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'Through-Space' Hydrogen-Fluorine, 
Carbon-Fluorine and Fluorine-Fluorine 
Spin-Spin Coupling in 
2-Phenyl-3-alkyl=4,5,6,7=tetrahydroindazoies 

John W. Lyga,* Robert N .  Henrie, 11, Gary A. Meier, R. William Creekmore and Russell M.  Patera 
FMC Corporation, Agricultura1 Chemical Group, P.O. Box 8, Pnnceton, New Jersey 08543, USA 

'H, "C and I9F NMR experiments for a series of falkyl-2-phenyl-4,5,6,7-tetrahydroiodazoles revealed a six- 
bond through-space coupling between the ortho-fluorine and the hydrogen or fluorine atom of the position 3-alkyl 
group. This was further supported by NOE experiments. Molecular mechaoics calculations on a representative 
structure indicated that several low energy conformers met the fluorine-carbon distance comtraint suggested by the 
NMR data, and dynamic annealing experiments produced a cooformer which was in complete agreement with the 
NMR data. This through-space interaction is speculated to be a result of repulsion betweeo N-1 of the tetra- 
hydroindazole and the ortho-fluorine lone pair electrons. 

KEX woms Through-space coupling Tetrahydroindazoles 

INTRODUCTION 

Our interest in 'through-space' spin-spin coupling's2 in 
2-phenyl-3-alkyl-4,5,6,7-tetrahydroindazoles (1) orig- 
inated from a molecular modeling study toward the 
design of novel inhibitors of protoporphyrinogen 
oxidase (PPO) [EC 1.3.3.4].3 PPO catalyzes the oxida- 
tion of protoporphyrinogen IX (2) to protoporphyrin 
IX (3)' and is the site of action of membrane disrupting 
h e r b i ~ i d e s - ' ~  It has been recognized that the herbi- 
cidal activity of PPO inhibitors, of structural type 4, is 
generally enhanced by substitution at the ortho-phenyl 
position with fl~orine.~. '  Conformational searching on 
structure 1 (R = CH, , X = F) using SYBYL molecular 
modeling software indicated that the most stable con- 
formers of the molecule were those in which the dis- 
tance from the fluorine to the methyl carbon was ca. 3 
A. This corresponded to a C-2'-C-l'-N-2-C-3 
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torsion angle of ca. 70" or 300". These conformations 
were more stable by 0.4-1.1 kcal than those in which 
the phenyl ring was flipped to position the fluorine 
away from the methyl group (C-2'-C-l'-N-2-C-3 
torsion ca. 120" or 250"). Although numerous other 
conformers were observed within 2-3 kcal of these 
energy mínima, these results indicated the possibility of 
an attractive interaction between the ortho-fluorine and 
the methyl group, or of a repulsive interaction between 
the fluorine and N-l. If such an interaction exists, it 
could restrict the aryl-heterocycle bond rotation to a 
conformation which binds more favorably with the 
enzyme active site. Intrigued by this hypothesis, we 
embarked on the synthesis and NMR study of com- 
pounds of structural class 1 and the results are reported 
in this paper. 

RESULTS 

When 2,4-difluorophenylhydrazine (5) was allowed to 
react with 2-acetylcyclohexanone (6a) in toluene 
(Scheme l), compound 7a was obtained as the result of 

F hNHNH* @W3 - 
5 6s 
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Scheme 1 
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Table 1. I3C NMR data (75 MHz, proton decoupled) for 7 

Compound 1' 2' 3 4' 5 6 3 3a 4-7 

7a 124.5a 156.9 104.5 161.9 111.6 129.8 136.2 114.5 23.3, 23.2, 20.3 
dd dd d dd dd d S s 

2J(13)c 'J(252) 'J(25) 'J(252) 2J(22) 

7b 123.6 157.0 104.8 162.6 111.7 130.1 132.4 118.3 23.1,22.7,22.6,20.1 
dd dd d dd dd d t S 

2J(12) 'J(254) 'J(24) 'J(254) 2J(23) 'J(28) 

7c 123.8 158.1 104.7 163.1 111.3 130.4 129.2 119.3 23.1,22.5,22.4,20.4 
dd dd d dd dd d q S 

'J(13) 'J(254) 'J(24) 'J(254) 2J(23) 'J(38) 

a Chemical shifts (pprn) are given relativa to CDCI, . 
Peak splitting indicated by c = cinglet, d = doublet, q = quartet, dd = doublet of doublets, dt = doublet of triplets. 
One- and two-bond coupling conctants (Hr ) .  

l a  R 

150.6 9.4 
S d 

150.9 109.1 
S dt 

150.9 120.3 
S q 

'J(235) 

' J(270) 

nucieophilic attack by the terminal hydrazine nitrogen 
at the cyclohexanone carbonyl. The 1-aryl regioisomer 8 
was not formed under these conditions. Examination of 
the NMR spectra for 7a revealed doublets in both the 
proton (2.1 ppm, J = 1.8 Hz) and carbon (9.4 ppm, 
J = 3.8 Hz) spectrum (Table 1). Both doublets were 
attributed to long-range coupling of the methyl group 
to the ortho-fluorine on the aryl ring. Since C-3 of the 
heterocyclic ring was not split by fluorine in the carbon 
spectrum, a 'through-space' coupling mechanism was 
inferred. This was supported by heteronuclear NOE 
experiments and proton coupled "F NMR spectra. 
Irradiation of the methyl protons in 7a induced a 4.7% 
NOE enhancement of the fluorine signal at - 117 ppm. 
This signal was found to be split into a multiplet of 
quartets in the proton coupled "F NMR spectra, with 
the same six-bond coupling constant C6J(H,F) = 1.8 
Hz] as found in the proton spectra. Both experiments 
suggest a close spatial proximity of the fluorine atom to 
the methyl group, and the existence of 'through-space' 
(H-F) and 'indirect through-space' (C-F) coupling 
mechanisms. 

