Isocyanates, Part 5.1

Synthesis of Chiral Oxazolidin-2-ones and Imidazolidin-2-ones via DMAP-Catalyzed Isocyanation of Amines with Di-tert-butyl Dicarbonate

Hans-Joachim Knolker* and Tobias Braxmeier
Institut für Organische Chemie, Universităt Karlsruhe, Richard-Willstätter-Allee, 76131 Karlsruhe, Germany

Received 22 September 1998; accepted 9 October 1998

Abstract

Oxazolidin-2-ones and imidazolidin-2-ones are prepared under mild reaction conditions by DMAP-catalyzed isocyanation of 1,2 -aminoalcohols and 1,2-diamines with di-tert-butyl dicarbonate and subsequent cyclization. © 1998 Elsevier Science Ltd. All rights reserved.

Optically active oxazolidin-2-ones derived from α-amino acid esters are an important class of chiral auxiliaries for asymmetric synthesis. ${ }^{2}$ They were applied for example to the total syntheses of the macrolide antibiotic rutamycin B^{3} and the immunosupressant (-)-FK-506. ${ }^{4}$ More recently, enantiopure imidazolidin-2-ones were used as chiral auxiliaries for dynamic kinetic resolution. ${ }^{5}$ The most common method for the preparation of oxazolidin-2-ones and imidazolidin-2-ones is the reaction of 1,2 -aminoalcohols and 1,2 -diamines with diethyl carbonate, ${ }^{6}$ phosgene, 7 triphosgene, ${ }^{8}$ or 1,1 -carbonyldiimidazole. 9
We recently reported a novel procedure for the synthesis of isocyanates under mild conditions (10 min at room temperature) by a DMAP-catalyzed ${ }^{10}$ reaction of amines ${ }^{11}$ and α-amino acid esters ${ }^{1}$ with di-tert-butyl dicarbonate, $(\mathrm{Boc})_{2} \mathrm{O}$. In situ derivatization of the isocyanates by addition of amines and alcohols affords the corresponding ureas ${ }^{12}$ and carbamates ${ }^{13}$ (Scheme 1).

Scheme 1

An intramolecular version of the above-mentioned in situ addition of amines and alcohols should provide an easy access to a variety of cyclic ureas and cyclic carbamates. Thus, using the standard set of reaction conditions for the isocyanation of amines, $(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{DMAP}, 10 \mathrm{~min}, 20^{\circ} \mathrm{C}$ a broad range of enantiopure 1,2 -aminoalcohols were converted into the corresponding oxazolidin-2-ones 1 (Table 1).

Table 1. Synthesis of enantiomerically pure oxazolidin-2-ones 1.

	R^{1}	R^{2}	R^{3}	R^{4}	$(\mathrm{Boc})_{2} \mathrm{O}[\mathrm{eq}]$	1, Yield [\%]	$[\alpha]_{\mathrm{D}}^{20}, \mathrm{c}=1$, solvent
a	(R)-Et	H	H	H	1.1	85	$+5.9{ }^{\circ}, \mathrm{CHCl}_{3}$
b	(S) -iPr	H	H	H	1.1	$71^{\text {a }}$	-20.0°, EtOH
c	$(S)-t \mathrm{Bu}$	H	H	H	1.1	90	$-19.6{ }^{\circ}$, EtOH
d	(R)-Ph	H	H	H	1.1	66	-60.4, CHCl_{3}
e	(R) $-\mathrm{CH}_{2} \mathrm{Ph}$	H	H	H	1.1	63	$+64.9{ }^{\circ}, \mathrm{CHCl}_{3}$
f	(R)-Ph	(S)-Ph	H	H	1.1	80	$+80.9{ }^{\circ}, \mathrm{CHCl}_{3}$
g	(S)-Me	Ph	Ph	H	1.1	65	-298.9 ${ }^{\circ}$, DMF
h	(R)-Et	H	H	Boc	2.1	$81{ }^{\text {b }}$	$-36.4{ }^{\circ}, \mathrm{CHCl}_{3}$
i	$(S)-i \mathrm{Pr}$	H	H	Boc	2.1	$85{ }^{\text {b }}$	$+49.9{ }^{\circ}, \mathrm{CHCl}_{3}$
j	$(S)-t \mathrm{Bu}$	H	H	Boc	2.1	95 (72) ${ }^{\text {c }}$	$+41.9^{\circ}$, EtOH
k	(R)-Ph	H	H	Boc	2.1	85	$-68.9^{\circ}, \mathrm{CHCl}_{3}$
1	(R) $-\mathrm{CH}_{2} \mathrm{Ph}$	H	H	Boc	2.1	84	$-19.4{ }^{\circ}, \mathrm{CHCl}_{3}$
m	(R)-Me	(R)-Ph	H	Boc	2.1	82	$-70.4{ }^{\circ}, \mathrm{CHCl}_{3}$
n	(R)-Ph	(S)-Ph	H	Boc	2.1	92 (78) ${ }^{\text {c }}$	$+74.0^{\circ}, \mathrm{CHCl}_{3}$
0	(S)-Me	Ph	Ph	Boc	2.1	81	$-252.3^{\circ}, \mathrm{CHCl}_{3}$

