17α -KONFIGURIERTE 20-METHYLPREGNAN-DERIVATE

ERNST-JOACHIM BRUNKE

Institut für Organische Chemie der Technischen Universität Braunschweig, Schleinitzstrasse, D-3300 Braunschweig[†], Deutschland

(Received in Germany 13 July 1978)

Zusammenfassung—Das aus Pregnenolon (1a) durch C-17-Epimerisierung erhaltene Gemisch 1a + 1b (17 α) wurde durch Wittig-Reaktion in die 17-Isopropenyl-Steroide 3a + 3b überführt. Durch faaktionierte Kristallisation der Acetate 4a + 4b und AgNO₃-Chromatographie wurde 4b (17 α) isoliert und zu 8b hydriert (Pt-Katalysator). Bei Hydrierung von 3a (17 β) mit Pd/C wurde unter $\Delta^{20(22)} \rightarrow \Delta^{17}$ -Doppelbindungsisomerisierung 5 erhalten. Aus 8b wurden die 17 α -konfigurierten 20-Methylpregnane 7b, 9b-13b dargestellt. Durch Vergleich mit den 17 β -Epimeren 1a-4a, 7a-13a wurden spektroskopische Kriterien für die relative Konfiguration an C-17 von 17-alkylsubstituierten Steroiden ermittelt.

Abstract—A mixture of 1a + 1b (17 α), obtained by C-17-epimerization of pregnenolone (1a) was converted into 3a + 3b by Wittig-reaction. 3a + 3b were acetylated to a mixture of 4a + 4b, from which 4b was isolated by cristallization of 3a and following AgNO₃-chromatography of the mother-liquors. $\Delta^{20(22)} \rightarrow \Delta^{17}$ -doublebond-isomerization occurs by hydrogenation (Pd/C) of 3a (17 β) to give 5. Hydrogenation (Pt-catalyst) of 4b (17 α) leads to 8b, which was converted into the 20-methylpregnane-derivatives 7b, 9b-13b. By comparison with the 17 β epimers 1a-4a, 7a-13a a spectroscopic determination of the relative configuration on C-17 of 17-alkylsubstituted steroids was possible.

Bei totalsynthetischen Steroiden, die an C-17 monoalkyliert sind, kann die C-17-Konfigurationsbestimmung durch direkte Korrelation mit einem Naturstoff nur bei C-13/C-17-cis-Konfiguration erfolgen, da die bisher bekannten 17-Alkylsteroide natürlichen Ursprungs stets 17 β konfiguriert sind. Um einen ebenso schlüllingen Beweis für 17 α -konfigurierte Produkte zu ermöglichen, wurden die hier beschriebenen 20-Methyl-17 α -pregnan-Derivate dargestellt. Durch Vergleich mit den entsprechenden 17 β -Epimeren wurden Konfigurationskriterien ermittelt, die allgemein auf 17-alkylsubstituierte Steroide angewandt werden können.

20-Keto-Steroide wie Pregnenolon (1a) erfahren basenoder säurekatalysierte C-17-Equilibrierung, wobei das 17α -Isomere (z.B. 1b) zu 20-25% gebildet wird, jedoch nur schwierig zu isolieren ist.¹ Für den Aufbau der 17α -Isopropyl-Seitenkette wurde daher von dem aus 1a durch Einwirkung siedender äthanolischer Natronlauge erhaltenen Gemisch der C-17-epimeren Ketone 1a/1b ausgegangen. Die Isolierung eines 17α -Pregnan-Derivats liess sich auf später Stufe durchführen.

[†]Neue Anschrift: Fa. Dragoco, Forschungsabteilung, D-3450 Holzminden.

Die Darstellung der 20-Methyl-pregnan-Derivate erfolgte durch Wittig-Olefinierung der epimeren Pregnenolone 1a/1b und selektive $\Delta^{20(22)}$ -Hydrierung. Ein alternativer Syntheseweg, die Dehydratisierung der durch Grignard-Reaktion gebildeten 20-Methyl-20-carbinole A^{2,3} liefert dagegen Produktgemische.^{4,5} In Abhängigkeit von den Reaktionsbedingungen entstehen hier wechselnde Mengen an Isopropenyl-(B)⁵ und Isopropyliden-Derivaten (C)^{2,3} bzw. Umlagerungsprodukte D vom Kägi-Miescher-Typ.^{6,7}

Pregnenolon (1a) ergab bei Equilibrierung mit äthanolischer Natronlauge die Epimeren 1a/1b im Verhältnis 3:1, wie aus Drehwert-Messungen⁸ des aus 1a/1b erhaltenen Gemisches der Acetate 2a/2b und dem ¹H-NMR-Spektrum (Integration der C18-Methylsignale bei $\delta = 0.64$ ppm für 2a und $\delta = 0.93$ ppm für 2b) ermittelt wurde. Die Wittig-Olefinierung wurde mit dem Epimeren-Gemisch 1a/1b sowie mit einheitlichem Pregnenolon (1a) ausgeführt; die Rohprodukte wurden zur Produktgewinnung acetyliert. Aus 1a (17β) wurde ausschliesslich 4a^a und aus 1a/1b (3:1) das Gemisch der 17-epimeren 20-Methylen-Derivate 4a/4b im gleichen Verhältnis erhalten. Eine C-17-Equilibrierung während der Olefinierungsreaktion ist daher auszuschliessen.

Bei der fraktionierten Kristallisation von 4a/4b wurde das 17 α -Isomere in der Mutterlauge angereichert und durch Argentations-Schichtchromatographie isoliert. Hierbei trat keine Doppelbindungsisomerisierung nach $\Delta^{17(20)}$ ein, wie der NMR-spektroskopische Vergleich mit der Referenzverbindung 5 zeigt. Esterverseifung von 4a und 4b ergab die Dienole 3a^a und 3b.

