concentrated. The solid product was purified by HPLC (µ-Porasil) to furnish 13 mg (90% overall) of desepoxyasperdiol as an oil: TLC $R_f 0.15$ (30% ethyl acetate in hexane); ¹H NMR (300 MHz) δ 5.46 (d, J = 8.7 Hz, 1 H), 5.02-4.81 (m, 2 H), 4.91 (br s, 1 H), 4.72 (br s, 1 H), 4.32 (dd, J = 8.7, 4.0 Hz, 1 H), 4.05 (AB q, J = 13.2 Hz, 2 H), 2.38-1.80(m, 11 H), 1.72 (br s, 3 H), 1.56 (br s, 3 H), 1.49 (br s, 3 H), 1.61–1.20 (m, 4 H; includes two OH protons); 13 C NMR (75 MHz) δ 145.50, 138.98, 134.04, 133.54, 129.73, 125.55, 124.18, 113.71, 69.41, 65.75, 49.39, 40.21, 35.98, 28.16, 28.08, 24.54, 24.52, 23.19, 15.68, 15.32; IR (CDCl₃) 3344, 2938, 1662, 1638, 1441, 1367, 1251, 1050, 910 cm⁻¹; mass

spectrum, m/e 305 (M⁺ + 1), 304 (M⁺), 286 (M⁺ - H₂O), 274, 256, 244, 217, 204, 189, 175, 161, 149, 136, 123, 109, 100, 92, 81 (100%), 69; calcd for $C_{20}H_{32}O_2$ 304.2402, found 304.2409.

Acknowledgement. We thank the National Institutes of Health (Grant GM-30390) for generous financial support. NSF Grant CHE 81-00240 supported the purchase of the 300-MHz NMR spectrometer. We thank Professor Tadahiro Kato for providing spectra of racemic desepoxyasperdiol.

Studies on the Synthesis of Vitamin B_{12} . 4

Robert V. Stevens,[†] Normand Beaulieu, Wing Hong Chan, Andrej R. Daniewski, Takeshi Takeda, Adrian Waldner, Paul G. Williard,[‡] and Ulrich Zutter*

Contribution from the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90024. Received May 29, 1985

Abstract: Chiral syntheses of the four precursors (A1-D1) to cobyric acid (1) and their assembly into the triisoxazole 4 are presented.

A novel strategy for the synthesis of cobyric acid (1) (Scheme I) was outlined in previous accounts from this laboratory.¹ The key feature of this design was the use of a triisoxazole scaffold (e.g., 3 or 4) as a latent synthon for the crucial secocorrin intermediate 2. This Cd complex 2 was used by the Eschenmoser group and undergoes a remarkably stereoselective photochemically induced A/D cycloisomerization.²

In an earlier report, an enantiospecific approach to the synthesis of four precursors (A1-D1) from dextro- and levorotatory camphor was described.³ Unfortunately, with but one exception (shown in Scheme II), the Tanabe-Eschenmoser fragmentation (e.g., 6 \rightarrow C7), which would have led to the four necessary acetylenes A1-D1, did not occur. Although cyclopentenone oxide 5 fragmented via the epoxyhydrazone 6 to the acetylenic aldehyde C7, the yield was modest and, as will be shown later, racemization took place.

"Nevertheless, the synthesis of the vitamin remained a dream unfulfilled, and as experiment after experiment failed, we thought seriously of abandoning our dream. However, rather than giving up we decided to undertake an entirely different approach". Herein we describe the syntheses of the four precursors A1-D1 in enantiomerically pure form and their assembly into the triisoxazole 4 via nitrile oxide cycloaddition methodology.

Synthesis of the A Ring. The first five steps of the synthesis remained unchanged from our previous approach³ (Scheme III). Starting from (-)-camphor, the C-9 methyl group was functionalized via bromide $A3^{5,6}$ to the nitrile A4. Sodium borohydride reduction of the keto group gave predominantly the exo-alcohol A5 that was subjected to oxidative fragmentation with ceric ammonium nitrate $(CAN)^7$ to afford cyclopentene A6. At this point, we were able to shorten the synthesis by a modified route and homologate the aldehyde side chain to the nitrile A8. This was accomplished by sodium borohydride reduction followed by tosylation and displacement of the tosylate with sodium cyanide in dimethylformamide (DMF). Oxidative ring opening with ozone afforded the crystalline keto aldehyde A9 in 14% overall yield starting from (-)-camphor.

As shown in Scheme IV, reductive amination of A9 with dimethylamine and sodium cyanoborohydride⁸ gave the amino ketone A10 in high yield. Oxidation with m-chloroperbenzoic acid

Scheme I

Scheme II

(MCPBA) to the N-oxide A11 followed by Cope elimination yielded the keto olefin A12 which was protected as the ethylene

© 1986 American Chemical Society

^{*} Author to whom correspondence should be addressed: Cellulose Attisholz AG, CH-4708 Luterbach, Switzerland. Reprints can also be obtained from Prof. Michael E. Jung, UCLA. [†]Deceased March 9, 1984.

¹Department of Chemistry, Brown University, Providence, RI 02912.

⁽¹⁾ Cf.: (a) Stevens, R. V.; Lapalme, R.; Fitzpatrick, J. M.; Germeraad, P. B.; Harrison, B. L. J. Am. Chem. Soc. 1976, 98, 6313. (b) Stevens, R. V.; Cherpeck, R. E.; Harrison, B. L.; Lai, J.; Lapalme, R. Ibid. 1976, 98, 6317. (c) Stevens, R. V. Tetrahedron 1976, 32, 1599. (d) Stevens, R. V. "Vitamin 12 A. Stevens, R. V. Tetrahedron 1976, 32, 1599. (d) Stevens, R. V. B-12. Proceedings of the Third European Symposium on Vitamin B-12 and Intrinsic Factors"; Zagalak, B.; Friedrich, W., Ed.; W. de Gryter: Berlin, 1979 and references cited therein.

ketal A13. The dinitrile was then converted to the corresponding diester A14 by basic hydrolysis and treatment with methyl iodide.

(2) Eschenmoser, A. Naturwissenschaften 1974, 61, 513 and references cited therein.

(3) Stevens, R. V.; Chang, J. H.; Lapalme, R.; Schow, S.; Schlageter, M. G.; Shapiro, R.; Weller, H. N. J. Am. Chem. Soc. 1983, 105, 7719 and references cited therein.

(4) Quotation from R. V. Stevens' NSF proposal, Fall 1983.
(5) Kipping, F. S.; Pope, W. J. J. Chem. Soc. 1893, 63, 549, 577, 593.
(6) Meyer, W. L.; Lobo, A. P.; McCarty, R. N. J. Org. Chem. 1967, 32, 1754. Finch, A. M. T., Jr.; Vaughan, W. R. J. Am. Chem. Soc. 1961, 91, 416. Joshi, G. C.; Warnhoff, E. W. J. Org. Chem. 1972, 37, 2383. Core 91. 410. Justin, G. C., Walmindn, E. W. J. Org. Chem. 1912, 57, 253. Col9, 87,
 E. J.; Ohno, M.; Chow, S. W.; Scherrer, R. A. J. Am. Chem. Soc. 1959, 81,
 6304. Eck, C. R.; Mills, R. W.; Money, T. J. Chem. Soc., Perkin Trans. 1
 1975, 251. Eck, C. R.; Hodgson, G. L.; McSweeney, D. F.; Mills, R. W.;
 Money, T. Ibid. 1974, 1938.

(7) Tranhanovsky, W. S.; Fox, N. S. J. Am. Chem. Soc. 1974, 96, 7968 and references cited therein.

Ozonolysis of the olefin afforded the aldehyde A15 which was finally treated with hydroxylamine hydrochloride in pyridine to give predominantly the anti-aldoxime A1. The overall yield from (-)-camphor to the A ring precursor A1 was a satisfactory 7%.

Synthesis of the B and D Rings. Since the quaternary centers at C-7 in B1 and C-17 in D1 have similar substituents of opposite

⁽⁸⁾ Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971, 93, 2897.

B1a

D8α

Figure 1.

Scheme VIII

configuration, the enantiomers of acid **B4** (Scheme V) seemed to be appropriate as starting points for both syntheses. Claisen rearrangement of commercially available allylic alcohol **B2** followed by hydrolysis and resolution of the resultant acid **B4** with (+)- and (-)- α -phenylethylamine afforded (+)-**B4R** and (-)-**B4S**. The absolute configuration of the (+)-acid **B4R** was determined by its transformation to (+)-(*R*)- α -ethyl- α -methylsuccinic acid (10) of known chirality⁹ as shown in Scheme VI.

The synthesis of the B ring was therefore continued by using the (-)-acid B4S which was converted via the amide B5 to aldehyde B6 (Scheme VII). Homologation to the aldehyde B7 was accomplished by condensation with nitromethane followed by reduction of the double bond and Nef reaction¹⁰ without purification of the intermediates.

The C-8 propionate side chain was now incorporated via the enamine modification of the Michael addition to methyl acrylate (Scheme VIII). The resulting 1:1 mixture of the 8α and β diastereomers **B8** was converted directly to the aldoxime **B1** (13% overall yield from **B4S**). Due to the presence of both *syn*- and *anti*-oximes (*syn/anti*-oxime ratio ~1:3 by ¹H NMR), **B1** was a mixture of four isomers which at first did not crystallize. Finally, after months, the extremely viscous oxime crystallized, and we were gratified to isolate first the pure *anti*-aldoxime **B1** α and from the mother liquor its diastereomer **B1** β . The relative configuration at C-8 in **B1** α was confirmed via X-ray diffraction analysis as shown in Figure 1. Since it is known from the pioneering synthetic investigations of Eschenmoser and Woodward^{2,11,12} that the

stereochemistry at C-8 can be adjusted later, both diastereomers were suitable for the synthesis of cobyric acid.

The synthesis of the D ring is shown in Schemes IX and X. Esterification of the (+)-acid **B4R** followed by lithium aluminum hydride (LAH) reduction provided alcohol D3 which was converted to the nitrile D4 via the tosylate. After oxidation with ozone to the aldehyde D5, the C-18 acetate side chain was established via Wittig-Horner reaction.¹³ Introduction of the second chiral center (shown in Scheme X) was accomplished by Michael addition of nitromethane to the α,β -unsaturated ester D6,¹⁴ resulting in a 2:1 mixture of the diastereomers D7 (by ¹H NMR). The major diastereomer D7 β was separated by one crystallization from ether and has, as will be seen later, the desired R configuration on both centers. In order to work out the reaction conditions to the desired target amino acid D1 β , the mother liquor of the nitroester D7 β (D7 β :D7 $\alpha \sim$ 1:2 by ¹H NMR) was used first. Reduction of the nitro group with zinc and hydrochloric acid (HCl) followed by basic workup gave the lactam D8. The enriched

⁽⁹⁾ Porath, J. Ark. Kemi 1951, 3, 163.

⁽¹⁰⁾ Noland, W. E. Chem. Rev. 1955, 55, 137 and references cited therein.

⁽¹¹⁾ Woodward, R. B. Pure Appl. Chem. 1968, 17, 519; 1971, 25, 283; 1973, 33, 145 and references cited therein.

⁽¹²⁾ For an account of this monumental achievement, see: Stevens, R. V. "Vitamin B-12"; Dolphin, D., Ed.; Wiley: New York, 1982; Vol. 1, Chapter 6.

⁽¹³⁾ Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733.

⁽¹⁴⁾ Pollini, G. P.; Barco, A.; De Giuli, G. Synthesis 1972, 44.

Scheme XI

Scheme XII

diastereomer D8 α (mp 157–158 °C) was isolated in pure form by crystallization, and its X-ray structure revealed that the tertiary center in D8 α has the S configuration (Figure 1). Acidic lactam opening afforded the extremely water soluble γ -amino acid D1 α . D ring precursor D1 β was finally obtained in the same way by opening lactam D8 β (mp 115–117 °C). The overall yield from the acid B4R was 4%.

The reduction of the nitro ester $D7\beta$ illustrates how the order of addition of reagents can affect the course of a reaction. If the zinc is added first followed by slow addition of HCl, the reduction stops at the hydroxylamine which cyclizes to the hydroxamic acid D9.

Synthesis of the C Ring. In our first approach to the synthesis of the four precursors A1-D1,³ the C ring was the one exception which could be prepared via the originally planned fragmentation pathway (Scheme II). This quite long synthesis with its modest overall yield caused us to investigate an alternate method of preparing the acetylenic oxime C1 (Scheme XI). Starting from commercially available alcohol C2, the chloride C3 was prepared according to a procedure reported by Hennion.¹⁵ The alkylation of C3 with ethyl cyanoacetate and subsequent decarboethoxylation of C4 as well as the reduction of nitrile C5 to the aldehyde C6 with diisobutylaluminum hydride (DIBAL-H) was employed earlier in our laboratories.^{16,17} Introduction of the C-13 propionate side chain via enamine Michael addition afforded acetylenic aldehyde C7 in 17% overall yield from alcohol C2. The second part of the C ring synthesis is shown in Scheme XII. Conversion of

the aldehyde C7 to the oxime C1 followed by saponification afforded the racemic acid C8 which was resolved with (-)- α phenylethylamine. Since the recrystallization of the ammonium salt C9 caused a change in the syn/anti-oxime ratio during the resolution, the optical rotation $[\alpha]^{25}_{D}$ of the oxime C1 α was not an appropriate measure for its optical purity. Therefore, small samples of the different fractions of C9 were converted to the nitrile C10, and its $[\alpha]^{25}_{D}$ was determined. The resolution was deemed complete as soon as further recrystallizations did not improve the optical purity of C10 ($0^{\circ} \ge [\alpha]^{25}_{D} \ge -65.7^{\circ}$). Proof for the sufficient resolution (>95%) of the C ring precursor C1 α is the fact (as will be seen later) that the combination of C with the D ring gave the "southern half" CD as a pure diastereomer. To determine the absolute configuration of C10, optically active aldehyde C7, synthesized from (-)-borneol via the fragmentation pathway (Scheme II), was converted to the nitrile C10. Its $[\alpha]^2$ -8.5° showed that the resolved oxime C1 α has the desired S configuration. The smaller that the configuration. The smaller absolute specific rotation revealed that racemization occurred during the boron trifluoride catalyzed fragmentation ($6 \rightarrow C7$, Scheme II).