${ }^{\text {a }}$ Solvent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{\text {b }}$ Solvent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reaction time: 60 min . ${ }^{\text {c }}$ Catalytic reaction with 0.1 eq DMAP.

Dependent on the amount of di-tert-butyl dicarbonate (1.1 or 2.1 eq) either the N-unsubstituted oxazolidin-2ones $1 \mathrm{a}-\mathrm{g}$ or the N -Boc-oxazolidin-2-ones $\mathbf{1 h - o}$ were obtained as products. In the synthesis of the N -unsubstituted heterocycles the N-Boc- and N, O-bis-Boc-1,2-aminoalcohols were formed as by-products due to competing tert-butoxycarbonylation of starting material. Again, we noted that high sterical demand of substituents in the α - or β-position of the amino group leads to higher yields of the isocyanates and their consecutive products. Therefore, (S)-2-amino-3,3-dimethyl-1-butanol (tert-valinol) and (1S,2R)-2-amino-1,2-diphenylethanol gave the best results. The transformation to the oxazolidin-2-ones 1 was also achieved by using catalytic amounts of DMAP. The values for the optical rotation of 1 a-e and 11 were in agreement with those reported in the literature, ${ }^{14}$ indicating that the cyclization to the oxazolidin-2-ones occurred without partial racemization. The method was also used for the transformation of 1,2-diamines to the imidazolidin-2-ones 2 (Table 2). In this case the intramolecular trapping is much more efficient because of the higher nucleophilicity of the amine. Thus, ($1 R, 2 R$)-1,2-diamino-1,2-diphenylethane was quantitatively converted to the N, N^{\prime}-bis-Boc-substituted cyclic urea $2 a$ with 3.1 eq of di-tert-butyl dicarbonate using stoichiometric or catalytic amounts of DMAP. The value for the optical rotation of the N, N^{\prime}-unsubstituted imidazolidin-2-one $\mathbf{2 b}$ was in agreement with that reported in the literature. ${ }^{15}$

Table 2. Synthesis of (4R,5R)-4,5-diphenylimidazolidin-2-ones 2.

	R	$(\mathrm{Boc})_{2} \mathrm{O}[\mathrm{eq}]$	DMAP [eq]	2, Yield [\%]	$[\alpha]_{\mathrm{D}}^{20}, \mathrm{c}=1$, solvent
\mathbf{a}	Boc	3.1	1.0	94	$+30.1^{\circ}, \mathrm{CHCl}_{3}$
a	Boc	3.1	0.1	96	$+30.1^{\circ}, \mathrm{CHCl}_{3}$
b	H	1.1	1.0	81	$+53.3^{\circ}, \mathrm{CHCl}_{3}$