Die selektive katalytische Hydrierung der 17-Isopropenylgruppe in Steroiden wie 4a wird in der Lieratur als problematisch beschrieben.^{4,9,10} Sie gelang bei den Epimeren 4a und 4b mit Adams-Katalysator in neutralem Medium (Ethanol/Ether) unter Normalbedingungen und lieferte jeweils die konfigurativ einheitlichen 17-Isopropyl-Steroide $7a^{a}$ (17 β) und 7b (17 α), deren Esterverseifung die Alkohole 8a° und 8b ergab. Anders verliefen Verwendung von Hydrierungsversuche bei Palladium/Aktivohle unter sonst gleichen Reaktionsbedingungen. Während 4b auch hierbei quantitativ zu 7b hydriert werden konnte, unterliegt das 178-Isopropenylder Doppelhauptsächlich Steroid **3a** bindungsisomerisierung nach 17(20). Aus 3a werden auf diese Weise die Steroide 5 und 7a im Verhältnis 3:1 erhalten und als Acetate 6 und 8a durch präparative Argentations-Chromatographie getrennt. Derartige Doppelbindungsisomerisierungen unter dem Einfluss von Palladium-Katalysatoren erfolgen durch Ablösung eines der Katalysatoroberfläche sterisch leicht zugänglichen allylständigen Wasserstoffs,11 einer Voraussetzung die zwar bei 4a (17 α -H), nicht aber bei 4b gegeben ist. Hier ist das 17B-H durch die C-13-Methylgruppe abgeschirmt. Die unterschiedlich verlaufenden Hydrierungsversuche mit den Stereoisomeren 4a und 4b geben ein chemisches Kriterium für die Konfiguration an C-17.

Oppenauer-Oxidation von 7a und 7b ergab die Δ^4 -Steroid-3-ketone 9a^a und 9b. Die katalytische Hydrierung der Δ^5 -Steroidalkohole 7a und 7b erfolgte mit Adams-Katalysator in Eissin-Äthylacetat und lieferte Gemische der C-5-Epimeren 10a^a/11a bzw. 10b/11b, jeweils mit einem Anteil von 5-10% der 5 β -Epimeren, die

schichtchromatographisch abgetrennt wurden. Die Konfigurationszuordnung an C-5 ergibt sich aus der prramagnetischen Verschiebung des 19-Methyl-Signals um $\Delta \delta = 0.15-0.17$ ppm bei den 5 β -steroiden gegenüber den entsprechenden 5 α -Isomeren.¹² Durch Jones-Oxidation von 10a und 10b wurden die gesättigen Ketone 12a² und 12b erhalten und aus diesen durch Huang-Minlon-Reduktion die gesättigten 17-epimeren Kohlenwasserstoffe 13a^a und 13b.

Im Vergleich zu den begannten 17β -konfigurierten Produkten 1a-4a, 7a-13a sind für die 17α -konfigurierten Epimeren 1b-4b, 7b-13b signifikante Unterschiede in den Schmelzpunkten (exp. Teil), im chromatographischen Verhalten (exp. Teil), in den Spektren, und im chemischen Verhalten festzustellen.

DISKUSSION DER SPEKTREN

¹*H-NMR-Spektren.* Bei den 17 α -konfigurierten Pregnan-Derivaten 1b-4b mit 17-Acetyl-bzw. 17-Isopropenyl-Gruppe bewirkt der Anisotropieeffekt der C=X-Gruppe (X = O, CH₂) gegenüber den entsprechenden 17 β -Isomeren 1a-4a eine Tieffeldverschiebung des 18-Methylsignals un $\Delta \delta = 0.27$ bis 0.29 ppm (Tabelle 1). Ein weiteres Konfigurationskriterium ergibt sich bei den 20-Methylen-verbindungen 3a,b und 4a,b aus der differenz der chemischen Verschiebungen für die olefinischen protonen an C-22, die bei 17 β -Konfiguration 0.14 ppm, bei 17 α -Konfiguration aber 0.30 ppm beträgt.

In den 20-Methylpregnan-Derivaten 7a,b-13a,b sind 21- und 22-Methylgruppen des 17-Isopropylsubstituenten magnetisch nichtäquivalent¹³ und ergeben daher jeweils zwei Dubletts, deren $\Delta\delta$ -werte charakteristisch für die Konfiguration an C-17 sind (Tabelle 2). Bei allen 17 β konfigurierten Produkten mit einer Δ^4 -, Δ^5 -oder 5α -H-Partialstruktur beträgt $\Delta\delta = 0.09$ ppm (auch bei einer Messtemperatur von 45°C), bei den entsprechenden 17 α -Isomeren dagegen nur 0.02–0.03 ppm. Bemerkenswerterweise hat aber auch die Konfiguration an C-5 einen Einfluss auf diese chemische Verschiebungsdifferenz: bei den 5 β -Steroiden 11a und 11b vermindert sich der $\Delta\delta$ -

^aDie 17 β -konfigurierten Steroide 3a-4a, 7a-13a sind nach Schmelzpunkten und Drehwerten identisch mit bekannten, z.T. auf anderem Weg dargestellten Verbindungen (Literaturangaben im experimentellen Teil).

<u>t</u>	
ē	
2	
ę	5
8	vate
ļ	j
iten i	5
Ę.	ovlid
¥.	
Z S	3
5	9
Į	umd
3	4
ž	4
Ë.	field and
-1	, I
INS	Č,
Ľ	Ven V
Ä	
5.4	l Tes
<u>B</u>	Internet
9	ł
Ē	
2	Į
NN	Į.
Ħ	17.0
-	
Tabel	

			in the second				
	сн ₃ - 21	CH3- 22	CH ₂ = 22	сн ₃ - 18	сн ₃ - 19	Inkremente CH ₃ - 18 CH ₃ - 19	C-17-Substituenten
Ia Ia	2.13	, P	•	0.65	1.02	- 0,08 -0,01	0-Aoetyl
q 1	2.13	I	,	0.93	1,02	+ 0.20 - 0.03	a-Acety1
41 177	2.13	ı	ı	0.64	1.03	10*0- 60*0 -	B-Acetyl
01 01	2.13	I	I	0.93	1.02	+ 0.20 - 0.03	a-Acetyl
98 10	1.76	٩	4.70 4.84	0.59	1.02	- 0°14 -0°01	Ĝ-Isopropenyl
2	1.73	ı	4.54 4.84	0,86	1.02	+ 0,13 - 0,01	a-Isopropeny1
83 47	1.77	I	4.70 4.10	0.59	1.03	- 0.14 - 0.01	<u> 6-Isopropenyl</u>
4	1.73		440 140 141 141 141 141 141 141 141 141	0.86	1.03	+ 0,13 - 0,01	a-Isopropenyl
174	1.73	1.58 *)	ı	0,86	1.02	+ 0.13 - 0.01	Isopropy11den
5	1.73	1.58	•	0.86	1.03	+ 0.13 - 0.01	Isopropyliden
	*)Zuordn	ung nach Li	lt. 14)				

