal. Calcd for C₉H₁₈O₄S: C, 48.64; H, 8.16. Found: C, 48.32; H, 8.21.

Ethyl 2,3-di-O-benzoyl-4-O-methyl-1-thio- α -L-rhamnopyranoside (19).—To a cooled (0°C) solution of 18 (160 mg, 0.7 mmol) in dry pyridine (10 mL) was added dropwise a mixture of benzoyl chloride (220 mg, 1.4 mmol) and pyridine (2 mL). The mixture was stirred for 2 h at room temperature, the reaction was guenched by the addition of water (2 mL), and the mixture was concentrated under reduced pressure. A solution of the residue in CH_2Cl_2 (20 mL) was washed with water (10 mL) and 0.9 M NaHCO₃ (10 mL), dried (MgSO₄), and concentrated, and toluene $(2 \times 10 \text{ mL})$ was evaporated from the residue. Column chromatography $[1:0 \rightarrow 0:1]$ light petroleum (bp 40–60°C)–CH₂Cl₂] afforded **19** (280 mg, 92%); $[\alpha]_{D}$ + 15° (c 1, CHCl₃). NMR data (CDCl₃): ¹H, δ 1.33 (t, 3 H, J 7.5 Hz, SCH₂CH₃), 1.43 (d, 3 H, $J_{5.6}$ 6.2 Hz, H-6,6,6), 2.75 (ABq, 2 H, SCH₂CH₃), 3.60 (t, 1 H, $J_{3.4} = J_{4.5} = 9.5$ Hz), 3.77 (s, 3 H, OMe), 4.23 (m, 1 H, H-5), 5.23 (d, 1 H, J_{1.2} 1.5 Hz, H-1), 5.35 (dd, 1 H, J_{3.2} 3.3 Hz, H-3), 5.68 (dd, 1 H, H-2), and 7.26–8.07 (m, 10 H, 2 Ph); ¹³C, δ 14.9 (SCH₂CH₃), 17.8 (C-6), 25.5 (SCH₂CH₃), 60.7 (OCH₃), 68.3, 72.5, 72.8, and 81.1 (C-2,3,4,5), 81.9 (C-1), 128.3-133.3 (CH_{aromatic} and C_{aromatic}), and 165.3, 166.2 (PhCOO). Anal. Calcd for C₂₃H₂₆O₆S: C, 64.17; H, 6.09. Found: C, 64.43; H, 6.17.

3-Benzyloxycarbonylaminopropyl 6-deoxy-2-O-[2,4-di-O-benzoyl-3-O-(3-O-benzyl-4-O-chloroacetyl-2-O-methyl- α -L-fucopyranosyl)- α -L-rhamnopyranosyl]-3,4-O-isopropylidene- α -L-talopyranoside (20).—A solution of N-iodosuccinimide (52 mg, 0.23 mmol) and trifluoromethanesulfonic acid (2 μ L, 23 μ mol) in 1:1 1,2-dichloroethane-ether (2.3 mL) was added dropwise to a cooled (0°C) and stirred mixture of 6 (171 mg, 0.23 mmol), 13 (71 mg, 0.18 mmol), and 4A molecular sieves (0.5 g) in 1,2-dichloroethane (5 mL). The mixture was stirred for 10 min, then filtered, diluted with CH_2Cl_2 (10 mL), washed with M sodium thiosulfate (5 mL) and 0.9 M NaHCO₃ (10 mL), dried (MgSO₄), and concentrated. Column chromatography (99:1 CH_2Cl_2 -MeOH) of the residue gave 20 (136 mg, 70%); $[\alpha]_D - 12^\circ$ (*c* 1, CHCl₃). For the ¹H NMR data, see Table I. Anal. Calcd for $C_{56}H_{66}CINO_{18}$: C, 62.48; H, 6.18. Found: C, 62.34; H, 6.25.