For $1 \mathbf{a}$ and $\mathbf{2 b}$ the formation of an intermediate β-hydroxy and β-amino isocyanate was confirmed by following the reaction using FT-IR spectroscopy. A band for the intermediate isocyanate occurred at 2273 and $2274 \mathrm{~cm}^{-1}$ respectively, increased to a maximum (after a reaction time of 29 s in case of 1a), and decreased again due to cyclization to the heterocycles. Subsequent to the cyclization an additional N-tert-butoxycarbonylation of the cyclic carbamates and ureas occurred if an excess of di-tert-butyl dicarbonate was applied. The efficiency of the DMAP/(Boc) $)_{2} \mathrm{O}$ reagent for the N-Boc protection of amides and carbamates is well-known. ${ }^{16}$

Scheme 2

The corresponding benzo-annulated heterocycles are also available by the present method. Using 2.1 eq di-tertbutyl dicarbonate and stoichiometric amounts of DMAP o-aminophenol afforded the N-Boc-protected benzoxazolin-2-one 3 in 91% yield. ${ }^{17}$ Reaction of o-phenylenediamine with $3.1 \mathrm{eq}(\mathrm{Boc})_{2} \mathrm{O}$ and substoichiometric amounts of DMAP provided quantitatively the N, N^{\prime}-bis-Boc-benzimidazolin-2-one 4 (Scheme 2). ${ }^{17}$

In conclusion, a novel method for the synthesis of oxazolidin-2-ones and imidazolidin-2-ones under mild reaction conditions was developed using the $\mathrm{DMAP} /(\mathrm{Boc})_{2} \mathrm{O}$ reagent system. Either the N-unsubstituted or the N -Boc-protected heterocycles were obtained dependent on the amount of (Boc$)_{2} \mathrm{O}$. The present one-pot procedure provides an improved route to Boc-protected chiral oxazolidin-2-one auxiliaries. ${ }^{18}$

Acknowledgements: This work was supported by the Deutsche Forschungsgemeinschaft (Kn 240/6-1) and the Fonds der Chemischen Industrie. We thank the BASF AG, Ludwigshafen, for a generous gift of chemicals.