			17-cpi	meren Isopropy	I-Derivate 7a.b-	13a.b		
	CH ₁ - 2	1 22	۵ ه			Inkrew	ente	C-17-Substituenten
	(2d,J =	· 6.5 Hz)	(0H ₃ - 21,-22)	сн ₃ - 18	сн ₃ - 19	сн ₃ - 18	сн ₃ - 19	
Za	0.84	0.93	0°0	0.67	1.01	-0-06	- 0.01	B-Isopropyl
2	0.82	0.85	0.03	0.77	1.02	40°04	10*0-	g-Isopropy1
89 41	0.84	0.93	0,09	0.67	1.02	-0,06	- 0,02	8-Isopropyl
8	0.82	0.85	0°03	0.77	1.03	40°0¥	-0-03	a-Isopropyl
61 61	0.85	0 . 94	0.09	0.72	1.19	-0-05	- 0,02	ß-Isopropyl
25	0.83	0.85	0°03	0.82	1.19	+0*04	10"0-	c-Lsopropyl
100	0.84	0.93	0,09	0.65	0.81	-0,05	- 0,02	B-Isopropyl
9 1 1	0.82	0.84	0.02	0.74	0.80	40°0+	-0.02	a-Isopropyl
118	0.84	0,91	0*02	0.64	0.96	-0,06	- 0,02	0-Isopropy1
116	0.84	0.84	0	0.74	0.97	+0°0+	-0-03	α-Isopropyl
128	0.84	ú.93	0,09	0.68	1.01	- 0.05	- 0.02	ß-Isopropyl
125	0.82	0.84	0.02	0.77	1.00	40°04	-0-02	a-Isopropyl
851	0.83	0,92	0°0	0.64	0.78	- 0.05	- 0,01	ß-Isopropyl
135	0.83	0.85	0*02	0.74	0.78	+0*02	-0-01	a-Isopropyl

Tabelle 2. ¹H-NMR-Daten (s[ppm], CDCl3, TMS als innerer Standard) und Substituenten-inkermente [ppm] der

E. J. BRUNKE

Wert gegenüber den 5α -Produkten 10a und 10b jeweils 0.02 ppm; in 11b (5β , 17 α) sind 21- und 22-Methylgruppen magnetisch äquivalent. Ein weiteres Konfigurationskriterium liefert erwartungsgemäss die anguläre 18-Methylgruppe, deren Resonanzsignal bei allen 17 α -Epimeren gegenüber den 17 β -Isopropyl-Derivaten um $\Delta\delta =$ 0.09-0.10 ppm Tieffeld-verschoben ist.

Die nach dem Verfahren von Zürcher¹² Jeweils als Differenz zwischen Messwert und berechnetem Bezugswert (Androstan-Derivat gleicher Substitution) ermittelten Inkremente (Tabelle 1 und 2) kennzeichen die Einführung von Acetyl-, Isopropenyl- oder Isopropylresten an C-17 eines Steroids, und zwar durch eine diamagnetische Verschiebung bei 17 β -Konfiguration bzw. eine paramagnetische bei 17 α -Konfiguration. Gegenüber der Acetyl- oder Isopropenylgruppe, die neben konformativen vor allem Anisotropie-Effekte auf die 18-CH₃-Protonen ausüben, liegen bei der Isopropylgruppe hauptsächlich "van der Waals'-sche" Wechselwirkungen vor. Dementsprechend ist der Absolutwert der Inkremente für Acetyl- und Isopropenylgruppen deutlich grösser als bei der Isopropylgruppe.

Tabelle 3. ORD-Werte (Dioxan), λ ([φ] × 10⁻³), und Δ[φ]-Werte der 17-Epimeren 3a,b, 4a,b, 7a,b, 8a,b, 18a,b, 11a,b und 13a,b

	600	550	500	450	400	350	300	250	235	220 na
<u>3a</u>	-0,19	-0.22	-0,28	-0.35	-0.47	-0.67	-1,02	-1.70	-1.81,M	-1.40
35	-0,27	-0.32	-0.40	-0.53	-0.72	-1.04	-1.75	-3.71		
∆[∮]	0,08	0.10	0.12	0.18	0.25	0.37	0.73	2.01		
4a	-0,22	-0.27	-0.34	-0.42	-0.55	-0.78	-1.23	-2.11	-2,58,N	-1.45
<u>45</u>	-0,29	-0.35	-0.44	-0.60	-0.79	-1.18	-2,03	-4.44		
∆[ø]	0.07	0.08	0,10	0.18	0.24	0.40	0,80	2.33		
<u>7a</u>	-0,19	-0.20	-0.28	-0,36	-0,48	-0,69	-1.15	-2.32		
<u>7</u> 5	-0.29	-0,35	-0.45	-0.57	-0,76	-1.09	-1.72	-3.35		
∆[ø]	0.10	0.15	0.17	0.21	0.28	0.40	0.57	1.03		
8 a	-0.24	-0.27	-0.34	-0.45	-0.60	-0.88	-1.40	-2.89		
8 <u>5</u>	-0.33	-0.39	-0,48	-0.62	-0,83	-1.18	-1,90	-3.85		
∆[∮]	0.09	0.12	0.14	0.17	0.23	0,30	0,50	0.96		
10a	+0.01	+0.01	+0,02	.+0,02	+0,03	+0,04	+0,06	+0.12		
105	-0.05	-0.07	-0,10	-0.13	-0.18	-0.26	-0,40	-0.73		
[¢]	0.06	0.08	0.12	0.15	0.21	0.30	0.46	0.85		
112	+0.05	+0,06	+0.07	+0.08	+0,10	+0.12	+0,19	+0,29		
<u>11</u> b	-0.03	-0,04	-0.07	-0.08	-0,09	-0.15	-0.22	-0.53		
∆[∳]	0,08	0,10	0,14	0.16	0,19	0.27	0,41	0.82		
13=	+0.05	+0,06	+0.07	+0.09	+0,12	+0.15	+0.24	+0.46		
135	-0.06	-0.08	-0.09	-0,12	-0.15	-0.18	-0.28	-0.49		
∆ [¢]	0.11	0.14	0,16	0.21	0,27	0.33	0,52	0.95		