3-Benzyloxycarbonylaminopropyl 6-deoxy-2-O-[2,4-di-O-benzoyl-3-O-(3-O-benzyl-2-O-methyl-α-1-fucopyranosyl)-α-L-rhamnopyranosyl]-3,4-O-isopropylidene-α-L-talopyranoside (21).—To solution of 20 (120 mg, 0.11 mmol) in MeOH (1 mL) and EtOAc (1 mL) were added acetic acid (66 mg, 1.1 mmol) and hydrazine monohydrate (55 mg, 1.1 mmol). The mixture was stirred for 17 h at 40°C, then concentrated, and a solution of the residue in CH₂Cl₂ (10 mL) was washed with water (5 mL), dried (MgSO₄), and concentrated. Column chromatography (99:1 CH₂Cl₂– MeOH) of the residue gave 21 (93 mg, 79%); $[\alpha]_D - 18^\circ$ (*c* 1, CHCl₃). ¹³C NMR data (CDCl₃): δ 15.4, 15.8, and 17.4 (C-6^T, 6^F, 6^R), 25.4 and 26.2 [C(CH₃)₂], 29.8 (C-2 spacer), 38.3 (C-3 spacer), 58.6 (OCH₃), 65.2 (C-1 spacer), 66.4 (CH₂Ph), 65.9, 66.3, 66.9, 70.1, and 72.3 (C-2^T, 3^T, 4^T, 5^T, C-2^F, 3^F, 4^F, 5^F, and C-2^R, 3^R, 4^R, 5^R), 72.3 (CH₂Ph), 95.5, 98.9, and 99.3 (C-1^T, 1^F, 1^R), 110.4 [C(CH₃)₂], 127.6–133.4 (CH_{aromatic} and C_{aromatic}), 156.2 (NHCO), 165.4 and 165.9 (PhCOO). Anal. Calcd for C₅₄H₆₅NO₁₇: C, 64.85; H, 6.55. Found: C, 64.76; H, 6.67.

3-Benzyloxycarbonylaminopropyl 6-deoxy-2-O-{2,4-di-O-benzoyl-3-O-[3-O-benzyl-4-O-(2,3-di-O-benzoyl-4-O-methyl- α -L-rhamnopyranosyl)-2-O-methyl- α -L-fucopyranosyl]- α -L-rhamnopyranosyl}-3,4-O-isopropylidene- α -L-talopyranoside (22).—To a cooled (0°C) and stirred mixture of 21 (80 mg, 0.08 mmol), ethyl 2,3-di-O-benzoyl-4-O-methyl-1-thio- α -L-rhamnopyranoside (19; 52 mg, 0.12 mmol), and powdered 4A molecular sieves (0.5 g) in 1,2-dichloroethane (3 mL) was added a solution of *N*-iodosuccinimide (27 mg, 0.12 mmol) and trifluoromethanesulfonic acid (1.1 μ L, 1.2 μ L) in 1:1 1,2-dichloroethane–ether (1.2 mL). The mixture was stirred for 5 min, then filtered, diluted with CH₂Cl₂ (5 mL), washed with M sodium thiosulfate (5 mL) and 0.9 M NaHCO₃ (5 mL), dried (MgSO₄), and concentrated. Column chromatography (99:1 CH₂Cl₂–MeOH) of the residue gave 22 (92 mg, 84%); [α]_D -2° (c 1, CHCl₃). For the ¹H and ¹³C NMR data, see Tables I and II. Anal. Calcd for C₇₅H₈₄NO₂₃: C, 65.87; H, 6.19. Found: C, 65.73; H, 6.30.