Synthesis of the "Northern Half" AB. Due to the bulky α substituents, nitrile oxide A16 (Scheme XIII) proved to be less reactive than other tertiary examples and therefore more stable. Chlorination of the oxime A1 with N-chlorosuccinimide (NCS) in DMF at 40 °C gave the hydroxamoyl chloride A16a which was converted to A16 by elimination of HCl with triethylamine (Et₃N). The chromatographed nitrile oxide A16 which was stable at room temperature for weeks showed a characteristic IR absorption at 2290 cm⁻¹ and reacted with phenylacetylene as expected to give APh. The cycloaddition of A16 to the sterically more hindered acetylene B1 α (and B1 β) required special conditions: high concentration of reactants (1.0–0.5 M), long reaction time (6 days), and warming. Under these conditions, the northern half AB α (and AB β) was obtained in about 95% yield.

The initial plan was to construct the triisoxazole 3 according to the clockwise approach^{1d} via the diisoxazole ABC α . In order to work out the conditions for the nitrile oxide generation, AB α was added to the more reactive phenylacetylene first. The method employed for A16 utilizing NCS/DMF/Et₃N failed, and the *N*-bromosuccinimide/Et₃N/DMF (0 °C) procedure¹⁶ gave only small amounts of diisoxazole ABPh α . As will be seen below, the instability of the hydroxamoyl chloride of AB was responsible for these unexpected difficulties. Therefore, a new method for the

⁽¹⁵⁾ Hennion, G. F.; Boiselle, A. P. J. Org. Chem. 1961, 26, 725.
(16) Stevens, R. V.; Christensen, C. G.; Edmonson, W. L.; Kaplan, M.;
Reid, E. B.; Wentland, M. P. J. Am. Chem. Soc. 1971, 93, 6629.

⁽¹⁷⁾ Stevens, R. V.; Reid, E. B. Tetrahedron Lett. 1975, 4193.

low-temperature chlorination of aldoximes was worked out. tert-Butyl hypochlorite (t-BuOCl)¹⁸ in methylene chloride (C- H_2Cl_2) proved to be the ideal reagent and reacted at -78 °C to give the hydroxamoyl chloride of AB. The ensuing elimination of HCl had to be carried out at low temperature (-78 °C); otherwise little or no nitrile oxide was formed. The presence and decay of the AB nitrile oxide was analyzed by IR spectroscopy at room temperature (the half-life of the nitrile oxide in the reaction mixture is about 1.5 days). Using this procedure, the diisoxazole ABPh α was isolated in about 60% yield. While the nitrile oxide of $AB\alpha$ could also be added to *tert*-butylethylene, many attempts to add it to the C ring acetylene C1 α failed despite high concentration and large excess (4-20-fold) of the acetylene component. Besides the recovery of nearly all the C ring, medium-pressure liquid chromatography (MPLC) of the complicated mixture yielded unidentified high molecular compounds and very little (<5%), impure diisoxazole ABC α (by ¹H NMR and IR). Due to these difficulties, the plan to synthesize the triisoxazole 3 via the diisoxazole ABC α was abandoned in favor of the approach via the "northern half" and "southern half".

Synthesis of the "Southern Half" CD. We had planned originally to incorporate the D ring into the triisoxazole 3 and therefore into the "southern half" CD in the form of the amino acid D1 β . The anticipation of troublesome isolations of the products from amino acid mixtures caused us to work with the γ -nitro ester D7 β instead and to postpone the reduction of the nitro group.

Chlorination of the aldoxime C1 α to give the hydroxamoyl chloride C11 could be accomplished by either t-BuOCl/CH₂Cl₂ at -78 °C or NCS/DMF at 40 °C (Scheme XIV). In order to suppress the cycloaddition to itself, the nitrile oxide was generated with Et₃N in the presence of a 3-fold excess of D7 β which could be recovered after the reaction by chromatography. The pure diastereomer CD (by ¹H and ¹³C NMR) was isolated as an extremely viscous oil in 57% overall yield from the ammonium salt C9.

Linkage of the Northern with the Southern Half: Triisoxazole 4. The nitrile oxide of $AB\alpha$ (and $AB\beta$) was generated as described above with t-BuOCl/Et₃N/CH₂Cl₂ at -78 °C and reacted with a 3-fold excess of the acetylene CD at room temperature for 2.5 days. The triisoxazole 4α (and 4β) was isolated by chromatography on silica with benzene-pyridine 9:1 and 7:1 as eluents in about 30% yield. The spectroscopic data, NMR (¹H and ¹³C), IR, and fast atom bombardment MS (MH⁺ 1071), confirmed the structure shown in Scheme XIV.

In conclusion, this report describes the successful construction of the triisoxazole skeleton 4 which incorporates all the appropriate functionality for conversion to the Eschenmoser intermediate 2. The four precursors to this skeleton were synthesized in a concise and enantioselective manner and were then connected via a nitrile oxide cycloaddition onto an acetylenic moiety. Although it is as yet a "dream unfulfilled", very significant progress has been made toward this goal, and the feasibility of the approach has clearly been demonstrated. It is hoped that further studies will be undertaken.

Experimental Section

Melting points determined in glass capillaries and boiling points are uncorrected. Infrared (IR) spectra were obtained on a Beckman spectrophotometer IR-4210. ¹H NMR and ¹³C NMR spectra were recorded on a Brucker WP 200 spectrometer at 200 and 50 MHz, respectively, using tetramethylsilane as an internal standard (chemical shifts (δ) are reported in parts per million (ppm) and the coupling constants (J) are given in hertz). High-resolution mass spectra were measured on an AET Kratos MS 902. Combustion analyses were done by Spang Microanalytical Laboratory, Eagle Harbor, MI. All chromatographies were done with Merck silica gel 60 (70–230 mesh).

3-[(1R,2S)-2-(Cyanomethyl)-2,3-dimethylcyclopent-3-en-1-yl]propionitrile (A8). To the campholenaldehyde A6 (17.7 g, 0.1 mol) in methanol (250 mL) NaBH₄ (3.8 g, 0.1 mol) was added at 0 °C over 20 min. Stirring was continued at 25 °C for 1 h, the mixture neutralized with AcOH (6 mL), and the solvent removed by rotary evaporation. The residue was treated with H₂O (150 mL) and extracted with CH₂Cl₂ (3 \times 100 mL). The extract was dried (Na₂SO₄), filtered, and evaporated to give the crude alcohol A7. It was dissolved in pyridine (200 mL), and tosyl chloride (38.0 g, 0.2 mol) in pyridine (100 mL) was added at 0 °C. The mixture was maintained at that temperature for 5 h and then at 25 °C for 2 h (at higher temperature, some chloride was formed). The excess of tosyl chloride was hydrolized with ice (100 g) and after stirring for 2 h, the mixture was poured into 4 N HCl (1.5 L). Extraction with ether (5 \times 200 mL) afforded after drying (Na₂SO₄) and evaporation (VRE) the crude tosylate. It was dissolved in DMF (250 mL) containing pulverized NaCN (15 g, 0.3 mol), stirred at 20 °C overnight, and then poured into water (1.2 L). The precipitate was filtered and recrystallized from ether-hexane to give pure dinitrile A8 (15.5 g, 82.4%): mp 58-59.5 °C; $[\alpha]^{25}_{D}$ -29.02°, $[\alpha]^{25}_{435}$ -56.33° (c 6.98, CHCl₃); IR (KBr) 3040 (H-C=), 2240 (C=N), 1655 cm⁻¹ (w, C=C); ¹H NMR (CDCl₃) δ 0.98 (s, 3 H, CH₃C), 1.50-2.60 (m, 10 H, CH₃C=C, CH₂CHCH₂CH₂CN), 2.39 (s, 2 H, CH₂CN), 5.42 (m, 1 H, =CH--); ¹³C NMR (CDCl₃) δ 143.59, 124.26, 119.24, 117.80, 49.01, 46.29, 34.65, 26.82, 25.86, 17.85, 15.83, 12.14; MS (EI), m/z 188.1318, calcd for C12H16N2 188.1315.

(4R,5S)-5-(Cyanomethyl)-4-(formylmethyl)-5-methyl-6-oxoheptanenitrile (A9). The dicyanide A8 (18.8 g, 0.1 mol) in CH_2Cl_2 (300 mL) and methanol (50 mL) was ozonized at -78 °C until the blue color appeared. The reaction mixture was swept with $N_{2}% =0.01$ for 1 h, and then P(OCH₃)₃ (50 mL) was added. The mixture was allowed to warm up to 25 °C and stirred overnight. After removing the solvents, the P(OC- H_3)₃, and the PO(OCH₃)₃ by rotary evaporation on the high vacuum, the oily residue was crystallized by adding ether (100 mL) to give the colorless keto aldehyde A9 (19.8 g, 90%): mp 83-84 °C; $[\alpha]^{25}_{D}$ +4.88°, 435 +20.57° (c 5.22, CHCl₃); IR (KBr) 2840 and 2730 (CHO), 2240 $[\alpha]^{4}$ and 2230 (2 × C=N), 1720 and 1700 cm⁻¹ (C=O, aldehyde and ketone); ¹H NMR (CDCl₃) δ 1.35 (s, 3 H, CH₃C), 1.40-1.75 (m, 2 H, CH₂C-CN), 2.30 (s, 3 H, CH₃CO), 2.25-3.00 (m, 7 H, 2 × CH₂CN, CHCH₂CO), 9.85 (s, 1 H, CHO); ¹³C NMR (CDCl₃) δ 208.72 (C=O, ketone), 199.44 (CHO), 118.87 (CN), 117.79 (CN), 52.94, 44.29, 35.51, 27.67, 25.35, 21.97, 20.52, 15.97; MS (EI), m/z 177.1032 (M⁺ - 43), calcd for $C_{10}H_{13}N_2O$ (M⁺ - CH₃CO) 177.1092.

(4R,5S)-5-(Cyanomethyl)-4-[2-(dimethylamino)ethyl]-5-methyl-6oxoheptanenitrile (A10). The keto aldehyde A9 (22.0 g, 0.1 mol) was added to a mixture of dimethylamine hydrochloride (16.0 g, 0.196 mol), sodium acetate (13.0 g, 0.158 mol), and sodium cyanoborohydride (60%) (15.0 g, 0.143 mol) in methanol (500 mL). The mixture was stirred at 25 °C for 24 h while the pH was adjusted with AcOH to 7-8. Acetone (50 mL) was added to the mixture and then 5 N HCl until the pH was 2-1. The solvent was removed by rotary evaporation and the residue dissolved in water (150 mL) and extracted with ether (3 × 100 mL). The aqueous layer was alkalized with NaOH to liberate the amine and ex-

⁽¹⁸⁾ Teeter, H. M.; Bell, E. W. "Organic Syntheses"; Wiley: New York, 1963; Collect. Vol. 4, p 125.

tracted again with ether (6 × 100 mL). The combined ether layers were dried (K_2CO_3) and the solvent evaporated (VRE) to give the amino ketone A10 (24.0 g, 96.7%) which was used without further purification for the next step: IR (film) 2820 and 2770 (s, Bohlmann bands), 2240 (m, C=N), 1705 cm⁻¹ (s, C=O); ¹H NMR (CDCl₃) δ 1.40 (s, 3 H, CH₃), 2.22 (s, 6 H, N(CH₃)₂), 2.27 (s, 3 H, CH₃CO), 1.15–2.75 (m, 11 H).

(4R,5S)-5-(Cyanomethyl)-5-methyl-6-oxo-4-vinylheptanenitrile (A12). A solution of 80% m-chloroperbenzoic acid (13 g, 0.06 mol) in CH₂Cl₂ (100 mL) was added at 0 °C to the amino ketone A10 (15.0 g, 0.06 mol) in CH₂Cl₂ (400 mL) and the reaction mixture was stirred for 1 h. Diazomethane in ether was added to transform the m-chlorobenzoic acid into the methyl ester, and the solvents were removed by rotary evaporation. The residue was triturated with pentane to wash out the methyl m-chlorobenzoate. The resultant crude N-oxide A11 was dissolved in Me₂SO (150 mL) and benzene (80 mL), and the reaction mixture was heated-while benzene with some water and dimethylhydroxylamine was distilled off-until the temperature of the reaction mixture reached 110 °C. After cooling down, the mixture was poured into brine (500 mL) and extracted with ether ($6 \times 100 \text{ mL}$). After drying (Na₂SO₄) and evaporation (VRE), the residue was chromatographed on silica using ethyl acetate-hexane 1:2 as an eluent to afford the olefin A12 (9.3 g, rectify accurate inexant 1.2 as an eldent to arror the oterin Al2 (9.3 g, 75.6%) which crystallized upon standing: mp 45–46 °C; $[\alpha]^{25}{}_{D}$ +38.99°, $[\alpha]^{25}{}_{435}$ +128.44° (*c* 8.40, CHCl₃); IR (film) 3075 (w, H—C=), 2245 (m, C=N), 1705 (s, C=O), 1635 cm⁻¹ (w, C=C); ¹H NMR (CDCl₃) δ 1.40 (s, 3 H, CH₃C), 1.42–1.75 (m, 2 H, CH₂), 2.25 (s, 3 H, CH₃CO), 2.10-2.75 (m, 5 H, 2 × CH₂CN, CH), 5.25-5.65 (m, 3 H, CH=CH₂); ¹³C NMR (CDCl₃) δ 208.66 (C=O), 133.28, 122.54 (C=C), 118.77 (C=N), 117.84 (C=N), 52.45, 49.51, 25.83, 25.12, 22.25, 21.42, 15.61; MS (EI), m/z 204.1260, calcd for C₁₂H₁₆N₂O 204.1264.