Die Eignung der 17-Isopropylgruppe zu spektroskopischen Modelluntersuchtngen wird durch das für 17B-Konfiguration ermittelte Inkrement (-0.05 ppm) belegt. das mit dem Wert für die Cholestan-Seitenkette $(-0.05 \text{ ppm})^{12}$ identische ist, sich jedock vom 17β -Ethylrest des Pregnans $(-0.14 \text{ ppm})^{12}$ erheblich unterscheidet. Aufgrund dieser Verhältnisse kann erwartet werden, dass die Werte der 17α -konfigurierten 20-Methylpregnane auf Steroide mit längerer 20-Methyl-alyl Seitenkette an C-17 übertragen werden können. Es ist somit möglich. durch ¹H-NMR-Messung die relative Konfiguration von entsprechend C-17-alkylsubstituierten Steroiden zu bestimmen. Bei 17ß-Konfiguration ist das 18-CH₃-Signal um $\Delta \delta = +0.05$ ppm, hingegen bei 17 α -Konfiguration um $\Delta \delta = -0.05$ ppm gegenüber 5 α , 14 α -Androstan verschoben.

ORD-Spektren. Die hier beschreibenen 17-Isopropenyl-(3a,b, 4a,b), 17-Isopropyliden-(5, 6) und 17-Isopropyl-Steroide (7a,b, 8a,b, 10a,b, 11a,b, 13a,b) ergeben erwartungsgemäss Normalkurven (Tabelle 3). Hierbei und auch bei den Cotton-Effekt-Kurven der Steroid-3ketone 9a,b und 11a,b (Werte in experimentellen Teil) zeigt sich jeweils für die 17 α -Epimeren eine stärker negative Grundrotation als bei den entsprechenden 17 β konfigurierten Produkten. Die bei definierter Wellenlänge für ein Epimerenpaar bestimmten Differenzen der molaren Drehung ($\Delta[\phi]$) sind unter den Epimerenpaaren ähnlich gross (Tabelle 4); bei kürzeren Wellenlängen steigen diese Werte. Durch die $\Delta[\phi]$ -Werte ist ein Kriterium für die relative Konfiguration von 17 α -Pregnan-Derivaten gegeben.

Für den Konfigurationsbeweis neuartiger C-17monoalkylierter 5α , 14α -Androstan-Derivate sind als Bezugssubstanzen von allem die Kohenwasserstoffe 13a, b geeignet. Das 17α -konfigurierte Produkt 13b weist eine linksdrehende, das 17β -Epimere 13a eine rechtsdrehnde ORD-Kurve auf, wobei die Absolutwerte der molaren Drehungen nahezu gleich gross sind (Abb 1). Dieser Befund kann auf weitere 17α -konfigurierte Steroid-Kohenwasserstoffe mit 5α , 14α -Androstan-Grundgerüst und längerer Seitenkette übertragen werden. Zu erwar-

Abb. 1. ORD-Spectren ($[\phi]$, Dioxan) der Kohlenwasserstoffe 13a, b.

ten sind ebenfalls linksdrehende PRD-Kurven mit ähnlichen Absolutwerten der molaren Drehungen, wie sie die rechtsdrehenden¹⁵ 17β -Epimeren aufweisen.

EXPERIMENTELLER TEIL

Schmelpunkte (nicht korrigiert): Kofler-Heizblock-Mitkroskop.—IR-Spektren: Perkin-Elmer 521.—¹H-NMR-Spektren (CHCl₃, TMS als interner Standard): Bruker HFX-90.—Massenspektren (MS): CH-4 (Atlas, Bremen) bzw. MS-9 (AEI, Manchester), gemessen bei 70 eV.—Optische Rotationsdispersions-Spektren (ORD) und spez. Drehwerte ($[\alpha]_D$): Cary-Recording-Spectropolarimeter 60 (Applied Physics, Monrovia, USA).— Circulardichroismus-Spektren (CD): Dichrographe II (Jouan, Paris).—Elementarnanalysen: Mikroanalyt. Laboratorium I. Beetz, Kronach.—Präparative Schicht chromatographie (präp. SC) und Argentations chromatographte nach Bedgn.¹⁶

C-17-Epimerisierung von Pregnenolon (1a)

20.0 g 1a wurden in 600 ml 1-proz. äthanolischer Natronlauge 1 h unter Rückfluss gekocht. Nach Abdestillieren *i. Vak.* von ca. 300 ml Ethanol wurde mit 1.51 Wasser versetzt, wobei ein weisser Niederschlag ausfiel. Filtration, Aufnehmen in 200 ml Chloroform, Abdestillieren des Chloroforms (zugleich Entfernung restlichen Wassers) und 3 h Trocknen bei 50°C erbrachten 17.2 g (97%) 1a + 1b als weisse, kristalline Masse.—Aus 1.0 g 1a + 1b wurden durch Acetylierung (Acetanhydrid in Pyridin, 1 h Siedetemp.) 1.08 g (96%) 2a + 2b erhalten.

 $17\alpha - Pregn - en - 3\beta - ol - 20 - on - acetat$ (2b) + 2a. $[\alpha]_D = -18.6^{\circ}$ (C = 1.03 in CHCl₃), d.h. 26% 2b + 74% 2a (2a: $[\alpha]_D = +18^{\circ}$, 2b: $[\alpha]_D = -120^{\circ 1}$).