References and Notes

1. Part 4: H.-J. Knölker, T. Braxmeier, Synlett 1997, 925.
2. D. A. Evans, J. Bartroli, T. L. Shih, J. Am. Chem. Soc. 1981, 103, 2127; D. A. Evans, M. D. Ennis, D. J. Mathre, J. Am. Chem. Soc. 1982, 104, 1737; D. A. Evans, Aldrichimica Acta 1982, 15, 23; D. A. Evans, M. D. Ennis, T. Le, N. Mandel, G. Mandel, J. Am. Chem. Soc. 1984, 106, 1154; D. A. Evans, A. E. Weber, J. Am. Chem. Soc. 1986, 108, 6757; D. A. Evans, K. T. Chapman, J. Bisaha, J. Am. Chem. Soc. 1988, 110, 1238; D. A. Evans, T. C. Britton, R. L. Dorow, J. F. Dellaria, J. Tetrahedron 1988, 44, 5525.
3. D. A. Evans, H. P. Ng, D. L. Rieger, J. Am. Chem. Soc. 1993, 115, 11446.
4. T. K. Jones, R. A. Reamer, R. Desmond, S. G. Mills, J. Am. Chem. Soc. 1990, 112, 2998.
5. H. Kubota, A. Kubo, M. Takahashi, R. Shimizu, T. Da-te, K. Okamura, K. Nunami, J. Org. Chem. 1995, 60, 6776.
6. For a recent application, see: J. S. Madalengoita, J. J. Tepe, K. A. Werbovetz, E. K. Lehnert, T. L. Macdonald, Bioorg. Med. Chem. 1997, 5, 1807.
7. For a recent application, see: J. S. Panek, P. Liu, Tetrahedron Lett. 1997, 38, 5127.
8. F. Bracher, T. Litz, J. Prakt. Chem. 1995, 337, 516; L. Cotarca, P. Delogu, A. Nardelli, V. Sunjic, Synthesis 1996, 553; T. Akiba, O. Tamura, S. Terashima, Org. Synth. 1997, 75, 45.
9. H. A. Staab, Angew. Chem. 1962, 74, 407; Angew. Chem. Int. Ed. Engl. 1962, I, 351; K. Ishida, H. Matsuda, M. Murakami, K. Yamaguchi, Tetrahedron 1997, 53, 10281.
10. G. Höfle, W. Steglich, H. Vorbrüggen, Angew. Chem. 1978, 90, 602; Angew. Chem. Int. Ed. Engl. 1978, 17, 569.
11. H.-J. Knölker, T. Braxmeier, G. Schlechtingen, German patent application P 19526081.3, 1995; H.-J. Knölker, T. Braxmeier, G. Schlechtingen, Angew. Chem. 1995, 107, 2746; Angew. Chem. Int. Ed. Engl. 1995, 34, 2497.
12. H.-J. Knölker, T. Braxmeier, G. Schlechtingen, Synlett 1996, 502.
13. H.-J. Knölker, T. Braxmeier, Tetrahedron Lett. 1996, $37,5861$.
14. 1a, 1e, 11: S. Iwama, S. Katsumura, Bull. Chem. Soc. Jpn. 1994, 67, 3363; 1b, 1e: L. N. Pridgen, J. Prol, B. Alexander, L. Gillyard, J. Org. Chem. 1989, 54, 3231; 1c: L. F. Tietze, C. Schneider, A. Grote, Chem. Eur. J. 1996, 2, 139; 1d: T. Akiba, O. Tamura, M. Hashimoto, Y. Kobayashi, T. Katoh, K. Nakatani, M. Kamada, I. Hayakawa, S. Terashima, Tetrahedron 1994, 50, 3905.
15. W. Sankhavasi, M. Yamamoto, S. Kohmoto, K. Yamada, Bull. Chem. Soc. Jpn. 1991, $64,1425$.
16. L. Grehn, U. Ragnarsson, Angew. Chem. 1985, 97, 519; Angew. Chem. Int. Ed. Engl. 1985, 24, 510; M. Wakselman in Encyclopedia of Reagents for Organic Synthesis, Ed.: L. A. Paquette, Wiley, Chichester, 1995, p. 1602; U. Ragnarsson, L. Grehn, Acc. Chem. Res. 1998, 31, 494, et loc. cit.
17. 3: colorless crystals, mp $78^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.65$ (s, 9 H), 7.13-7.19 (m, 3 H), 7.65 ($\mathrm{m}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR and DEPT ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=27.87\left(3 \mathrm{CH}_{3}\right), 86.03(\mathrm{C}), 109.82(\mathrm{CH}), 114.50$ $(\mathrm{CH}), 124.25(\mathrm{CH}), 124.62(\mathrm{CH}), 127.35(\mathrm{C}), 141.56(\mathrm{C}), 147.43(\mathrm{C}=0), 149.26(\mathrm{C}=0)$. Analysis calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4}$: C 61.27, H $5.57, \mathrm{~N} 5.95$; found: C 61.51, H 5.71, N 5.92 .
4: colorless crystals, mp $144^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.66(\mathrm{~s}, 18 \mathrm{H}), 7.20(\mathrm{~m}, 2 \mathrm{H}), 7.85$ ($\mathrm{m}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C} \mathrm{NMR}$ and DEPT ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.02\left(6 \mathrm{CH}_{3}\right), 85.30(2 \mathrm{C}), 113.99(2 \mathrm{CH}), 124.29$ $(2 \mathrm{CH}), 126.10(2 \mathrm{C}), 147.32(\mathrm{C}=\mathrm{O}), 148.44(2 \mathrm{C}=0)$. Analysis calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C} 61.07, \mathrm{H} 6.63$, N 8.38; found: C 61.07, H 6.70, N 8.29.
18. D. J. Ager, D. R. Allen, D. R. Schaad, Synthesis 1996, 1283.