Ethylene Ketal of (4R,5S)-5-(Cyanomethyl)-5-methyl-6-oxo-4-vinylheptanenitrile (A13). The mixture of the keto olefin A12 (5.1 g, 25 mmol), ethylene glycol (5 mL), benzene (400 mL), and TsOH (150 mg) was refluxed by using a Dean-Stark adapter for 20 h. After cooling, 1 mL of pyridine was added, and the reaction mixture was washed with brine (3 × 20 mL). The organic layer was dried (Na₂SO₄) and the solvent evaporated (VRE). Chromatography of the residue on silica (ethyl acetate-hexane 1:4) afforded the pure ketal A13 (5.5 g, 90.6%) as a colorless oil: $[\alpha]^{25}_{0}$ -13.71°, $[\alpha]^{25}_{435}$ -26.04° (c 5.10, CHCl₃); IR (film) 3070 (w, H—C=), 2240 (m, C=N), 1630 cm⁻¹ (w, C=C); ¹H NMR (CDCl₃) δ 1.19 and 1.31 (s, each 3 H, 2 × CH₃), 1.40–2.60 (m, 7 H), 3.90–4.15 (m, 4 H, OCH₂CH₂O), 5.10–5.80 (m, 3 H, CH=CH₂); ¹³C NMR (CDCl₃) δ 135.98, 120.18, 119.46, 119.19, 112.77, 65.08, 63.53, 49.56, 46.02, 24.98, 21.76, 20.26, 19.39, 15.86; MS (EI), m/z 189.1016 (M⁺ - 59), calcd for C₁₁H₁₃N₂O (M⁺ - CH₃ - CH₂CH₂O) 189.1029.

Ethylene Ketal of Methyl (4R,5S)-5-[(Methoxycarbonyl)methyl]-5methyl-6-oxo-4-vinylheptanoate (A14). The mixture of the dinitrile A13 (5.0 g, 20 mmol), NaOH (15.0 g), ethylene glycol (15 mL), H_2O (25 mL), and MeOH (50 mL) was heated, and MeOH was distilled off until the temperature of the mixture reached 110 °C. The mixture was refluxed for 75 h until no more ammonia could be detected with pH paper. The mixture was cooled down, DMF (150 mL) and methyl iodide (40 mL) were added, and the reaction mixture was stirred overnight at 25 °C. After the addition of water (400 mL), the product was extracted with CH_2Cl_2 (3 × 100 mL), the combined organic layers were dried (Na₂SO₄), and the solvents were removed by rotary evaporation. The residue was chromatographed on silica (ethyl acetate-hexane 1:4) to give The pure dister A14 (5.0 g, 78.5%) as a colorless oil: $[\alpha]^{25}_{D} + 0.98^{\circ}$, $[\alpha]^{25}_{435} + 5.65^{\circ}$ (c, 4.60, CHCl₃); IR (film) 3070 (w, H—C=), 1735 (s, C=O), 1635 cm⁻¹ (w, C=C); ¹H NMR (CDCl₃) δ 1.16 and 1.27 (s, each 3 H, 2 × CH₃), 1.30–2.60 (m, 7 H), 3.62 and 3.65 (s, each 3 H, $2 \times OCH_3$, 3.70-4.05 (m, 4 H, OCH₂CH₂O), 4.90-5.70 (m, 3 H, CH=CH₂); ¹³C NMR (CDCl₃) δ 174.34, 173.35 (2 × C=O), 138.47, 117.56 (C=C), 113.76 (O-C-O), 64.84, 63.29, 51.34, 51.13, 50.42, 47.79, 36.52, 32.58, 24.19, 21.11, 19.34; MS (EI), m/z 314.1724, calcd for C₁₆H₂₆O₆ 314.1729.

Ethylene Ketal of Methyl (45,55)-4-Formyl-5-[(methoxycarbonyl)methyl]-5-methyl-6-oxoheptanoate (A15). The olefin A14 (3.14 g, 10 mmol) in CH₂Cl₂/MeOH 1:1 (50 mL) was cooled to -78 °C. Ozone was bubbled into the solution through a glass tube at -78 °C until a blue color was detected (~1 h). The reaction mixture was swept with N₂ for 1 h and then (CH₃O)₃P (10 mL) was added. The mixture was allowed to warm up to 25 °C and stirred overnight. After removing the solvents and the excess of (CH₃O)₃P by rotary evaporation under high vacuum, the residue was chromatographed on silica (EtOAc/hexane 1:3) to afford the oily aldehyde A15 (3.00 g, 95%): $[\alpha]^{25}_{D} + 31.03^{\circ}$, $[\alpha]^{25}_{435} + 72.91^{\circ}$ (c 9.12, CHCl₃); IR (film) 2840 and 2740 (CHO), 1730 (C=O, ester), 1705 cm⁻¹ (C=O, aldehyde); ¹H NMR (CDCl₃) δ 1.26 and 1.32 (s, each 3 H, 2 × CH₃), 1.70-2.15 (m, 2 H, CH₂), 2.31 (t, J = 7.7, 2 H, CH₂CO), 2.49 (s, 2 H, CH₂CO), 2.50–2.65 (m, 1 H, CH), 3.65 and 3.66 (s, each 3 H, 2 × OCH₃), 3.70–4.00 (m, 4 H, OCH₂CH₂O), 9.49 (d, J = 5.1, 1 H, CHO); ¹³C NMR (CDCl₃) δ 199.91 (CHO), 173.61 and 171.47 (C=O, ester), 112.87 (O–C–O), 64.92 and 63.33 (OCH₂C-H₂O), 53.15 and 51.52 (2 × OCH₃), 48.87, 40.06, 31.98, 19.73, 1928, 18.48; MS (EI), m/z 301.1290 (M⁺ – 15), calcd for C₁₄H₂IO₇ (M⁺ – CH₃) 301.1287.

Oxime A1. To HONH₂·HCl (0.87 g, 12.5 mmol) in pyridine (10 mL) was added the aldehyde A15 (3.16 g, 10 mmol) in pyridine (5 mL) at 0 °C. The reaction mixture was stirred for 1 h at 0 °C and overnight at 25 °C. It was then diluted with H₂O (100 mL) and extracted with CH₂Cl₂ (3 × 100 mL). The organic layers were washed with H₂O (50 mL) and brine (25 mL) and dried (Na₂SO₄), and the solvent was removed by rotary evaporation. Filtration through silica with EtOAc/hexane 1:1 afforded predominantly (>95%, by ¹H NMR) the *anti*-oxime A1 (3.2 g, 96%) as an extremely viscous oil: $[\alpha]^{25}_{D}$ +28.66°, $[\alpha]^{25}_{435}$ +57.42° (*c* 6.50, CHCl₃); IR (film) 3500–3200 (br, OH), 1735 cm⁻¹ (s, C=O); ¹H NMR (CDCl₃) δ 1.15 and 1.29 (s, each 3 H, 2 × CH₃), 1.50–2.70 (m, 7 H), 3.64 and 3.66 (s, each 3 H, 2 × OCH₃), 3.80–4.00 (m, 4 H, OCH₂CH₂O), 7.32 (d, *J* = 9.2, 1 H, HC=N, *anti*-oxime), 7.70 (br s, 1 H, OH); ¹³C NMR (CDCl₃) δ 1.73.96 and 172.52 (C=O), 1.58 and 51.42 (OCH₃), 47.94, 44.05, 38.40, 32.17, 23.05, 19.57, 19.06; MS (EI), *m/z* 282.1367 (M⁺ - 49), calcd for C₁₄H₂₀NO₅ (M⁺ - H₂O - OCH₃) 282.1342.

Ethyl 3-Methyl-3-vinyl-4-pentynoate (B3). In a 12 L flask with a Dean-Stark trap and a reflux condensor, freshly distilled trans-3methyl-2-penten-4-yn-1-ol (B2) (577 g, 6 mol, Fluka), triethyl orthoacetate (3410 g, 21 mol), DMF (4.5 L), and propionic acid (42 g, 0.6 mol) were mixed and refluxed for 6 days. Every day, 300 mL solvent was distilled off and propionic acid (9 g, 0.12 mol) was added. After cooling down to 25 °C, water (6 L) was added and the upper layer was separated (the workup was done in three parts). The aqueous layer was extracted with ether $(3 \times 1.5 \text{ L})$ and the combined organic layers were washed with H_2O (2 × 1.5 L), saturated NaHCO₃ (600 mL), and brine (300 mL). After drying (Na₂SO₄), the ether was removed by rotary evaporation and the excess of triethyl orthoacetate was recovered by distillation through a 50-cm Vigreux column at reduced pressure (bp \sim 60 °C/30 torr). Then, the ethyl ester B3 (704 g, 71%) was distilled over 1 H, HC=), 2.54 (s, 2 H, CH₂), 4.15 (q, $J = 7, 2 \text{ H, CH}_2\text{O}$), 5.11 (dd, $\begin{array}{l} \text{11, 11C} (-1), 2134 (s, 211, C12), 413 (q, 3 = 7, 211, C12), 311 (dd, 31 = 10, 32 = 1, 14_a), 5.42 (dd, 31 = 17, 32 = 1, 14_b), 5.87 (dd, 31 = 17, 32 = 10, 14_c, CH_c = CH_aH_b); ^{13}C NMR (CDCl_3) \delta 170.07 (C_1), 141.43 (-14C =), 113.73 (H_2C =), 86.56 (C_4), 71.75 (C_5), 60.36 (CH_2O), 46.19 (C_2), 36.71 (C_3), 27.61 (CH_3), 14.27 (CH_3C = O); MS (EI) m/z \end{array}$ 166.0987, calcd for C₁₀H₁₄O₂ 166.0994.

3-Methyl-3-vinyl-4-pentynoic Acid (B4). NaOH (320 g, 8 mol) was dissolved in 30% ethanol-water (4 L) and added to the ester B3 (665 g, 4 mol). After stirring at 25 °C overnight, the reaction mixture was diluted with H₂O (2 L) and extracted with ether (2 × 1 L). The aqueous solution was acidified with 2 N HCl (4.4 L) and extracted with ether (3 × 1 L). The extract was washed with water (2 × 400 mL) and brine (200 mL) and dried (Na₂SO₄), and the ether was removed by rotary evaporation. Distillation afforded the pure acid B4 (515 g, 93%): bp 73-75 °C/0.2 torr; IR (film) 3400-2500 (br, OH), 3290 (s, H-C=), 1705 (s, C=O), 1635 cm⁻¹ (w, C=C); ¹H NMR (CDCl₃) δ 1.46 (s, 3 H, CH₃), 2.37 (s, 1 H, HC=C), 2.60 (s, 2 H, CH₂), 5.13 (dd, J₁ = 10, J₂ = 1, H₄), 5.45 (dd, J₁ = 17, J₂ = 1, H_b), 5.88 (dd, J₁ = 17, J₂ = 10, H₆, CH₆=CH₆H₄H_b), 10.75 (br s, 1 H, COOH); ¹³C NMR (CDCl₃) δ 176.61 (C₁), 140.99 (-CH=), 114.12 (H₂C=), 86.25 (C₄), 71.95 (C₅), 46.03 (C₂), 36.42 (C₃), 27.52 (CH₃); MS (EI) *m/z* 138.0681, calcd for C₈H₁₀O₂ 138.0681.

Resolution of Racemic Acid B4 with (+)- α -Phenylethylamine: (-)-**B4S.** (+)- α -Phenylethylamine (606 g, 5 mol, Aldrich, $[\alpha]^{25}_{D} + 38.1$, neat) was added to the acid **B4** (691 g, 5 mol) in 2-propanol (7.8 L = 6 mL per g of salt). The solution was allowed to cool down to 25 °C and then cooled overnight to -20 °C. The salt precipitate was filtered and dried. After 30 recrystallizations using the same ratio of solvent per gram of salt, the diastereomeric purity of the salt (188 g, 29%) was 97.5 ± 2% [the diastereomeric purity was calculated from the heights of the acid methyl singlets (200-MHz ¹H NMR) referring to the RS salt (δ 1.26) and its diastereomer (δ 1.29)]. The melting point rose only by 4 °C from 138-139 to 142-143 °C.

The diastereomeric salt (188 g, 0.725 mol) in 2 N HCl (1.45 L) was extracted with ether (4 × 150 mL). The combined ether layer was washed with brine (2 × 25 mL) and dried (Na₂SO₄), and the solvent was removed by rotary evaporation. Distillation afforded the (-)-acid **B4S** (99.2 g, 29%) in ~95% optical purity: bp 73-75 °C/0.2 torr; $[\alpha]^{25}_{D}$

 -23.00° , $[\alpha]^{25}_{435}$ -48.42° (c 15.68, CHCl₃).

The water layer was basified carefully under stirring with NaOH (130 g) and the cold solution was extracted with ether $(4 \times 150 \text{ mL})$. The combined ether layers were washed with brine $(2 \times 25 \text{ mL})$ and dried (Na₂SO₄). After removing the solvent (VRE), the residue was distilled to give the recovered (+)- α -phenylethylamine (86.1 g, 98%): bp 84-85 °C/20 torr.

The same procedures were applied to recover the acid and the amine from the mother liquors.

Resolution of Racemic Acid B4 with $(-)-\alpha$ -Phenylethylamine: (+)-B4R. The acid B4 (691 g, 5 mol) was resolved with $(-)-\alpha$ -phenylethylamine (606 g, 5 mol) to give the (+)-acid B4R (100.3 g, 29%) in ~95% optical purity (according to the procedure for (-)-B4S): $[\alpha]^{25}_{D}$ +23.08°, $[\alpha]^{25}_{435}$ +47.56° (c 10.84, CHCl₃).

(S)-N,N-Dimethyl-3-methyl-3-vinyl-4-pentynamide (B5). The (-)acid B4S (138.2 g, 1 mol) and thionyl chloride (178.5 g, 1.5 mol) were refluxed until the gas evolution stopped (1 h at a bath temperature of 100 °C). After cooling, the excess of thionyl chloride was removed by rotary evaporation, and the crude acid chloride in absolute ether (500 mL) was added to dimethylamine (113 g, 2.5 mol) in absolute ether (500 mL) at -40 °C over 0.5 h. After stirring the reaction mixture for 1 h at 0 ° the excess of the amine and its salt were extracted with 2 N HCl (500 mL). The aqueous layer was extracted with ether $(2 \times 500 \text{ mL})$ and the organic layers were washed with H₂O (200 mL) and brine (100 mL). After the combined ether layers (Na2SO4) were dried, the solvent was removed (VRE) and the residue distilled to give the amide B5 (155 g, 94%) as a colorless oil: bp 69–70 °C/0.5 torr; $[\alpha]^{25}_{D}$ –12.27°, $[\alpha]^{25}_{435}$ –24.50° (c 14.31, CHCl₃); IR (film) 3290 and 3230 (m, HC=), 3080 (w, HC=), 2100 (w, C=C), 1640 cm⁻¹ (s, C=O); ¹H NMR (CDCl₃) δ 1.49 (s, 3 H, CH₃C), 2.35 (s, 1 H, HC=C), 2.60 (s, 2 H, CH₂), 2.95 and 3.05 (s, each 3 H, NMe₂), 5.09 (dd, $J_1 = 10$, $J_2 = 1$, H_a), 5.43 (dd, $J_1 = 17$, $J_2 = 1$, H_b), 5.96 (dd, $J_1 = 17$, $J_2 = 10$, H_c , CH_c — CH_aH_b); ¹³C NMR (CDCl₃) δ 169.49 (C₁), 142.23 (—CH=), 113.09 (H₂C=), 87.46 (C₄), 71.50 (C₅), 43.79 (C₂), 38.27 and 37.15 (NMe₂), 35.40 (C₃), 27.87 (CH₃); MS (EI), m/z 165.1142, calcd for C₁₀H₁₅NO 165.1154.