Wittig-Olefinierung von 1a, 1b

In einer Stickstoff-Atmosphäre wurden einer Suspension von 53.6 g (0.15 mol) Triphenylmethyl-phosphoniumbromid in 500 ml abs. Ether unter Rühren 100 ml einer ca. 20-proz. Lösung von n-Buthyllithium (ca. 0.2 mol) in n-Hexan zugefügt. Nach 2 h Rühren bei Raumtemp. war eine klare, orangerote Lösung entstanden, zu der die Lösung von 15.8 g (50 mmol) 1a (Ansatz A) bzw. 1a + 1b (Ansatz B) in 250 ml abs. Tetrahydrofuran innerhalb von 15 min. zugetropft wurde; hierbei bildete sich ein weisser Niederschlag. Die Reaktionsmischung wurde 8 h bei Siedetemp. gerührt und nach Abkühlung auf ca. 300 g Eis gegossen. Aufarbeitung (Extraktion mit Ether) ergab jeweils ca. 43 g Rohprodukt als braunes Öl, das in 150 ml Pyridin gelöst, mit 14.2 ml (0.15 mol) dest. Acetanhydrid versetzt und 1 h unter Rückfluss gekocht wurde. Nach Abkühlung schüttelte man 5 min. mit 500 ml Wasser und 400 ml Ether und erhielt nach Aufarbeitung 44 g Rohprodukt (braunes Öl), das einer Säulenchromatographie (Säulendurchmesser 4 cm) an 400 g neutralem Aluminiumoxid (Aktivität I) unterzogen wurde: Elution 1 (1.21 Petrolether): 2.5 g farbloses Öl (Kohlenwassertsoffe); Elution 2 (1.51 CHCl₃): 15 g gelbes Öl (4a bzw. 4a + 4b mit jeweils ca. 20% Triphenyl-phosphinoxid); Elution 3 (0.21 Tetrahydrofuran-CHCl₃ 1:1): 4 g gelbes Öl (4a bzw. 4a + 4b) und jeweils ca. 60% Triphenylphosphinoxid.

20-Methylen-pregn-5-en-3 β -ol-acetat(4a). Aus Ansatz A wurden durch mehrfaches Kristallisieren (Ethanol-Ether, 5:1) der Elutionen 2 + 3 sowie durch präp. SC der Mutterlaugen (0.5 g pro Platte, Cyclohexan-Essigester 5:1, 2x) 12.7 g (71%) 4a als farblose prismatische Blättchen vom Schmp. 129–131°C (128.5-129°C)⁹ erhalten. IR (KBr): 1730 (C=O), 1650, 895 cm⁻¹ (C=CH₂). MS: m/e (%) = 356 (0.5, M⁺), 296 (100), 281 (25). [α]_D = -73.3° (c = 1.05, CHCl₃), (-72°, CHCl₃).

20 - Methylen - 17α - pregn - 5 - en - β - ol - acetat(4b). Aus Ansatz B wurden durch Kristallisieren der Elutionen 2+3 aus 200 ml Ethanol 6.2 g 4a erhalten. Argentations-SC (0.5 g pro Platte; Cyclohexan-Benzol, 3:1, 2x) der Mutterlauge ergab 4.2 g 4a+4b (4:1, polare Zone) und 2.5 g 4b (unpolare Zone), das durch Kristallisieren aus Ethanol in Form gläzender Blättchen von Schmp. 134-136°C erhalten wurde. IR (KBr): 1730 (C=O), 1650, 890 cm⁻¹ (C=CH₂). MS: m/e(%) = 356 (0.3 M⁺), 296 (100), 281 (19). [α]_D = -99.0° (c = 1.03, CHCl₃), C₂₄H₃₆O₂ (356.5) Ber: C, 80.85; H, 10.18. Gef. C, 80.79; H, 10.13. Durch Verseifung (1-proz. šthanol. NaOH, 30 min. Rückfluss) wurden aus 4a und 4b erhalten:

20-Methylen-pregn-5-en-3\beta-ol(3a). Schmp. 132-133°C, Blättchen, aus Ethanol (133.3-134°C).⁹ IR (CCL); 3250 (OH), 1645, 893 cm⁻¹ (C-CH₂). MS: m/e (%) = 314 (100, M⁺), 299 (16), 296 (7), 281 (28). [α]_D = -66.6° (c = 1.37, CHCl₃), (-66.4°).⁹

20-Methylen-17*a*-pregn-5-en-3 β -ol(3b), Schmp. 154-158°C, Nadeln, aus Ethanol. IR (CCl₄): 3500 (O-H), 1648, 890 cm⁻¹ (C-CH₂). MS: m/e = 314 (M⁺). $[\alpha]_D = -85^\circ$ (c = 0.81, CHCl₃).

Selektive Hydrierung der 20(22)-Doppelbindung von 4a, 4b

Die Lösung von 13.2 g 4a bzw. 2.0 g 4b in 500 ml (100 ml) abs. Ethanol wurden mit 0.3 g (0.1 g) Platin(IV)-oxid versetzt und unter Normalbedingungen hydriert bis zur Beendingung der Wasserstoffaufnahme (ca. 2 H). Aufarbeiten der Hydrierlösungen lerferte als Produkte 8a, 8b, die nach DC und ¹H-NMR-Spektren einheitlich waren und aus Ethanol kristallisiert wurden.

20-Methyl-pregn-5-en-3β-ol-scetat(**3**n). 13.1 g (99%) vom Schmp. 127°C als glänzende Blättchen (125.5-127°C).¹⁰ IR (KBr): 1730 cm⁻¹ (C=O). MS: m/e (%) = 358 (0.2, M⁺), 298 (100), 283 (25), 255 (15). [a]_D = -70.7° (c = 1.02, CHCl₃), (-70, 6°).¹⁰

20-Methyl-17a-pregn-5-en-3 β -ol-acetat(8b). 1.9 g (95%) vom Schamp. 111-113°C als Blättchen. IR (CCL₄): 1730 cm⁻¹ (C=O). MS: m/e (%) = 358 (0.1, M⁺), 298 (100), 283 (15), 255 (7). [a]_D = -97.5° (c = 1.03, CHCl₃). C₃₄H₃₅O₂ (358.5) Ber. C, 80.39; H, 10.68; Gef. C, 80.44; H, 10.73.