3-Aminopropyl 6-deoxy-2-O-{3-O-[2-O-methyl-(4-O-methyl- α -L-rhamnopyranosyl)- α -L-fucopyranosyl]- α -L-rhamnopyranosyl}- α -L-talopyranoside (1).—A mixture of **22** (92 mg, 0.07 mmol), acetic acid (3 mL), and water (0.5 mL) was heated at 50°C for 3 h, then concentrated, and toluene (3 × 5 mL) was evaporated from the residue. Column chromatography (99:1 CH₂Cl₂-MeOH) then gave the diol **23**, to a solution of which in MeOH (3 mL) was added potassium *tert*-butoxide (10 mg). The mixture was stirred for 16 h at 20°C, then neutralised with Dowex (H⁺) resin, filtered, and concentrated. Column chromatography (MeOH) of the residue on Sephadex LH 20 afforded **24**, a solution of which in 3:1:12-propanol-water-acetic acid (5 mL) was hydrogenated over 10% Pd–C (100 mg) for 48 h at 20°C. The catalyst was removed and the filtrate was concentrated to give 1 (31 mg, 66% based on 21); $[\alpha]_D - 2^\circ$ (c 1, H₂O). LC–MS: m/z 688 (M⁺+1). For the ¹H and ¹³C NMR data, see Tables I and II. Anal. Calcd for C₂₉H₅₃NO₁₇: C, 50.65; H, 7.71. Found: C, 50.78; H, 7.75.

ACKNOWLEDGMENTS

We thank R.A.M. van der Hoeven for the LC-MS analysis of 1 and A.W.M. Lefeber and C. Erkelens for recording the ¹H and ¹³C NMR spectra.

REFERENCES

- 1 E. Wolinsky, Am. Rev. Respir. Dis., 119 (1979) 107-159.
- 2 L.S. Young, J. Infect. Dis., 157 (1988) 863-867.
- 3 M.McNeil, A.Y. Tsang, and P.J. Brennan, J. Biol. Chem., 262 (1987) 2630-2635.
- 4 M. Bozic, M. McNeil, D. Chatterjee, I. Jardine, and P.J. Brennan, J. Biol. Chem., 263 (1988) 14984-14991.
- 5 H.M. Zuurmond, S.C. van der Laan, G.A. van der Marel, and J.H. van Boom, *Carbohydr. Res.*, 215 (1991) c1-c3.
- 6 P.J. Garegg and T. Norberg, Acta Chem. Scand., Ser. B, 33 (1979) 116-118; P.J. Garegg, P. Konradson, I. Kvarnstrom, T. Norberg, S.C.T. Svensson, and B. Wigilius, *ibid.*, 39 (1985) 569-577.
- 7 P. Smid, G.A. de Ruiter, G.A. van der Marel, F.M. Rombouts, and J.H. van Boom, J. Carbohydr. Chem., 10 (1991) 833-84.
- 8 N. Nagashima and M. Ohno, Chem. Lett., (1987) 141-144.
- 9 G.J.F. Chittenden and H. Regeling, Recl. Trav. Chim. Pays-Bas, 106 (1987) 44-47.
- 10 F.I. Auzanneau and D.R. Bundle, Carbohydr. Res., 212 (1991) 13-24.
- 11 P. Bernston, A. Brändström, H. Jungren, L. Palme, S.E. Sjöstrand, and G. Sundell, Acta Pharm. Suec., 14 (1977) 229–236.
- 12 G.H. Veeneman, S.H. van Lecuwen, and J.H. van Boom, Tetrahedron Lett., 31 (1990) 1331-1334.
- 13 W.P. Griffith, S.V. Ley, G.P. Whitcombe, and A.D. White, *J. Chem. Soc., Chem. Commun.*, (1987) 1625–1627.
- 14 G.O. Aspinall and K. Takeo, Carbohydr. Res., 121 (1983) 61-77.
- 15 G.H. Veeneman, L.J.F. Gomes, and J.H. van Boom, Tetrahedron, 45 (1989) 7433-7448.
- 16 C.A.A. van Boeckel and T. Beetz, Tetrahedron Lett., (1983) 3775-3778.
- 17 M. Nilsson and T. Norberg, J. Carbohydr. Chem., 8 (1989) 613-627.
- 18 D. Marion and K. Wutrich, Biochem. Biophys. Res. Commun., 113 (1983) 967-974.
- 19 A. Bax and D.G. Davis, J. Magn. Reson., 65 (1965) 355-360.