(*R*)-*N*,*N*-Dimethyl-3-formyl-3-methyl-4-pentynamide (B6). The olefin B5 (41.3 g, 0.25 mol) in CH₂Cl₂ (500 mL) was cooled to -78 °C and ozone was bubbled into the solution through a glass tube at -78 °C until no starting material was detected by TLC (~10 h). The reaction mixture was swept with N₂ for 1 h and then dimethyl sulfide (100 mL) was added. The mixture was allowed to warm up to 25 °C and stirred overnight. After washing with H₂O (100 mL) and brine (50 mL), the solution was dried and the solvents were removed (VRE). Distillation of the residue afforded oily colorless aldehyde B6 (35.0 g, 84%): bp 100-102 °C/0.5 torr; [α]²⁵_D-39.68°, [α]²⁵₄₃₅-96.37° (*c* 11.97, CHCl₃); IR (film) 3270 (s, HC=), 2820 and 2720 (w, CHO), 2110 (C=C), 1730 (s, C=O, aldehyde), 1640 cm⁻¹ (s, C=O, amide); ¹H NMR (CDCl₃) δ 1.41 (s, 3 H, CH₃C), 2.36 (s, 1 H, HC=C), 2.93 (s, 5 H, CH₂ + MMe), 3.02 (s, 3 H, NMe), 9.76 (s, 1 H, CHO); ¹³C NMR (CDCl₃) δ 198.32 (CHO), 169.05 (C₁), 84.55 (C₄), 72.58 (C₅), 43.76 (C₃), 43.31 (C₂), 37.51 and 35.40 (NMe₂), 22.47 (CH₃); MS (EI), *m/z* 138.0918 (M⁺ - 29), calcd for C₈H₁₂NO (M⁺ - CHO) 138.0918.

(R)-N,N-Dimethyl-3-(formylmethyl)-3-methyl-4-pentynamide (B7). The mixture of the aldehyde B6 (83.6 g, 0.5 mol), 2-propanol (1 L), nitromethane (100 mL, 1.75 mol), and KF (14.5 g, 0.25 mol) was stirred at 25 °C for 1 day. After removing the solvent by rotary evaporation, water (250 mL) was added and the mixture was extracted with CH_2Cl_2 (3 × 500 mL). The combined organic layer was washed with brine (250 mL) and dried (Na₂SO₄) and the solvent was evaporated (VRE) to give the crude nitro alcohol (111.7 g, 98%) as a viscous orange oil.

It was dissolved in ethyl acetate (1 L), and methanesulfonyl chloride (68.7 g, 0.6 mol) was added all at once at 0 °C. Then triethylamine (101 g, 1 mol) was added under stirring over 20 min at 0 °C, and stirring at that temperature was continued for 2 h. After 2 N HCl (250 mL) was added, the water layer was extracted with EtOAc (2×250 mL), and the organic layers were washed with concentrated Na₂CO₃ (250 mL) and brine (100 mL). Drying (Na₂SO₄) and evaporation of the solvent (VRE) gave the crude nitro olefin B7a (101.0 g, 96%) which was used without further purification for the next step. To a solution of the nitro olefin **B7a** (101 g) in ethanol (500 mL) at 0 °C was added NaBH₄ (18.9 g, 0.5 mol) over 20 min. After stirring for 2 h at 0 °C, the alcohol was removed (VRE) and 2 N HCl (500 mL) was added carefully under cooling. The product was extracted with CH_2Cl_2 (3 × 500 mL) and the extracts were washed with brine (250 mL). The combined organic layers were dried (Na₂SO₄), and the CH₂Cl₂ was removed (VRE) to give the crude nitro compound B7b (89 g, 84%) which was dissolved in MeOH (250 mL) and added at 0 °C to a solution of sodium methoxide (11.5 g of dissolved Na, 0.5 mol) in MeOH (250 mL) over 15 min and the mixture was stirred for 0.5 h. This nitronate solution was added under stirring over 0.5 h to a -40 °C mixture of concentrated H₂SO₄ (100 mL) and MeOH (500 mL). During the addition, the mixture was kept at -40 °C and after additional stirring at -20 °C for 1 h, it was poured into CH_2Cl_2 (2.5 L). The organic layer was washed with cold water (1 L) and the water layer was extracted with CH_2Cl_2 (500 mL). The combined organic layers were dried (Na₂SO₄), and the solvent was removed (VRE) to afford the crude dimethyl acetal (70.5 g, 62%).

CH₂Cl₂ (500 mL) and 2 N HCl (500 mL) were added, and the mixture was stirred for 1 day at 25 °C. Then the water layer was extracted with CH₂Cl₂ (2 × 250 mL), and all three organic layers were washed with brine (100 mL), combined, and dried (Na₂SO₄). The solvent was removed by rotary evaporation and the residue chromatographed on silica (EtOAc-hexane 1:1) to afford the pure aldehyde **B7** (22.5 g, 25% overall from **B6**) as a colorless oil: $[\alpha]^{25}_{D} + 7.21^{\circ}, [\alpha]^{25}_{435} + 14.15^{\circ}$ (neat); IR (film) 3260 (m, HC \equiv), 1715 (s, C=O, aldehyde), 1635 cm⁻¹ (s, C=O, amide); ¹H NMR (CDCl₃) δ 1.48 (s, 3 H, CH₃), 2.29 (s, 1 H, HC \equiv C), 2.61 and 2.69 (AB, $J_{AB} = 15$, each 1 H, CH₂CON), 2.70 and 2.95 (ABX, $J_{AB} = 16$, $J_{AX} = J_{BX} = 2$, each 1 H, CH₂CHO), 2.95 and 3.06 (s, each 3 H, NMe₂), 9.89 (t, J = 2, 1 H, CH₀C); ¹³C NMR (CDCl₃) δ 201.44 (CHO), 169.52 (C₁), 88.13 (C₄), 70.73 (C₅), 52.54 (CCHO), 42.33 (C₂), 37.95 and 35.43 (NMe₂), 31.19 (C₃), 28.12 (CH₃); MS (E1) *m/z* 153.1155 (M⁺ - 28), calcd for C₉-H₁₅NO (M⁺ - CO) 153.1155.

Methyl (4R/S,5S)-5-[(Dimethylcarbamoyl)methyl]-4-formyl-5methyl-6-heptynoate (B8). The mixture of the aldehyde B7 (18.1 g, 0.1 mol) and pyrrolidine (10.7 g, 0.15 mol) in benzene (200 mL) was refluxed for 1 h with continuous removal of H₂O by a Dean-Stark trap. The benzene and the excess pyrrolidine were evaporated (VRE) to give the crude enamine which was dissolved in acetonitrile (200 mL). After the addition of methyl acrylate (17.2 g, 0.2 mol), the mixture was refluxed for 8 h and cooled, and 50% AcOH (100 mL) was added. The mixture was then refluxed again for 0.5 h, cooled, and poured into icewater (500 mL). After extraction with CH_2Cl_2 (3 × 500 mL), the combined organic layers were washed with saturated NaHCO₃ (2×100 mL) and brine (100 mL) and dried over Na₂SO₄. The solvent was removed (VRE) and the residue chromatographed on silica (EtOAchexane 2:1) to give pure oily ester B8 (21.5 g, 80%) as a 1:1 diastereomeric mixture: IR (film) 3270 (m, HC==), 1735 (C==O, ester), 1720 (C=O, aldehyde), 1640 cm⁻¹ (C=O, amide); ¹H NMR (CDCl₃) δ 1.43 and 1.47 (s, 3 H, CH₃C), 1.80-2.95 (m, 7 H), 2.33 and 2.35 (s, 1 H, HC=C), 2.96, 3.04, 3.06 (3s, total 6 H, NMe₂), 3.67 (s, 3 H, OCH₃), 9.88 and 9.91 (d, J = 3, 1 H, CHO); MS (EI), m/z 252.1244 (M⁺ – 15), calcd for C₁₃H₁₈NO₄ (M⁺ – CH₃) 252.1236.

Oxime B1 α and B1 β . The aldehyde B8 (13.36 g, 50 mmol, 1:1 mixture of diastereomers) in pyridine (10 mL) was added all at once to an ice-cold solution of HONH₂·HCl (4.34 g, 62.5 mmol) in pyridine (40 mL). The mixture was stirred at 0 °C for 1 h and then at 25 °C overnight. It was added to ice-cold 4 N HCl (150 mL) and extracted with CH₂Cl₂ (3 × 200 mL). The extract was washed with 2 N HCl, saturated NaHCO₃, and brine (50 mL) and dried (Na₂SO₄). Evaporation of the solvent (VRE) afforded the crude oxime B1 (13.1 g, 93%) which was a 1:1 mixture of diastereomers with a *syn/anti*-oxime ratio of 1:3 (by ¹H NMR).

The extremely viscous **B1** was dissolved in ether (130 mL) and the oxime crystallized at -10 °C. Two additional recrystallizations from CH₂Cl₂/Et₂O yielded the *anti*-oxime **B1** α (3.94 g, 56%) as a pure diastereomer: mp 114-115 °C; $[\alpha]^{25}_{D} + 45.46^{\circ}, [\alpha]^{25}_{435} + 90.22$ (c 5.35, CHCl₃); IR (KBr) 3400-3220 (s, OH), 3210 (s, HC=), 2100 (w, C=C), 1735 (C=O, ester), 1685 (w, C=N), 1615 cm⁻¹ (s, C=O, amide); ¹H NMR (CDCl₃) δ 1.49 (s, 3 H, CH₃C), 1.75-2.75 (m, 7 H), 2.25 (s, 1 H, HC=C), 2.95 and 3.03 (s, each 3 H, NMe₂), 3.67 (s, 3 H, CH₃O), 7.41 (d, J = 9, 1 H, CH=N), 8.27 (s, 1 H, OH); ¹³C NMR (CDCl₃) δ 173.67 (C=O, ester), 170.00 (C=O, amide), 152.03 (C=N), 86.95 (HC=C), 71.66 (HC=), 51.65 (OCH₃), 47.56, 41.24, 38.40, 36.52, 35.62, 31.95, 24.96, 23.01; MS (EI), m/z 265.1549 (M⁺ - 17), calcd for C₁₄H₂₁N₂O₃ (M⁺ - OH) 265.1553. The X-ray structure which shows the absolute configuration of **B1** α is plotted in Figure 1.¹⁹

The mother liquors of **B**1 α were evaporated and redissolved in 10 part Et₂O, and the oxime **B**1 β was crystallized at -10 °C. Two additional recrystallizations from CH₂Cl₂/Et₂O yielded the *anti*-oxime **B**1 β (3.67 g, 52%) as a pure diastereomer (>95% *anti*-oxime by ¹H NMR): mp 82-83 °C; $[\alpha]^{25}_{D}$ +13.70°, $[\alpha]^{25}_{435}$ +27.62° (c 3.70, CHCl₃); ¹H NMR (CDCl₃) δ 1.37 (s, 3 H, CH₃C), 1.70–2.80 (m, 7 H), 2.25 (s, 1 H, HC=C), 2.96 and 3.06 (s, each 3 H, NMe₂), 3.67 (s, 3 H, CH₃O), 7.37 (d, *J* = 9, 1 H, CH=N), 7.88 (s, 1 H, OH); ¹³C NMR (CDCl₃) δ 173.77 (C=O, ester), 169.88 (C=O, amide), 151.71 (C=N), 87.43 (HC=C),

⁽¹⁹⁾ The final agreement factors for compounds **B1** α and **D8** α are R = 0.0558 and $R_w = 0.0619$ and R = 0.0972 and $R_w = 0.0845$, respectively. Complete details of the X-ray crystal structure analyses of these two compounds can be found in the supplementary material.

71.44 (HC==), 51.61 (CH₃O), 47.11, 41.02, 38.37, 36.64, 35.62, 31.98, 24.67, 23.56.