Verseifung von \$a und orgab 7a und 7b.

20-Methyl-pregn-5-en-3 β -ol(7a): Schmp. 139°C, breite Nadeln aus Ethanol, ab 120°C Sublimation (138.9-139.8°C).¹⁰ IR (KBr): 3300 cm⁻¹ (O-H). MS: m/e (%) = 316 (100, M⁺), 301 (24), 298 (30), 283 (27), 273 (11), 255 (10). $[\alpha]_D = -68.5^\circ$ (c = 1.11, CHCl₃), (-69.1°).¹⁰

20-Methyl-17 α -pregn-5-en-3 β -ol(7b): Schmp. 138-142°C, Nadeln aus Ethanol. IR (CCL₄): 3620 cm⁻¹ (O-H). MS: m/e (%) = 316 (100, M^+), 301 (10), 298 (33), 283 (24), 273 (8), 255 (12). [α]_D = -97.8° (c = 0.42, CHCl₃). C₂₂H₃₆O (316.5) Ber. C, 83.48; H, 11.47. Gef.: C, 83.41; H, 11.52%.

20(22) → 17(20)-Doppelbindungsisomerisierung

Die Lösung von 2.0 g (6.35 mmol) 3a in 150 ml Ethanol und 100 ml Ether wurde mit 200 mg pulv. Palladium-Akrivkohle (10%) in einer Wasserstoff-Atmosphäre 20 min. unter Normalbedingungen geschüttelt. Das nach Entferen des Wasserstoffs und Abdestillieren des Lösungsmittels *i. Vak.* verbleibende Gemisch wurde acetyliert (1 ml Acetanhydrid, 30 ml Pyridin, 1 h Rückfluss) und durch Argentations-Schichtchromatographie aurgetrennt. (0.5 g pro Platte; n-Hexan/Benzol, 2:1, 2x): Zone 1, 590 mg (26 Gew. %) 8a; Zone 2, 1.66 g (74 Gew.%) 6.

20 - Methyl - pregna - 5,17 - dien - 3 β - ol - acetat (6): Schmp. 141-143°C, Blättchen aus Ethanol (139-141°C).³ IR (KBr): 1730 cm⁻¹ (Acetat). MS: m/e (%) = 356 (5, M⁺), 296 (100), 281 (48), 253 (14). $[\alpha]_D = -57.1^{\circ}$ (c = 1.01, CHCl₃). ORD (Dioxan), λ [ϕ]): 590 (-207), 450 (-424), 350 (-895), 250 (-4250), 225 (-12000). C₂₄H₂₆O₂ (356.6) Ber.: C, 80.85: H, 10.18. Gef.: C, 80.78: H, 10.09%.

20-Methyl - pregna - 5,17 - dien - 3β - ol(5). (Aus 6 durch Verieifung). Schmp. 122-125°C (72°C7).³ IR (CCL): 3450 cm⁻¹ (O-H). MS: m/e (%) = 314 (100, M⁺), 259 (85), 281 (34), 271 (31). $[\alpha]_{\rm D} = -70.2$ (1.06, Dioxan). ORD (Dioxan), λ ([ϕ]): 590 (-232), 450 (-442), 350 (-938), 250 (-4300), 228 (-9000). C₂₂H₃₄O (314.5) Ber.: C, 84.01; H, 10.90. Gef.: C, 83.93; H, 10.86%.

Oppenaner-Oxidation von 7a, 7b

Die Lösungen von 8.0 g (25.3 manol) 7a, bzw. 1.3 g (4.1 manol) 7b in 100 nl (20 ml) dest. Aceton wurden mit einer Lösung von 12.5 g (51 mmol), bzw. 2.0 g (8.2 mmol) Aluminium-tert-batylat in 300 ml (50 ml) abs. Benzol versetzt und 10 h unter Rückfluss gekocht. Nach Abdestillieren der Lösungsmittel *i. Val.* nahm man mit 200 ml (40 ml) Wasser auf, extrahierte mit Ether und arbeitete wie äblich auf.

20-Methyl-pregn-4-on-3-on (9a). Kristaliisation des Rohproduktes (7.5 g) aus Methanol ergab 3.8 g 9a und präp. SC(Cyclohexan-Ethylacetat, 4:1, 2x) ser Mutterauge weitere 3.1 g, insgesamt 6.9 g (87%) 9a; Schmp. 144-147°C, Nadein aus methanol, (143-144°C).⁹ IR (KBr): 1670, 1620 cm⁻¹ (α,β -unges. Keton). MS: m/e (%) = 314 (100, M⁺), 299 (8), 272 (32), 271 (7), 257 (6), 229 (44), 191 (35), 124 (81). [α]_D= + 113.5° (c = 1.02, CHCl₃) (+113°).⁹ORD (Dioxan), λ ([ϕ] × 10⁻³): 590 (+0.28), 450 (+0.47), 415 (+0.51, M), 400 (+0.48), 375 (0), 365 (0.53, M), 360 (-0.41, m), 352 (-0.82, M), 347 (0), 338 (+1.05, S), 323 (+3.96, S), 315 (+5.50, S), 250 (+21.80, M), 225 (+6.20). CD (Dioxan), λ ([θ] × 10⁻³): 375 (O), 370 (-0.21), 357.5 (-1.17, s), 344 (-3.44, M), 339 (-3.09, m), 331 (-4.54, M), 323 (-3.46, m), 318.5 (-3.69, M), 307.5 (-2.15, S), 295 (-0.81), 265 (0), 250 (+8.20), 235 (+23.50).

20-Methyl-17a-pregn-4-en-3-on(%b). Aus dem Rohprodukt (1.3 g) wurden durch prip. sc (Cyclohexas-Essigester, 3; 1, 1x) 1.06 g (82%) %b isoliert, das aus Methanol in Form von Prismea auskristallisierte; Schmp. 82-83°C. IR (CCL): 1683, 1620 (α , β unges. Keton). MS: m/e (%b) = 314 (100, M⁺), 299 (8), 272 (22), 271 (8), 257 (6), 229 (27), 191 (16), 124 (33). [α]_D = +51.4° (c = 0.36, CHCl₃). ORD (Dioxan), λ ([ϕ] × 10⁻³); 500 (+0.10), 450 (0.20, M), 400 (+0.12), 389 (0), 364 (-0.99, M), 357 (-0.89, m), 351 (-1.28, M), 344 (0), 337 (+0.55, S), 325 (+3.24, S), 310 (+5.29, S), 300 (+5.96, S), 250 (+20.10, M), 225 (+3.40), CD (Dioxan), λ ([ϕ] × 10⁻³); 375 (0), 370 (-0.28), 360 (-1.20, S), 345 (-3.61, M), 340 (-3.24, m), 332 (-4.77, M), 325 (-3.59, m), 319.5 (-3.87, M), 310 (-2.33, S), 295 (-0.80), 263 (0), 250 (+9.00), 235 (+24.00), 210 (+36.00). C₂₂H₃₄O (314.5) Ber.: C, 84.01; H, 10.90. Gef.: C, 83.96; H, 10.89%.

Hydrierung von 7a, 7b

Die Lösungen von 7.0 g 7a bzw. 600 mg 7b in 200 ml (30 ml) Eisessig und 200 ml (30 ml) Ethylacetat wurden mit 150 mg (50 mg) Platin(IV)oxid versetzt und in einer Wasserstoff-Atmosphäre unter Normalbedingunges 2 h geschüttelt. Nach Aufarbeiten der Hydrierlösungen verblieben 7 g 10a + 11a (Ansatz A) bzw. 0.6 g 10b + 11b (Ansatz B), die jeweils durch Kristallisation und präp. SC der Mutterlauges getreant wurden.

20-Methyl-5 α -pregn-3 β -ol(10a). Ansatz A ergab bei Kristallisation aus Methanol 4.1 g 10a als Nadelbüschel vom Schmp. 144-147°C, ab 130°C Sublimation (145-146°C).⁹IR (KBr): 3250 cm⁻¹ (O-H). MS: m/e (%) = 318 (100, M⁺), 303 (18), 285 (7), 233 (42), 234 (44), 215 (28). [α]_D = +9.4° (c = 1.02, CHCl₃), (+9.3°).⁹ ORD (Dioxan), λ [(ϕ]); 590 (+2), 450 (+28), 350 (+37), 250 (+120), 225 (+150).

20-Methyl-5 β -program-3 β -ol(11a). Prip. SC (0.5 g pro Platte; Cyclohexan-Ethylacetat, 2:1; × 2) der Mutterlauge von Ansatz A ergab aus der unpolaren Zone 0.3 g (5%) 11a und aus der polaren Zone 2.2 g (Gesamtausbeute 90%) 14a. Nach Kristallisation aus Ethanol bildete 11a Blättchen vom Schmp. 177-180°C, ab 150°C Sublimation, Nadeln. IR (KBr): 3280 cm⁻¹ (O-H). MS: m/e(%) =318 (100, M⁺), 303 (44), 300 (59), 285 (26). $[\alpha]_{12} = +14°$ (c = 0.11, Dioxan). ORD (Dioxan), λ [[ϕ]]: 590 (+48), 450 (+82), 350 (+98), 250 (+250).

20 - Methyl - 5a,17a - pregnan - 2 β - ol(19b). Ansatz B lieferte bei Kristallisation aus Ethanol 0.4 g 19b als Nadeln vom Schmp. 149-151.5°C, ab 120°C Sublimation. IR (KBr): 3250 cm⁻¹ (O-H). MS: m/e (%) = 318 (100, M⁺), 303 (18), 285 (8), 261 (2), 257 (2), 248 (12), 234 (49), 233 (49), 215 (31). $[\alpha]_{\rm D} = -31.3$, (c = 1.02, CHCl₃). ORD (Dioxan), A ([ϕ]): 590 (-48), 450 (-126), 350 (-260), 250 (-730), 220 (-1200). C₂₂H₃₆O (318.5) Ber.: C, 82.95; H, 12.03. Gef.: C, 83.01; H, 12.08%.

20 - Methyl - $5\beta_1$, 17α - pregnan - 3β - ol(11b). Durch prip. SC(Cyclobexan-Ethylacetat, 2:1, 2x) der Mutterlauge von Aasatz B wurden aus der unpolaren Zone 30 mg (5%) 11b und aus der polaren Zone 100 mg (Gestamtausbeute 85%) 16b erhalten. Nach Kristallisation aus Ethanol lag 11b in form von Nadeln vom Schmp. 117-121°C vor. IR (CCl₄): 3500 cm⁻¹ (O-H). [α]₀ = -11.7° (c = 0.13, Dioxan). ORD (Dioxan), λ ([ϕ]): 590 (-30), 450 (-55), 350 (-118), 250 (-450).

Oxidation son 10n, 10b

Zu den Lösungen von 3.0 g 10a, bzw. 300 mg 10b in 700 ml (100 ml) dest. Accton wurden bei Raumtenn, unter Rühren 6 ml (0.6 ml) Oxidationslösung (22 g Chromsäureanhydrid in 66 ml Wasser und 14 ml konz. Schwefelsäure) während 5 min. zugetropft. Die Reaktionsmischung wurde 30 min. bei Raumtemp. gerührt und mit 10 ml (1 ml) propanol-2 versetzt. Nach Zagabe von 50 ml (10 ml) ges. Natruimhydrogencarbonatiösung wurde *i. Vok.* abdestilliert. Den Rückstaad nahm man mit 150 ml (50 ml) Wasser auf und extrahierte mit Chloroform. Nach Fiktration der organischen Phasen über Kieselgel ($\phi = 2 \text{ cm}$; h = 15, bzw. 5 cm) und Einengen *i. Vak.* verblieben die Ketone 12a bzw. 12b als heligebe, erstarrende Öle.