Methyl (*R*)-3-Methyl-3-vinyl-4-pentynoate (D2). Acetyl chloride (25 mL) and methanol (500 mL) were mixed together at 0 °C, and then the (+)-acid **B4R** (69.1 g, 0.5 mol) was added. After the mixture was stirred at 25 °C overnight, the methanol was removed (VRE) and the residue dissolved in CH₂Cl₂ (500 mL). The solution was washed with H₂O, concentrated NaHCO₃, and brine (100 mL) and dried (Na₂SO₄). After removal of the CH₂Cl₂ by rotary evaporation, the residue was distilled under reduced pressure to give the pure methyl ester **D2** (71.5 g, 94%) as a colorless liquid: bp 79-80 °C/25 torr; $[\alpha]^{25}_{D}$ +20.9°, $[\alpha]^{25}_{435}$ +43.1° (*c* 10.90, CHCl₃); IR (film) 3300 (m, HC=), 1735 (s, C=O), 1635 cm⁻¹ (w, C=C); ¹H NMR (CDCl₃) δ 1.44 (s, 3 H, CH₃C), 2.36 (s, 1 H, HC=C), 2.56 (s, 2 H, CH₂), 3.68 (s, 3 H, CH₃O), 5.11 (dd, $J_1 = 10, J_2 = 1, H_a$), 5.43 (dd, $J_1 = 17, J_2 = 1, H_b$), 5.87 (dd, $J_1 = 17, J_2 = 10, H_c, CH_c=CH_aH_b$); ¹³C NMR (CDCl₃) δ 170.47 (C₁), 141.30 and 113.81 (C=C), 86.44 (C₄), 71.75 (C₅), 51.44 (CH₃O), 46.00 (C₂), 36.60 (C₃), 27.57 (CH₃); MS (EI), *m/z* 152.0834, calcd for C₉H₁₂O₂

Methyl (S)-3-Formyl-3-methyl-4-pentynoate (7). The mixture of the olefin D2 (0.91 g, 6 mmol) and MeOH/CH₂Cl₂ 1:1 (15 mL) was ozonized at -78 °C until the blue appeared and then swept with N₂ for 0.5 h. After the addition of $(CH_3O)_3P$ (2 mL), the mixture was allowed to warm up to 25 °C and stirred overnight. Evaporation of the solvents and chromatography of the residue on silica with EtOAc-hexane 1:4 afforded 0.79 g (85%) of acetylenic aldehyde 7: $[\alpha]^{25}{}_D$ +2.6°, $[\alpha]^{25}{}_{435}$ -2.0° (*c* 6.10, CHCl₃); IR (film) 3280 (m, HC \equiv), 1735 cm⁻¹ (s, CHO and CO₂Me); ¹H NMR (CDCl₃) δ 1.42 (s, 3 H, CH₃); 2.42 (s, 1 H, HC \equiv C), 2.76 and 2.86 (AB, $J_{AB} = 16$, each 1 H, CH₂), 3.70 (s, 3 H, CH₃), 9.64 (s, 1 H, CHO); ¹³C NMR (CDCl₃) δ 197.20, 170.23, 82.70, 73.99, 51.90, 43.99, 41.46, 21.86; MS (EI), m/z 142.0633 (M⁺ - 12), calcd for C₇-H₁₀O₃ (M⁺ - C) 142.0630.

(S)-2-Ethynyl-2-methylsuccinic Acid 4-Methyl Ester (8). To the aldehyde 7 (0.77 g, 5 mmol) in acetone (12.5 mL) Jones reagent was added dropwise at 25 °C until the orange remained for 0.5 h. The acetone was decanted and the green salt washed with acetone (2 × 5 mL). After evaporation of the combined organic layers, H₂O (5 mL) was added, and the product was extracted with CH₂Cl₂ (3 × 25 mL). Evaporation of the solvent and chromatography on silica with EtOAc-hexane 2:3 afforded 0.52 g (61%) of acid 8: $[\alpha]^{25}_{D}$ +19.0°, $[\alpha]^{25}_{433}$ +36.45° (*c* 4.90, CHCl₃); IR (film) 3600-2600 (br, CO₂H), 3280 (m, HC \equiv), 1735 (s, C=O, ester), 1715 cm⁻¹ (s, C=O, acid); ¹H NMR (CDCl₃) δ 1.62 (s, 3 H, CH₃), 2.37 (s, 1 H, HC \equiv C), 2.87 and 2.93 (AB, J_{AB} = 16.4, each 1 H, CH₂), 3.72 (s, 3 H, CH₃O); ¹³C NMR (CDCl₃) δ 177.66, 170.23, 83.07, 71.80, 51.81, 43.41, 39.95, 25.43; MS (EI), *m/z* 170.0589 (M⁺), calcd for C₈H₁₀O₄ 170.0579.

(R)-2-Ethyl-2-methylsuccinic Acid (10). The acetylenic acid 8 (0.26 g, 1.5 mmol) in MeOH (7.5 mL) was hydrogenated over 10% Pd-C at 1 atm until the theoretical amount of H₂ was consumed. The catalyst was filtered off, and the methanol was evaporated to give the crude ester 9 which was used without purification for the next step. NaOH (2 N) (7.5 mL) was added, and the mixture was stirred at 25 °C overnight. The solution was then acidified with 2 N HCl and extracted with EtOAC (3 × 15 mL). Evaporation of the solvent (VRE) and chromatography of the residue on silica (EtOAc-hexane 2:1) afforded 0.20 g (84%) diacid 10. Crystallization from benzene-cyclohexane gave 0.16 g of optically active 2-ethyl-2-methylsuccinic acid: mp 63-64 °C; $[\alpha]^{25}_D + 5.6^\circ$ (c 5.40, CHCl₃); [lit.⁹ (S)-acid mp 64.6-65.4 °C; $[\alpha]^{22}_D - 5.9^\circ$); IR, ¹H, and ¹³C NMR were identical with those of an authentic sample.

(R)-3-Methyl-3-vinyl-4-pentyn-1-ol (D3). At 0 °C, the ester D2 (68.5 g, 0.45 mol) was added to a suspension of LAH (17.1 g, 0.45 mol) in absolute ether (450 mL) under stirring over 0.5 h. The reaction mixture was now refluxed for 2 h and then cooled below 0 °C with dry iceacetone. HCl (6 N) (350 mL) was added at a rate that the temperature did not exceed 5 °C and then the ether layer was separated. The aqueous layer was extracted with ether $(2 \times 200 \text{ mL})$, and the combined organic layers were washed with 100 mL of H_2O , concentrated NaHCO₃, and brine. After drying (Na₂SO₄) and evaporation of the ether (VRE), distillation of the residue afforded the alcohol D3 (52.4 g, 94%): bp 92 °C/25 torr; $[a]^{25}_{D}$ +14.8°, $[a]^{25}_{435}$ +28.6° (c 10.13, CHCl₃); IR (film) 3325 (br, OH), 3300 (s, HC=), 3085 (w, HC=), 2110 (w, C=C), 1640 cm⁻¹ (m, C==C); ¹H NMR (CDCl₃) δ 1.33 (s, 3 H, CH₃), 1.65-1.95 (m, 2 H, CH₂), 1.98 (s, 1 H, OH), 2.38 (s, 1 H, HC=C), 3.78 (t, J = 6.5, 2 H, CH₂O), 5.10 (dd, $J_1 = 10$, $J_2 = 1.4$, H_a), 5.43 (dd, $J_1 = 17$, $J_2 = 1.4$, H_b), 5.72 (dd, $J_1 = 17$, $J_2 = 10$, H_c, CH_c=CH_aH_b); ¹³C NMR (CDCl₃) δ 142.52, 113.60 (C=C), 87.39 (C₄), 72.42 (C₅), 60.07 (C₁), 44.02 (C2), 37.17 (C3), 28.76 (CH3); MS (EI), m/z 124.0887, calcd for C8H12O 124.0888

(**R**)-4-Methyl-4-vinyl-5-hexynonitrile (D4). *p*-Toluenesulfonyl chloride (95.4 g, 0.5 mol) was added in portions to the alcohol D3 (49.7 g,

0.4 mol) in pyridine (200 mL) at 0 °C. After stirring at 25 °C overnight, ice (40 g) was added and the mixture stirred for 0.5 h. Then 6 N HCl (500 mL) was added under cooling and the aqueous layer was extracted with ether $(3 \times 200 \text{ mL})$. The combined organic layers were washed with 100 mL of 2 N HCl, concentrated NaHCO₃, and brine and dried (Na₂SO₄). Evaporation of the solvent afforded the oily tosylate (111.5 g, 100%) which was dissolved in Me₂SO (400 mL, dried over CaH₂ at 120 °C for 2 h and then distilled at 20 torr). NaCN (39.2 g, 0.8 mol, dried for 2 days at 90 °C under high vacuum) was added and the mixture stirred at 90 °C for 2 h. The dark-brown reaction mixture was cooled and poured into ice-water (800 g). The aqueous layer was extracted with ether (4 \times 200 mL), and the combined ether layers were washed with brine (2 \times 50 mL). After drying (NaSO₄), the solvent was evaporated (VRE) and the residue distilled to afford the colorless liquid nitrile D4: bp 98–99 °C/20 torr; $[\alpha]^{25}_{D}$ +38.9°, $[\alpha]^{25}_{435}$ +79.5° (*c* 9.42, CHCl₃); IR (film) 3290 (s, HC=), 3080 (w, HC=), 2240 (m, C=N), 2100 (w, IR (Initi) 3250 (s, HC=), 3050 (w, HC=), 2240 (iii, C=IV), 2100 (w, C=C), 1635 cm⁻¹ (m, C=C); ¹H NMR (CDCl₃) δ 1.35 (s, 3 H, CH₃), 1.70-2.05 (m, 2 H, CH₂), 2.25-2.60 (m, 2 H, CH₂CN), 2.39 (s, 1 H, HC=C), 5.18 (dd, $J_{BX} = 9.5$, $J_{AX} = 1.8$, H_X), 5.44 and 5.60 (ABX, $J_{AB} = 16.9$, $J_{AX} = 1.8$, $J_{BX} = 9.5$, H_A and H_B , $CH_B=CH_AH_X$); ¹³C NMR $(CDCl_3) \delta 140.44 (-CH=), 119.74 (C_1), 115.61 (H_2C=), 85.22 (C_5),$ 73.54 (C₆), 38.69 (C₄), 37.09 (C₃), 28.18 (CH₃), 13.46 (C₂); MS (EI), m/z 133.0871, calcd for C₉H₁₁N 133.0892.

(S)-4-Formyl-4-methyl-5-hexynonitrile (D5). The olefin D4 (66.6 g, 0.5 mol) in CH₂Cl₂ (1000 mL) was ozonized at -78 °C until a light-blue color was detected (~10 h). The reaction mixture was swept with N₂ for 1 h, and then Me₂S (200 mL) was added. The mixture was allowed to come to 25 °C and stirred overnight. After washing with H₂O (2 × 200 mL) and brine (100 mL), the solution was dried (Na₂SO₄). Evaporation of the solvent (VRE) and distillation of the residue afforded the colorless liquid aldehyde D5 (52.7 g, 78%): bp 65–67 °C/0.5 torr; [α]²⁵₄₃₅ -243.6° (*c* 14.12, CHCl₃); IR (film) 3280 (s, HC \equiv), 2800 and 2720 (w, CHO), 2250 (w, C \equiv N), 1730 cm⁻¹ (s, C=O); ¹H NMR (CDCl₃) δ 1.39 (s, 3 H, CH₃), 1.78–1.98 and 2.10–2.30 (m, each 1 H, CH₂), 2.45–2.58 (m, 2 H, CH₂CN), 2.53 (s, 1 H, HC \equiv C), 9.47 (s, 1 H, CHO); ¹³C NMR (CDCl₃) δ 196.38 (C=O), 119.06 (C₁), 80.95 (C₃), 76.16 (C₆), 46.28 (C₄), 30.90 (CH₃), 2.1.71 (C₃), 13.28 (C₂); MS (EI), *m/z* 107.0732 (M⁺ – 28), calcd for C₇H₉N (M⁺ – CO) 107.0735.

Methyl (R)-4-(2-Cyanoethyl)-4-methylhex-2(E)-en-5-ynoate (D6). In a three-necked flask with a mechanical stirrer, 50% NaH oil dispersion (26.4 g, 0.55 mol) was washed with pentane (3 \times 100 mL), and dry DME (250 mL) was added. To this NaH suspension trimethylphosphonoacetate (100.2 g, 0.55 mol) in DME (125 mL) was added over 0.5 h at 0 °C. After stirring for 0.5 h, the aldehyde D5 (67.6 g, 0.5 mol) in DME (125 mL) was added at a rate that the temperature did not exceed 30 °C and then the mixture was stirred for 4 h at 25 °C (meanwhile the initially insoluble salt gradually dissolved and the mixture turned brown). The reaction mixture was poured into ether (2.5 L) and extracted with saturated NH₄Cl (250 mL) and brine (3 × 250 mL). The solution was dried (Na₂SO₄), the ether evaporated (VRE), and the residue chromatographed on silica (EtOAc-hexane 1:5) to give the oily ester **D6** (60.9 g, 64%): $[\alpha]^{25}_{D} + 13.3^{\circ}$, $[\alpha]^{25}_{435} + 28.1^{\circ}$ (c 8.80, CHCl₃); IR (film) 3280 (s, HC=), 2240 (w, C=N), 1725 (s, C=O), 1650 cm⁻¹ (m, ==C); ¹H NMR (CDCl₃) δ 1.42 (s, 3 H, CH₃), 1.80–2.10 (m, 2 H, CH₂), 2.20–2.65 (m, 2 H, CH₂CN), 2.47 (s, 1 H, HC=C), 3.76 (s, 3 H, CH₃O), 6.22 and 6.67 (d, J = 15.5, each 1 H, CH=CH); ¹³C NMR $(CDCl_3) \delta 166.37 (C_1), 149.34 (C_3), 122.20 (C_2), 119.13 (CN), 83.71 (C_5), 74.62 (C_6), 51.79 (CH₃O), 38.18 (C₄), 36.76 (CH₂), 27.66 (CH₃),$ 13.60 (CH₂CN); MS (EI), m/z 176.0714 (M⁺ - 15), calcd for C₁₀- $H_{10}NO_2$ (M⁺ – CH₃) 176.0712.

Methyl (3R,4R)-4-(2-Cyanoethyl)-4-methyl-3-(nitromethyl)-5-hexynoate (D7 β). The mixture of the α,β -unsaturated ester D6 (9.6 g, 50 mmol), tetramethylguanidine (2.30 g, 20 mmol), and nitromethane (20 mL, 0.375 mol) was stirred at 25 °C for 6 days. The mixture was then diluted with CH₂Cl₂ (250 mL), washed with 2 N HCl (50 mL) and brine (25 mL), and dried (Na₂SO₄). After evaporation of the solvent (VRE), the residue was chromatographed on silica (EtOAc-hexane 1:3) to give the nitro ester D7 (8.0 g, 63%) as a mixture of two diastereomers (D7 β /D7 $\alpha \simeq 2$:1 by ¹H NMR).

The viscous oily **D7** was dissolved in ether (40 mL) and cooled to -20 °C for 2 days to afford the pure crystalline diastereomer **D7** β (4.01 g, 50%): mp 46–48 °C; $[\alpha]^{25}_{\text{D}}$ –6.4°, $[\alpha]^{25}_{435}$ –24.4° (*c* 9.40, CHCl₃); IR (film) 3280 (m, HC \equiv), 2240 (w, C \equiv N), 1735 (s, C=O), 1555 cm⁻¹ (NO₂); ¹H NMR (CDCl₃) δ 1.22 (s, 3 H, CH₃), 1.70–2.10 (m, 2 H, CH₂), 2.37 (s, 1 H, HC \equiv C), 2.40–2.75 (m, 4 H, CH₂CN and CH₂CO₀), 2.85–3.05 (m, 1 H, CH \equiv C), 2.40–2.75 (m, 4 H, CH₂CN and CH₂CO₀), 2.85–3.05 (m, 1 H, CH \equiv C), 2.40–2.75 (m, 4 H, CH₂CN and CH₂CO₁), 2.85–3.05 (m, 1 H, CH \equiv C), 2.40–2.75 (m, 4 H, CH₂CN and CH₂CO₁), 2.85–3.05 (m, 1 H, CH \equiv C), 2.40–2.75 (m, 4 H, CH₂CN and CH₂CO₁), 2.85–3.05 (m, 1 H, CH \equiv C), 2.40–2.75 (m, 4 H, CH₂CN and CH₂CO₁), 2.85–3.05 (m, 1 H, CH \equiv C), 2.40–2.75 (m, 4 H, CH₂CN and CH₂CO₁), 2.85–3.05 (m, 1 H, CH \equiv C), 2.40–2.75 (m, 4 H, CH₂CN and CH₂CO₁), 2.85–3.05 (m, 1 H, CH \equiv C), 2.40–2.75 (m, 4 H, CH₂CN and CH₂CO₁), 2.85–3.05 (m, 1 H, CH \equiv C), 2.40–2.75 (m, 4 H, CH₂NO₂); ¹³C NMR (CDCl₃) δ 171.66 (s, C₁), 119.19 (s, CN), 84.49 (d, C₅), 76.93 (t, C–NO₂), 74.19 (d, C₆), 52.28 (q, CH₃O), 41.05 (d, C₃), 37.67 (s, C₄), 34.44 (t, CH₂), 33.23 (t, C–CO), 22.59 (q, CH₃), 13.28 (t, C–CN); MS (EI), *m/z*

221.0924 (M⁺ – 31), calcd for $C_{11}H_{13}N_2O_3$ (M⁺ – CH₃O) 221.0927. (R)-4-[(R)-3-Cyano-1-ethynyl-1-methylpropyl]-2-pyrrolidinone (D8β). To a mixture of concentrated HCl (40 mL) and methanol (40 mL) were added at the same time at 0 °C the nitro ester $D7\beta$ (5.1 g, 20 mmol) in methanol (20 mL) and Zn powder (13.1 g, 0.2 mol) dropwise and in small portions, respectively, over 0.5 h. After the addition, the reaction mixture was stirred at 25 °C for 0.5 h and then filtered and treated with 6 N NaOH (400 mL). The clear solution was extracted with CH_2Cl_2 $(3 \times 200 \text{ mL})$, and the combined extracts were washed with brine (20 mL) and dried (Na₂SO₄). Evaporation of the solvent and crystallization of the residue from benzene (10 parts) gave the pure lactam $D8\beta$ (2.86 g, 75%): mp 115–117 °C; $[\alpha]^{25}_{\rm D}$ +40.2°, $[\alpha]^{25}_{435}$ +82.2° (c 2.72, CHCl₃); IR (KBr) 3260 (s, HC \equiv), 2240 (w, C \equiv N), 1710 and 1670 cm⁻¹ (s, C=O); ¹H NMR (CDCl₃) δ 1.22 (s, 3 H, CH₃), 1.60–1.95 (m, 2 H, CH₂), 2.25–2.73 (m, 5 H, CHCH₂CO and CH₂CN), 2.33 (s, 1 H, HC==C), 3.42 (m, 2 H, CH₂N), 6.47 (br s, 1 H, NH); ¹³C NMR (CD-Cl₃) § 177.20 (C=O), 119.45 (CN), 84.46 and 74.22 (C=C), 44.37, 43.83, 37.87, 34.89, 32.72, 23.67, 13.22; MS (EI), m/z 175.0870 (M⁺ - 15), calcd for C₁₀H₁₁N₂O (M⁺ - CH₃) 175.0872.

(S)-4-[(R)-3-Cyano-1-ethynyl-1-methylpropyl]-2-pyrrolidinone (D8 α). The mother liquor of D7 β 5.1 g, 20 mmol, diastereomeric ration D7 β / D7 $\alpha \simeq 1:2$ by ¹H NMR) was treated as described for D8 β to afford 2.70 g of crude lactam as a diastereomeric mixture. The major diastereomer D8 α was isolated by two crystallizations from benzene (the compound was dissolved in 50 parts benzene and the solution was concentrated to half of its volume by distilling off benzene) to give pure colorless D8 α (1.41 g, 37%). A third crystallization afforded suitable crystals for an X-ray structure which is shown in Figure 1:¹⁹ mp 157-158 °C; $[\alpha]^{25}_{435}$ +9.9° (c 5.25, CHCl₃); IR (KBr) 3250 (s, HC \equiv), 3225 (m, NH), 2250 (w, C \equiv N), 1690 and 1665 cm⁻¹ (s, C=O); ¹H NMR (CDCl₃) δ 1.20 (s, 3 H, CH₃), 1.60-1.79 and 1.82-2.02 (m, each 1 H, CH₂), 2.25-2.73 (m, 5 H, CHCH₂CO and CH₂CN), 2.33 (s, 1 H, HC \equiv C), 3.42 (m, 2 H, CH₂N), 6.29 (br s, 1 H, NH); ¹³C NMR (CD-Cl₃) δ 1.7.31 (C=O), 119.51 (CN), 84.34, 74.37, 44.31, 44.02, 37.95, 35.52, 32.92, 23.13, 13.17.

(3R,4R)-3-(Aminoethyl)-4-(2-cyanoethyl)-4-methyl-5-hexynoic Acid The mixture of the lactam D8\$ (0.95 g, 5 mmol) and 1 N HCl (D1\$). (25 mL) was refluxed for 2 h. After the mixture cooled down to 25 °C **D8** β (0.47 g, 49%) was recovered by extraction with CH₂Cl₂ (3 × 50 mL). After neutralizing the water layer with 1 N NaOH (25 mL, pH \simeq 7), the water was removed by rotary evaporation on the high vacuum at 25 °C. Addition of benzene (100 mL) and evaporation (VRE) afforded a crystalline residue which was extracted 3 tims under stirring with absolute ethanol (25 mL) at 25 °C for 1 h. The combined, filtered extracts were concentrated at 25 °C (VRE) to about 5 mL and the amino acid crystallized at -20 °C to give colorless D1 β (0.23 g, 44%): mp 122-124 °C; $[\alpha]^{25}_{D} - 28.4^{\circ}$, $[\alpha]^{25}_{435} - 58.7^{\circ}$ (c 2.5, Me₂SO); IR (KBr) 3250 (s, HC=), 3200-2400 (NH₂, OH), 2240 (w, C=N), 1605 cm⁻¹ (s, C=O); ¹H NMR (D₂O) δ 1.20 (s, 3 H, CH₃), 1.75-2.76 (m, 7 H), 2.77 (s, 1 H, HC=C), 3.00 and 3.48 (ABX, $J_{AB} = 13$, $J_{AX} = 8$, $J_{BX} = 3$, each 1 H, CH₂N), 4.75 (s, ~4 H, HOD); ¹³C NMR (D₂O) δ 183.09 (s, C₁), 124.61 (s, CN), 89.73 (s, C₅), 76.51 (d, C₆), 45.07 (t, CH₂N), 44.21 (d, C₃), 40.25 (s, C₄), 40.03 (t, CH₂), 36.13 (t, C₂), 24.10 (q, CH₃), 15.51 (t, CH₂CN); MS (EI), m/z 175.0879 (M⁺ – 33), calcd for C₁₀-H₁₁N₂O (M⁺ – H₂O – CH₃) 175.0872 (MS shows the same pattern as for the lactam D83)

(3S,4R)-3-(Aminomethyl)-4-(2-cyanoethyl)-4-methyl-5-hexynoic Acid (D1 α). The lactam D8 α (0.95 g, 5 mmol) was treated and worked up as described for compound D1 β to afford the crystalline amino acid D1 α (0.22 g, 42%): mp 135-137 °C; IR (KBr) 3270 (m, HC \equiv), 3200-2400 (NH₂, OH), 2240 (w, C \equiv N), 1560 cm⁻¹ (s, br, C=O); ¹H NMR (D₂O) δ 1.27 (s, 3 H, CH₃), 1.75-2.80 (m, 7 H), 2.75 (s, 1 H, HC \equiv C), 3.00 and 3.43 (ABX, J_{AB} = 13, J_{AX} = 8, J_{BX} = 3, each 1 H, CH₂N), 4.72 (s, ~18 H, HDO).

(*R*)-4-[(*R*)-3-Cyano-1-ethynyl-1-methylpropyl]-1-hydroxy-2pyrrolidinone (D9). To the nitro ester D8 β (2.52 g, 10 mmol) and Zn powder (3.9 g, 60 mmol) in MeOH (20 mL) 4 N HCl in MeOH (20 mL) was added under stirring over 0.5 h at 0 °C. The Zn was filtered off and washed with MeOH (5 mL). After evaporation of the MeOH (VRE), H₂O (10 mL) was added to the residue and the product was extracted with CH₂Cl₂ (3 × 10 mL). The combined extract was dried (Na₂SO₄) and the solvent removed by rotary evaporation. Crystallization from H₂O (10 mL) yielded the colorless hydroxamic acid D9 (1.61 g, 78%): mp 120-122 °C, $[\alpha]^{23}_{D}$ -17.6°, $[\alpha]^{23}_{435}$ -36.4° (*c* 10.00, CHCl₃); IR (KBr) 3400 (br, OH), 3260 (s, HC \equiv), 2220 (w, C \equiv N), 1660 cm⁻¹ (s, C=O); ¹H NMR (CDCl₃) δ 1.20 (s, 3 H, CH₃), 1.60-1.95 (m, 2 H, CH₂), 2.35 (s, 1 H, HC \equiv C), 2.35-2.75 (m, 5 H, CH₂CN and CHCH₂CO), 3.68 (m, 2 H, CH₂N), 10.00 (br s, 1 H, OH); ¹³C NMR (CDCl₃) δ 169.27 (C=O), 119.35 (C \equiv N), 84.08 and 74.53 (C \equiv C), 50.98, 38.27, 37.86, 34.73, 31.08, 23.05, 13.25; MS (EI), *m*/z 206.1052, calcd for C₁₁H₁₄- N_2O_2 206.1056. Anal.: C, 64.06; H, 6.85; N, 13.47%. Calcd for $C_{11}H_{14}N_2O_2$: C, 64.06; H, 6.84; N, 13.58%.

Ethyl 2-Cyano-3,3-dimethyl-4-pentynoate (C4). To 2.5 L of ethanol in a 5-L three-necked flask fitted with a reflux condenser, mechanical stirrer, and drying tube, Li wire (34.7 g, 5 mol) was added in portions at a rate that maintained gentle boiling. After all the Li was dissolved, the suspension was cooled to about 40 °C, ethyl cyanoacetate (566 g, 5 mol) was added, and the clear solution was cooled to 25 °C while stirring. Meanwhile, a saturated solution of CuCl in hot concentrated HCl was prepared and diluted with 5 vol of H_2O . The aqueous solutions were decanted from the white precipitate of CuCl which was rinsed twice with H₂O and then several times with absolute ethanol. The slurry of CuCl in EtOH (2.5 mL) and Cu powder (1.0 g) was added to the Li salt solution and then 3-chloro-3-methyl-1-butyne (C3)⁵ (256 g, 2.5 mol) was added over 2 h at 30 °C (cooling). After additional stirring at room temperature for 2 h, the reaction mixture was poured into 1 N HCl (5 L) and extracted with ether (3×500 mL). The extracts were then washed with H_2O (2 × 500 mL), concentrated NaHCO₃, and brine (250 mL). The combined ether layers were dried (Na_2SO_4) , the solvent was removed (VRE), and the residue was distilled through a Vigreux column to afford the cyano ester C4 (246 g, 55%): bp 61-62 °C/0.3 torr; the ¹H NMR and IR spectra of this product were identical with those pre-viously reported;¹⁶ ¹³C NMR (CDCl₃) δ 164.04 (C=O), 114.91, (CN), 85.88 (C4), 71.81 (C5), 62.79 (OCH2), 48.64 (C2), 34.00 (C3), 27.61 and 27.10 (2 × CH₃), 14.05 (CH₃C-O); MS (EI), m/z 150.0550 (M⁺ - 29), calcd for $C_8H_8NO_2$ (M⁺ - C_2H_5).

Methyl 5,5-Dimethyl-4-formyl-6-heptynoate (C7). The mixture of 3,3-dimethyl-4-pentynal (C6)¹⁶ (121.2 g, 1.1 mol) and pyrrolidine (117.3 g, 1.65 mol) in benzene (1.1 L) was refluxed for 2 h with continuous removal of H₂O by a Dean-Stark trap. The benzene and the excess pyrrolidine were removed by rotary evaporation to give the crude enamine (184 g, 102%) which was dissolved in acetonitrile (1.1 L). After the addition of methyl acrylate (189.5 g, 2.2 mol), the mixture was refluxed for 10 h and cooled, and 50% AcOH (550 mL) was added. The mixture was then refluxed again for 0.5 h, cooled, and poured into ice-water (2.2 L). After the extraction with ether $(3 \times 500 \text{ mL})$, the combined organic layers were washed with saturated NaHCO₃ (500 mL) and brine (200 mL) and dried over Na₂SO₄. Removal of the solvent (VRE) and distillation of the residue afforded the ester C7 (176.5 g, 82%): bp 80-82 °C/0.4 torr; ¹³C NMR (CDCl₃) δ 204.15 (CHO), 173.17 (C₁), 88.18 (C_6) , 70.82 (C_7) , 59.44, 51.59 (CH_3O) , 32.06, 31.64, 27.84 and 27.21 $(2 \times CH_3)$, 20.34; ¹H NMR, IR, and MS spectra were identical with those previously reported.3

Acetylenic Oxime C1. The aldehyde C7 (172.7 g, 0.88 mol) in pyridine (180 mL) was added all at once to an ice-cold solution of HON-H₂·HCl (76.5 g, 1.1 mol) in pyridine (700 mL). The reaction mixture was stirred at 0 °C for 1 h and then at 25 °C overnight. After the addition of 4 N HCl (3.5 L), the aqueous layer was extracted with ether (3 × 500 mL). The combined extracts were washed with 2 N HCl, saturated NaHCO₃, and brine (200 mL) and dried over Na₂SO₄. Removal of the solvent (VRE) yielded the crude aldoxime C1 (180.5 g, 97%) which was used without further purification for the next step: IR (film) 3400 (br, OH), 3280 (s, HC=), 2100 (w, C=C), 1735 (s, C=O), 1720 cm⁻¹ (m, C=N); 'H NMR (CDCl₃) δ 1.21 and 1.28 (s, each 3 H, (CH₃)₂C), 1.65-2.50 (m, 5 H, CHCH₂CH₂CO), 2.18 (s, 1 H, HC=C), 3.67 (s, 3 H, CH₃O), 6.72 (d, J = 9, 1 H, CH=N, 10% syn-oxime), 7.35 (d, J = 9, 1 H, CH=N, 90% anti-oxime), 8.54 (s, 1 H, OH); MS (EI), m/z 196.0972 (M⁺ - 15), calcd for C₁₀H₁₄NO₃ (M⁺ - CH₃) 196.0974.