20-Methyl-5a-program-3-on(12a). 2.6 g (87%), Schmp. 144-145°C, Lingliche Blättchen aus Ethanol, (144-145°C).⁹ IR (KBr): 1710 cm⁻¹ (C=O). MS: m/e (%) = 316 (100, M⁺), 301 (14), 246 (12), 233 (13), 232 (64), 231 (82), 217 (18). $[\alpha]_D = +10.4^{\circ}$ (c = 1.01, CHCl₃), +30.2°7).⁹ ORD (Dioxan), λ ($[\phi] \times 10^{-3}$): 600 (+0.08), 450 (+0.18), 350 (+0.74)315 (+2.57, M), 305 (+1.81), 296 (0), 230 (-1.03), 274 (-2.60, M), 240 (-1.66). CD (Dioxan), λ ($[\phi] \times 10^{-3}$): 330 (0), 320 (+0.58), 302.5 (+3.43, S), 295 (+3.71, M), 260 (+0.42), 225 (0).

20-Methyl-5a, 17*a*-pregnan-3-on(12b), 255 mg (85%), Schmp. 99-100°C, Blättchen aus Ethanol. IR (KBr): 1705 cm⁻¹ (C=O). MS: m/e (%) = 316 (100, M⁺), 301 (15), 246 (13), 232 (71), 231 (84), 217 (21). $[a]_{\rm D} = -6.8^{\circ}$ (c = 1.01, CHCl₃). ORD (Dioxna), λ ([ϕ] × 10⁻³): 590 (-0.04), 450 (-0.03), 410 (0), 350 (+0.29), 316 (+1.88, M), 305 (+1.07), 298 (0), 290 (-1.62), 270 (-3.26, M), 240 (-1.16). CD (Dioxan), λ ([ϕ] × 10⁻³): 342 (0), 320 (+0.53), 302.5 (+3.23, S), 295 (+3.51, M), 260 (+0.44), 2.30 (0). C₂₂H₃₆O (316.5) Ber.: C, 83.48; H, 11.47. Gef.: C, 83.45; H, 11.40%.

Huang-Minion-Reduktion von 12c, 12b

Die Lösungen von 2 g (0.2 g) Natriumhydroxid in 300 ml (30 ml) Diethylengiykol wurden mit 1.7 g 12a bzw. 150 mg 12b und 10 ml (1 ml) 85%-proz. Hydrazinhydratlösung versetzt. Unter Rühren wurden die Reaktionsmischungen 1 h unter Rückfluss und nach Abdeställieren niedrigsiedender Anteile 3 h bei 210°C gekocht. Nach Abkühlen wurde mit 11 (0.11) Wasser vermischt, mit 10%proz. Schwefelsäure neutralisiert und mit Petrolether extrahjert. Nach Aufarbeitung lagen die Rohprodukte als hellgelbe Öle vor.

20-Methyl-5a-pregnen(13a). Sitelenchromatographie ($\phi = 3 \text{ cm}$) von 1.5 g Rohprodukt an 100 g Aluminiumoxid(I), Elution mit 800 ml Petrolether, Ergab 1.2 g (74%) (13a; Schmp. 110-112°C, glänzende Blättchen aus Aceton (111-112°C).⁹ MS: m/e (%) = 362 (100, M⁺), 287 (45), 259 (1), 232 (22), 218 (76), 217 (94). $[\alpha]_D + 8.2^\circ$ (c = 1.01, CHCl₃), (+8.90°).⁹

20 - Methyl - 5a, 17a - pregnan (13b). Skulenchromatographic ($\phi = 1 \text{ cm}$) von 120 mg Rohprodukt an 20 g Aluminimmoxid(I), Elution mit 100 ml Petrolether, ergab 90 mg (63%) 13b; Schmp. 76-80°C, Nadeln aus Aceton. MS: m/e (%) = 302 (100, M⁺), 287 (42), 259 (2), 244 (4), 232 (29), 218 (63), 217 (72). { α]_D = -23° (c = 0.91, Dioxan). C₂₂H₃₆ (302.5) Ber.: C, 87.34; H, 12.66. Gef.: C, 87.35; H, 12.70%.

Danksagungen-Herrn Prof. Dr. Dr. h. c. H. H. Inhoffen danke ich für Förderung und Herrn Prof. Dr. H. Wolf für wohlwoliende Unterstützung der Arbeit. Für die Aufnahme der NMR-Spektren danke ich Herrn Dr. R. Kutschan, für ORD-Spektren Herrn Dr. M. Kolleck und Für massenspektrometrische Untersuchungen Herrn Dr. H. M. Schiebel.

LITERATUR

¹M. B. Rubin, Steroids 561 (1963).

- ²A. Butendandt und H. Cobier, Z. Physiol. Chem. 234, 218 (1935).
- ³R. E. Marker, H. M. Crooks Jr., E. H. Jones and A. C. Shabica, J. Am. Chem. Soc. 64, 1276 (1942).
- ⁴G. Habermehl und H. H. Ott, Liebigs Ann. Chem. 2331 (1975).
- ³B. Koechlin und T. Reichstein, Heiv. Chim. Acta 27, 549 (1944). ⁶F. Kohen, R. A. Mallory und I. Scheer, J. Org. Chem. 36, 716
- (1970). M. Ustahanić M. Cut und P. I. Darfman, J. Am. Chem. Soc.
- ⁷M. Uskoković, M. Gut und R. I. Dorfman, J. Am. Chem. Soc. 82, 3668 (1960).
- ⁴A. Butenandt und G. Fleischer, Ber Disch. Chem. Ges. 70, 96 (1937).
- ⁹J. P. Dusza und W. Bergmann, J. Org. Chem. 25, 79 (1960).
- ¹⁰R. T. Blickenstaff, J. Am. Chem. Soc. 82, 3673 (1960).
- ¹¹J. B. Bream, D. C. Eaton und H. B. Heabest, J. Chem. Soc. 1974 (1957).
- 12R. F. Zürcher, Helv. Chem. Acta 46, 2054 (1963).
- ¹³M. L. Martin und G. L. Martin, Buil. Soc. Chim. Fr. II, 2117 (1966); H. Kessler, Tetrahedron 24, 1857 (1968).
- ¹⁴Y. Letourneux, M. Mee Lee Lo, N. K. Chaudhuri und M. Gut, J. Org. Chem. 40, 516 (1974).
- ¹⁵P. M. Jones und W. Klyne, J. Chem. Soc. 871 (1960).
- ¹⁶E.-F. Brunke und H. Wolf, Tetrahedron 34, 707 (1978).