Oxime of 5,5-Dimethyl-4-formyl-6-heptynoic Acid (C8). The crude ester C1 (137.3 g, 0.65 mol) was dissolved in a solution of NaOH (64 g, 1.6 mol) in ethanol (2 L) and H₂O (500 mL). After stirring overnight at 25 °C, the alcohol was removed by rotary evaporation, and the aqueous layer was extracted with ether (2 × 100 mL) and then acidified with 4 N HCl (650 mL). The acid was extracted with ether (3 × 300 mL) and the combined extracts were washed with brine (100 mL) and dried (Na₂SO₄). Evaporation of the solvent afforded the crude acid C8 (122.5 g, 96%) as a viscous oil: IR (film) 3500–2500 (br, OH oxime and acid), 3280 (s, HC=), 2100 (w, C=C), 1710 cm⁻¹ (s, C=O); ¹H NMR (CDCl₃) δ 1.21 and 1.28 (s, each 3 H, 2 × CH₃, anti-oxime), 1.22 and 1.31 (s, each 3 H, 2 × CH₃, syn-oxime), 1.70–3.25 (m, 5 H, CHCH₂CH₂CO), 2.20 (s, 1 H, HC=), 6.76 (d, J = 9, 1 H, CH==N, 30% syn-oxime), 7.39 (d, J = 9, 1 H, CH==N, 70% anti-oxime), 8.79 (br s, 2 H, CO₂H and NOH).

Resolution of Racemic Acid C8: Salt C9. To the crude acid C8 (122.3 g, 0.62 mol) in ethanol (1500 mL) (-)- α -phenylethylamine (75 g, 0.62 mol) was added. The solution was cooled and kept at -20 °C for 1 day. The salt precipitate was filtered and dried and then redissolved in the minimum amount of refluxing ethanol (\sim 10–15 mL per g of salt). After cooling to -20 °C for 1 day, fraction 2 was filtered and dried. This procedure was repeated 5 times to give fraction 7 (28.1 g, 28%). The

melting point rose from 158-168 °C (fraction 1) to 180-182 °C (fraction 7). Further crystallizations did not improve the diastereomeric purity of the salt C9 (see under C10).

Methyl (S)-4-Cyano-5,5-dimethyl-6-heptynoate (C10). The salt C9 of one fraction (0.32 g, 1 mmol) in 2 N HCl (10 mL) was extracted with ether $(3 \times 10 \text{ mL})$. The ether layers were washed with brine (2.5 mL), combined, and dried over Na_2SO_4 . After treatment with CH_2N_2 as usual, the solvent was evaporated (VRE) and the residue dried on the high vacuum. The crude oxime ester in pyridine (3 mL) was cooled to 0 °C, and tosyl chloride (0.29 g, 1.5 mmol) in pyridine (2 mL) was added. After the mixture was stirred at 25 °C for 1 day, H₂O (1 mL) was added and stirring continued for 15 min. The reaction mixture was then poured into 4 N HCl (10 mL) and extracted with ether (3 \times 10 The organic layers were washed with brine (2 mL) and dried mL). (Na₂SO₄). After removal of the solvent (VRE), the residue was chromatographed on silica (petroleum ether-ether 3:2) and then distilled in a Kugelrohr oven to afford pure nitrile C10 (0.17 g, 88%): bp ~100 °C/0.5 torr; IR (film) 3280 (m, HC=), 2240 (w, C=N), 1735 cm⁻¹ (s, C=-O); ¹H NMR (CDCl₃) δ 1.40 (s, 6 H, (CH₃)₂C), 1.85–2.75 (m, 5 H, CHCH₂CH₂CO), 2.27 (s, 1 H, HC==C), 3.71 (s, 3 H, CH₃O); ¹³C NMR (CDCl₃) δ 172.64 (C=O), 119.31 (C=N), 86.88 (C₆), 71.28 (C₇), 51.84 (CH₃O), 42.71, 33.68, 31.70, 27.97, 26.36, 23.80; MS (EI), w(z 102) 1022 - c H, NO 102, 102, 102 m/z 193.1082, calcd for C₁₁H₁₅NO₂ 193.1103

fraction	$[\alpha]^{25}D$	$[\alpha]^{25}_{435}$	c (CHCl ₃)
4	-43.4°	-85.5°	10.80
6	-59.6°	-117.5°	7.78
7	-65.6°	-129.3°	11.07
10	-65.7°	-129.4°	8.29

Nitrile Oxide A16. NCS (1.47 g, 11 mmol) in absolute DMF (25 mL) was added to the aldoxime A1 (3.31 g, 10 mmol) in DMF (50 mL) at 40 °C over 10 min. After additional stirring at 40 °C for 1 h (after about 10 min, the mixture turned green and an exothermic reaction occurred \rightarrow cooling!), the reaction mixture was poured onto ice (200 g) and extracted with ether $(3 \times 200 \text{ mL})$. The ether layers were washed with ice-cold H_2O (2 × 50 mL) and brine (50 mL) and combined. After drying (Na₂SO₄), evaporation of the solvent (VRE) afforded 3.66 g (100%) of crude hydroxamoyl chloride A16a which was dissolved in ether (100 mL) and added at 0° C over 20 min to Et₃N (2.0 g, 20 mmol) in ether (100 mL). The mixture was stirred at 25 °C for 0.5 h and then filtered. After removal of the solvent (VRE), the residue was chromatographed on silica (EtOAc-hexane 1:2) to afford pure oily nitrile oxide A16 (2.49 g, 76%): $[\alpha]^{25}_{D} - 19.8^{\circ}$, $[\alpha]^{25}_{435} - 38.9^{\circ}$ (c 6.05, CHCl₃); IR (film) 2290 (s, CNO), 1735 (C=O), 1375 cm⁻¹ (N=O); ¹H NMR (CDCl₃) δ 1.26 and 1.33 (s, each 3 H, 2 × CH₃), 1.75-2.70 (m, 6 H, 3 × CH₂), 3.38 (dd, $J_1 = 3$, $J_2 = 12$, 1 H, CHCNO), 3.68 and 3.71 (s, each $3 H, 2 \times CH_{3}O$), $3.80-4.10 (m, 4 H, OCH_{2}CH_{2}O)$; $^{13}C NMR (CDCl_{3})$ δ 172.84 and 171.63 (C=O), 112.32 (O-C-O), 64.57 (OCH₂CH₂O), 51.81 and 51.71 (CH₃O), 47.75, 38.02, 37.73, 32.43, 24.64, 20.30, 19.44, the nitrile oxide (CNO) could not be observed;²⁰ MS (EI), m/z 314.1242 $(M^+ - 15)$, calcd for $C_{14}H_{20}NO_7$ $(M^+ - CH_3)$ 314.1240.

Isoxazole APh. The mixture of the nitrile oxide A16 (66 mg, 0.2 mmol), phenylacetylene (0.5 mL), and CH₂Cl₂ (1 mL) was stirred at 25 °C for 1 day. After evaporation of the solvents, the residue was chromatographed on silica with EtoAc-hexane 1:2 to give APh (60 mg, 70%) reaction occurred a viscous oil: IR (film) 1735 (s, C=O), 1610, 1590, 1570 cm⁻¹ (w, C₆H₅ and isoxazole); ¹H NMR (CDCl₃) δ 1.21 and 1.34 (s, each 3 H, 2 × CH₃), 1.80–2.70 (m, 4 H, CH₂CO), 2.42 and 2.75 (AB, J_{AB} = 13, each 1 H, CH₂CO), 3.61 and 3.62 (s, each 3 H, 2 × CH₃O), 3.75–4.07 (m, 4 H, OCH₂CH₂O), 6.43 (s, 1 H, --CH=, isoxazole), 7.35–7.55 and 7.70–7.85 (m, 3 H + 2 H, C₆H₅); MS (EI), m/z 416.1707 (M⁺ - 15), calcd for C₂₂H₂₆NO₇ (M⁺ - CH₃) 416.1710.

Northern Half AB α . The oxime BI α (1.41 g, 5 mmol) and the nitrile oxide A16 (3.29 g, 10 mmol) in CHCl₃ (10 mL) were kept at 40 °C for 6 days. The solvent was evaporated (VRE) and the residue chromatographed on silica with EtOAc-hexane 1:1, 4:1, and then 100% EtOAc to afford AB α (2.88 g, 94%) as an amorphous foam (1.40 g of A16 was recovered): $[\alpha]^{25}_{D}$ -3.9°, $[\alpha]^{25}_{435}$ -6.5° (c 3.25, CHCl₃); IR (CHCl₃) 3500-3200 (br, OH), 1730 (s, C=O, ester), 1635 (m, C=O, amide), 1590 cm⁻¹ (w, C=C, isoxazole); ¹H NMR (CDCl₃) δ 1.12 and 1.31 (s, each 3 H, 2 × CH₃, ring A), 1.56 (s, 3 H, CH₃, ring B), 1.60–3.20 (m, 14 H, 6 × CH₂ + 2 × CH, ring A + B), 2.83 and 2.89 (s, each 3 H, NMe₂), 3.62, 3.64 and 3.66 (s, each 3 H, 3 × CH₃O), 3.70–4.10 (m, 4 H, OCH₂CH₂O), 5.91 (s, 1 H, CH, isoxazole), 7.20 (d, J = 9, 1 H, CH=N, anti-oxime) 8.73 (s, 1 H, OH); ¹³C NMR (CDCl₃) δ 175.81 (C—O), isox.), 173.99, 173.52 and 173.51 (3 × C=O, ester), 169.52 (C=O, amide), 163.84 (C=N, isox.), 150.95 (C=N, oxime); 113.35 (O—C—O), 102.94 (CH, isox.), 64.92 and 63.07 (OCH₂CH₂O), 51.61 and 51.36 (3 × CH₃O), 48.17, 47.72, 43.16, 41.56, 40.19, 37.73, 36.23, 35.46, 32.43, 31.89, 24.61, 22.54, 21.51, 19.92, 18.90; MS (EI), m/z 611.3044, calcd for C₂₉H₄₅N₃O₁₁ 611.3056.

Northern Half AB β . The procedure was the same as for the isoxazole AB α using the oxime B1 β instead to yield AB β (2.94 g, 96%): $[\alpha]^{25}_{D}$ +20.1°, $[\alpha]^{25}_{435}$ +41.8° (c 5.85, CHCl₃); ¹H NMR (CDCl₃) δ 1.15 and 1.30 (s, each 3 H, 2 × CH₃, ring A), 1.56 (s, 3 H, CH₃, ring B), 1.60–3.20 (m, 14 H, 6 × CH₂ + 2 × CH, ring A + B), 2.83 and 2.91 (s, each 3 H, NMe₂), 3.608, 3.629, and 3.634 (s, each 3 H, 3 × CH₃O), 3.70–4.10 (m, 4 H, OCH₂CH₂O), 5.95 (s, 1 H, CH, isox.), 7.29 (d, J = 9, 1 H, CH=N, anti-oxime), 8.05 (s, 1 H, OH); ¹³C NMR (CDCl₃) δ 175.78, 173.83, 173.26, 172.91, 169.75, 164.19, 150.34, 113.35, 103.29, 64.89, 63.17, 51.58, 51.49, 51.23, 48.13, 47.69, 43.06, 41.62, 40.67, 37.76, 36.64, 35.53, 32.27, 32.05, 24.80, 23.30, 21.51, 19.44, 19.02; MS and IR are identical with those of AB α .

Disoxazole ABPha. t-BuOCl (22 mg, 0.2 mmol) in CH₂Cl₂ (0.5 mL) was added at -78 °C to a solution of ABa (122 mg, 0.2 mmol) in CH₂Cl₂ (0.5 mL) over 20 min. After additional stirring at -78 °C for 1 h (the greenish color faded), Et₃N (40 mg, 0.4 mmol) in phenylacetylene (0.5 mL) was added at -78 °C over 0.5 h and stirring was continued at that temperature for 1 h. The cooling bath was removed and the mixture warmed up to 25 °C. The reaction was kept at room temperature overnight, and the solvents were then removed by rotary evaporation. Chromatography on silica with EtOAc-hexane 4:1 yielded pure foamy **ABPha** (89 mg, 63%): IR (film) 1735 (s, C=O, ester), 1640 (s, C=O, amide), 1590 (w, C=C, isox.), 1570 cm⁻¹ (w, C₆H₅); ¹H NMR (CDCl₃) δ 1.08 and 1.27 (s, each 3 H, 2 × CH₃, ring A), 1.70 (s, 3 H, CH₃, ring B), 1.70–3.20 (m, 14 H, 6 × CH₂ + 2 × CH, ring A + B), 2.84 and 2.89 (s, each 3 H, NMe₂), 3.52, 3.58 and 3.63 (s, each 3 H, $3 \times CH_3O$), 3.70-4.10 (m, 4 H, OCH₂CH₂O), 5.85 and 6.14 (s, each 1 H, 2 × CH, isox.), 7.45-7.55 and 7.75-7.85 (m, 3 H + 2 H, C_6H_5); ¹³C NMR (CDCl₃) § 175.78, 173.61, 173.35, 172.68, 169.68, 169.63, 164.19, 163.59, 130.10, 128.89*, 127.29, 125.79* (*superimposed C, C_6H_5), 113.31, 102.97, 99.78, 64.76, 63.20, 51.58, 51.36, 51.17, 48.07, 45.68, 42.80, 42.13, 41.69, 40.22, 37.67, 36.84, 35.46, 32.14 (2 superimposed C), 24.87, 24.10, 21.51, 21.10, 18.99; MS (EI), m/z 711, calcd for C37H49N3O11 711.3369.

Southern Half CD. The salt C9 (3.18 g, 10 mmol) in 2 N HCl (20 mL) was extracted with ether $(3 \times 50 \text{ mL})$, and the ether layers were washed with brine (10 mL). After drying (Na₂SO₄), the concentrated ethereal acid solution (\sim 25 mL) was treated with CH₂N₂ in ether as usual to give after evaporation the ester C1 α (2.10 g, 100%). t-BuOCl (1.09 g, 10 mmol) in CH_2Cl_2 (25 mL) was added to the oxime $C1\alpha$ in CH₂Cl₂ (25 mL) at -78 °C over 1 h. After additional stirring at that temperature for 1 h, the yellow-green solution was warmed up to 25 °C over 20 min (the solution turned blue) and the CH₂Cl₂ was evaporated (VRE, 30 °C) to afford the highly viscous hydroxamoyl chloride C11. It was dissolved in CH₂Cl₂ (20 mL) and added under stirring to the acetylene D7\$ (10.1 g, 40 mmol) and Et₃N (2.0 g, 20 mmol) in CH₂Cl₂ (20 mL) over 0.5 h. After reacting at 25 °C for 2 days, the solvent was evaporated and the residue chromatographed on silica with EtOAchexane 1:2 and 2:3 to give yellow oily CD (2.64 g, 57%; the unreacted nitro ester D7 β was recovered quantitatively): $[\alpha]_{D}^{25} - 45.5^{\circ}$, $[\alpha]_{435}^{25}$ -96.6° (c 3.32, CHCl₃); IR (film) 3280 (m, HC=), 3120 (w, HC=), 2240 (w, C=N), 1735 (s, C=O), 1585 (m, C=C, isox.), 1550 cm⁻¹ (s, NO₂); ¹H NMR (CDCl₃) δ 1.12 (s, 3 H, CH₃, ring D), 1.37 (s, 6 H, 2 × CH₃, ring C), 1.90–2.80 (m, 11 H, 5 × CH₂ + CH), 2.26 (s, 1 H, HC=C), 3.21 (m, 1 H, CH, ring D), 3.64 and 3.70 (s, each 3 H, 2 × CH₃O), 4.35 and 4.46 (ABX, $J_{AB} = 13.7$, $J_{AX} = 4.5$, $J_{BX} = 7.3$, each 1 H, CH₂NO₂), 6.33 (s, 1 H, CH, isox.); ¹³C NMR (CDCl₃) δ 173.26, 172.97, 171.47, 164.42 (C=N, isox.), 118.68 (CN), 102.75 (CH, isox.), 89.09, 76.48, 70.77, 52.32 and 51.61 (CH_3O), 46.47, 41.62 (2C)*, 34.03, 33.71, 33.13, 31.98, 28.50, 28.15, 25.06, 19.09, 12.70,*DND-experiment²¹ shows two superimposed signals; MS (E1), m/z 430.1968 (M⁺ – 31), calcd for C₂₂H₂₈N₃O₆ (M⁺ – CH₃O) 430.1979; MS (FAB), m/z462 (MH⁺)

Triisoxazole 4 α . t-BuOCl (0.22 g, 2 mmol) in CH₂Cl₂ (5 mL) was added at -78 °C to AB α (1.22 g, 2 mmol) in CH₂Cl₂ (5 mL) over 0.5 h. After additional stirring at -78 °C for 1 h (the azure color faded), Et₃N (0.40 g, 4 mmol) in CH₂Cl₂ (2.5 mL) was added over 0.5 h (the light-blue turned yellow) and stirring at -78 °C continued for 1 h (the yellow faded). The mixture was warmed to room temperature over 15 min and then added to neat CD (3.69 g, 8 mmol). After stirring at 25

⁽²⁰⁾ Christl, M.; Warren, J. P.; Hawkins, B. L.; Roberts, J. D. J. Am. Chem. Soc. 1973, 95, 4392.

⁽²¹⁾ DND: Delayed Noise Decoupling. Anet, F. A. L.; Jaffer, N.; Strouse, J. Abstract presented at the Experimental NMR Conference, Tallahassee, FL., 1980.

°C for 2.5 days the solvent was removed (VRE) and the residue chromatographed on silica with benzene-pyridine 9:1 and 7:1 to afford the triisoxazole 4α (0.66 g, 31%) as an amorphous foam (the unconverted CD was recovered quantitatively). The minor impurities were removed by a second chromatography on silica with 100% EtOAc to give 0.51 g (24%) of 4 α : $[\alpha]^{25}_{D}$ -6.1°, $[\alpha]^{25}_{435}$ -16.6° (c 5.00, CHCl₃); IR (CHCl₃) 2240 (w, C=N), 1730 (s, C=O, ester), 1635 (m, C=O, amide), 1585 (m, C=C, isox.), 1550 cm⁻¹ (m, NO₂); ¹H NMR (CDCl₃) δ 1.11 (s, 3 H, CH₃, ring A), 1.29, 1.31, 1.33 (s, 6 H + 3 H + 3 H, 4 × CH₃, ring A, C, D), 1.65 (s, 3 H, CH₃ ring B), 1.70–3.45 (m, 26 H, $11 \times CH_2 +$ 4 × CH), 2.84 and 2.92 (s, each 3 H, NMe₂), 3.60, 3.62, 3.64, 3.71 (s, total 15 H, 5 × CH₃O), 3.75-4.05 (m, 4 H, OCH₂CH₂O), 4.37 and 4.45 (ABX, $J_{AB} = 14$, $J_{AX} = 7.5$, $J_{BX} = 4.5$, each 1 H, CH₂NO₂), 5.72, 5.920, 5.925 (s, each 1 H, 3 × CH, isox.); ¹³C NMR (CDCl₃) δ 177.82 and 175.78 (2 × C-O, isox.), 173.64, 173.29, 173.16, 173.00, 172.81, 171.50 $(5 \times C = 0 \text{ ester}, C = 0 \text{ isox.}), 169.36 (C = 0, amide), 164.13, 163.52, 162.95 (3 \times C = N, isox.), 118.71 (C = N), 113.35 (O = C = 0), 103.48,$ 102.97, 101.34 (3 × CH, isox.), 76.57 (CH₂NO₂), 64.86, 63.10 (OC- H_2CH_2O), 52.28, 51.58 (intense, 2C), 51.42, 51.13 (5 × CH₃O), 48.07, 46.51, 45.80, 43.09, 41.59 (intense, 3C)*, 39.90, 38.94, 37.60, 36.52, 35.43, 33.74, 33.10, 32.30, 32.17, 32.05, 25.66, 24.83, 24.64, 24.23, 23.88, 21.90, 21.77, 18.93, 18.80, 12.70 (CH₂CN); MS (FAB), m/z 1071 (MH⁺); *two of the three superimposed peaks at δ 41.59 also overlap in CD at δ 41.62, the third missing signal is only visible in the diastereomer 43. Anal.: C, 58.27; H, 6.83; N, 7.87. Calcd for C₅₂H₇₄N₆O₁₈: C, 58.31; H, 6.96; N, 7.85%.

Triisoxazole 4 β . The procedure was the same as for the triisoxazole 4 α using **AB** β instead to yield 4 β (0.53 g, 25%): $[\alpha]^{25}_{D} + 3.4^{\circ}$, $[\alpha]^{25}_{435} + 2.3^{\circ}$ (c 2.82, CHCl₃); ¹H NMR (CDCl₃) δ 1.15 (s, 3 H, CH₃, ring A),

1.31, 1.32, 1.34, 1.37 (s, each 3 H, $4 \times CH_3$, ring A, C, D), 1.55 (s, 3 H, CH₃, ring B), 1.70–3.30 (m, 26 H, 11 × CH₂, $4 \times CH$), 2.78 and 2.87 (s, each 3 H, NMe₂), 3.60, 3.62, 3.63, 3.71 (s, total 15 H, $5 \times CH_3O$), 3.75–4.05 (m, 4 H, OCH₂CH₂O), 4.35 and 4.45 (ABX, $J_{AB} = 14$, $J_{AX} = 7.5$, $J_{BX} = 4.5$, each 1 H, CH₂NO₂), 5.88, 5.92, 6.03 (s, each 1 H, 3 × CH, isox.); ¹³C NMR (CDCl₃) δ 178.14 and 175.72 (2 × C—O, isox.), 173.61, 173.35, 173.00, 172.90, 172.75, 171.50 (5 × C—O ester, C—O isox.), 169.40 (C—O, amide), 164.29, 163.46, 162.82 (3 × C—N, isox.), 118.71 (CN), 113.38 (O—C—O), 103.48 (br, 2C) and 101.50 (3 × CH, isox.), 76.45 (CH₂NO₂), 64.92 and 63.23, (OCH₂CH₂O), 52.25, 51.61, 51.52, 51.42, 51.13 (5 × CH₃O), 48.17, 46.51, 45.13, 43.12, 41.72 (intense, 2C), 41.59, 41.24, 39.13, 37.73, 36.68, 35.40, 33.71, 33.13, 32.33, 32.24, 32.08, 25.31, 24.93, 24.83, 24.51, 24.26, 21.55, 19.82, 19.06, 18.96, 12.70 (CH₃CN); IR and MS are identical with those of 4a.

Acknowledgment. The financial support of the National Science Foundation (NSF CHE 78-27084 and CHE 81-15444) is gratefully acknowledged. N. B. is grateful for a NATO Science Fellowship with the Natural Sciences and Engineering Research Council of Canada. A. W. and U. Z. are grateful to the Stiftung für Stipendien auf dem Gebiete der Chemie and the Swiss National Science Foundation, respectively, for a fellowship.

Supplementary Material Available: Tables of final atomic coordinates, bond lengths and angles, and anisotropic thermal parameters along with a computer generated plot with atom labels (11 pages). Ordering information is given on any current masthead page.

Single-Crystal EXAFS of Nitrogenase

A. M. Flank,[†] M. Weininger,[‡] L. E. Mortenson,[§] and S. P. Cramer^{*§}

Contribution from the Corporate Research Science Labs, Exxon Research and Engineering Company, Annandale, New Jersey 08801, LURE Batiment 209C, 91405 Orsay, France, and the Department of Biological Chemistry, Purdue University, West Lafayette, Indiana 47907. Received November 19, 1984

Abstract: Single crystals of the nitrogenase Mo-Fe protein have been examined by polarized X-ray absorption spectroscopy. For different orientations, the Mo-Fe amplitude of the Mo K-edge EXAFS was found to change by a factor of 2.5, whereas the Mo-S component varied by only $\pm 15\%$. The orientation dependence of the EXAFS spectra has been used to investigate the geometry and orientation of the Mo, Fe, S clusters within the Mo-Fe protein. This represents the first application of single-crystal EXAFS to an enzyme of unknown crystal structure. The orientation dependence for single crystals of the model compounds $(Ph_4P)_2[Cl_2FeS_2MoS_2FeCl_2]$ and $(Et_4N)_3[Fe_6Mo_2S_8(SEt)_9]$ was also examined to quantify the experimental precision of this technique. The analysis procedures overcame the difficulty of four molybdenum sites per unit cell by using the X-ray diffraction evidence for a crystallographic 2-fold axis and a molecular 2-fold axis. Given initial assumptions about the symmetry of the Mo, Fe, S clusters, as well as the orientation of one cluster with respect to the crystallographic axes, it was possible to calculate the expected EXAFS orientation dependence. The patterns for linear, bent, tetrahedral, and square-pyramidal symmetries in various orientations were then compared with the experimental spectra. It was found that the experimental data were not well simulated by clusters with a linear arrangement of Fe-Mo-Fe atoms, whereas trinuclear clusters with a Fe-Mo-Fe angle between 50° and 130° gave satisfactory agreement. Tetrahedral MoFe3 and square-pyramidal MoFe4 cluster symmetries also gave satisfactory simulations of the orientation dependence. Assuming a tetrahedral Mo-Fe geometry, the preferred orientation of the 3-fold axis of one of the Mo-Fe clusters was found to lie at an angle of $75 \pm 10^{\circ}$ from the crystallographic a axis and 215 ± 10 or $285 \pm 10^{\circ}$ from the b axis.

Most of the nitrogen fixation on earth is accomplished through the catalytic action of the enzyme nitrogenase.¹ This enzyme consists of two proteins, the Fe protein and the Mo-Fe protein. The Mo-Fe protein is an $\alpha_2\beta_2$ tetramer with a molecular weight of 220 000 that contains 2 molybdenums, 28-32 irons,^{2,3} and approximately 30 acid labile sulfides.⁴ An unusual molybdenum-iron-sulfur cluster, the iron-molybdenum cofactor or "FeMo-co", is thought to be at the catalytic site of this complex.² The first technique that revealed information about the molybdenum site in nitrogenase was X-ray absorption spectroscopy.^{5,6}

^{*} To whom correspondence should be addressed.

[†]LURE. [‡]Purdue University.

[§]Exxon Research.

^{(1) &}quot;Current Perspectives in Nitrogen Fixation"; Gibson, A. H., Newton, W. E., Eds.; Australian Academy of Sciences: Canberra 1981

<sup>W. E., Eds.; Australian Academy of Sciences: Canberra, 1981.
(2) Shah, V. K.; Brill, W. J. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 3249-3253.</sup>

⁽³⁾ Burgess, B. K.; Jacobs, D. R.; Stiefel, E. I. Biochim. Biophys. Acta 1980, 614, 196-209.

 ⁽⁴⁾ Orme-Johnson, W. H.; Davis, L. C. "Iron-Sulfur Proteins"; Lovenberg,
 W. Eds. Academic Brees, New York, 1977, p. 15

W., Éds.; Academic Press: New York, 1977; p 15.