With these results at hand we wanted to determine if 
'through-space' F-F coupling could also be observed. 
Toward this end the difluoromethyl (7b) and tri- 
fluoromethyl (7c) analogs were prepared (Scheme 2) fol- 
lowing the literature procedure for the synthesis of 

6c R=CF3 

Ou R=CFPH 
Sb R X F J  

7b R=CFPH 
7c fl=CF3 

Scheme 2 

substituted pyra~oles . '~  The 19F NMR spectra indi- 
cated the existence of a six-bond F-F coupling with 
coupling constants of 3.3 and 4.6 Hz for 7b and 7c, 
respectively (Table 2). Identical six-bond coupling con- 
stants were measured by examining either the arylfluo- 
rine or alkyifluorine NMR signal (see Experimental). 

Table 2. Structure 7: 19F coupling constants (Hz) 

Coupling constant ¡'a 7b 7C 

'J(F,F) - 3.3 4.6 
*J(H.F) 1.8 0.5 - 

5J (C. F) 3.8 3.3 O 

Compound 7b also exhibited a six-bond H-F coupling 
of 0.5 Hz and a five-bond C-F coupling of 3.3 Hz. 
Interestingly, the expected five-bond 'indirect through- 
space' C-F coupling in 7c was not observed. 

The existence of spin-spin coupling between nuclei 
separated by five or six bonds has been well docu- 
mented as an indicator of close spatial proximity.'s-'8 
Myhre et al. l9 and Abushanab" reported correlations 
of observed H-F coupling constants by protons on 
proximate methyl carbons with C-F internuclear dis- 
tance. This strong dependence of J(H,F) on distance has 
also been validated through mathematical relation- 
ships." Fluorine atoms which are intramolecuiarly but- 
tressed are also known to exhibit 'through-space' F-F 
coupling." Mal10ry'~ suggested that this coupling is a 
result of direct overlap of the two lone-pair orbitals to 
form one bonding and one antibonding molecular 
orbital delocalized over both Auorines. This same 
dependence of coupling constants on internuclear dis- 
tance has also been reported'.' 5 9 1 6 , 1 8  for 'indirect 
through-space' C-F coupling. It is ako worth mention- 
ing that the lack of observed C-F coupling in 7c is not 
totally unexpected. Contreras et al.' predicted that 
long-range couplings would be reduced by replacing a 
methyl group in a coupled system with a tri- 
fluoromethyl group. 

showing the H-F 
coupiing constant as a function of the separation of the 
nuclei, the distance between the methyl carbon and the 
ortho-fluorine in 7a was estimated at ca. 2.8 A. This 
corresponds to a phenyl-heterocycle torsion angle 
(C-T-C-l'-N-2-C-3) of ca. 60" or 310" (Fig. 1). 

A global conformational search on structure 1 indi- 
cated that the minimum energy structure is that in 
which the phenyl-heterocycle torsion angle was 69" and 
the fluorine-methyl carbon distance was 3.05 A. 
However, within 3 kcal of this minimum energy struc- 
ture were numerous other conformers in which the 

Using the plot of Myhre et 
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Figure 1. Stereoview of 7a showing a 2.8 A separation between the ortho-fluorine and methyi carbon. 

torsion angle ranged from 60" to 140" and 240" to 316", 
while the fluorine-methyl carbon distance ranged from 
2.6 to 4.6 A. 

Molecular dynamics calculations were carried out to 
explain better the behavior of structure 1. In a dynamic 
annealing experiment (see Experimentai), 1 was taken 
through three annealing cycles of stepwise heating to 
600 K followed by stepwise cooling to 100 K. After the 
third cycle, the system was cooled to O K to freeze out a 

single, low-energy conformer having a fluorine-methyl 
carbon distance of 2.85 A and a phenyl-heterocycle 
torsion angle of 51". To simulate better the conditions 
of the NMR study, a single annealing cycle to 500 K 
was run on 1 solvated in a CHCl, shell. The conformer 
frozen out in this calculation had a fluorine-methyl 
carbon distance of 2.80 A and a phenyl-heterocycle 
torsion angle of 48", in excellent agreement with that 
predicted from Myhre et d . ' s  plot. 

Teble 3. Literature examples of síx-bond H-F coupling 
C F  distance (A) 

Structure' 6J(H.F) (Hz) Predictedb Measured" Ref. 

& H3 / 

2.9 2.7 3.0 17 

O 

3.7 

0.8 

1.2 

2.6 3.1 24 

3.1 3.1 15 

2.9 2.9 25 

3.0 3.3 26 

"Atoms involved in coupiing are indicated in bold. 
See Ref. 19. 
Model buiidina, structure minimizations and distance rneasurements were per- _. . 

formed using S b Y L  molecular modeling software. 
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A partial literature review of compounds which 
possess six-bond H-F coupling in the range of 7a and 
7b is shown in Table 3. Al1 were claimed to demonstrate 
'through-space' coupling. The C-F distances were 
measured from the minimized structures using SYBYL 
or from information taken from the literature refer- 
entes. The C-F distances were found to compare 
favorably with those predicted using the plot of Myhre 
et a1.,19 lending support to their correlation and appli- 
cation in six-bond systems. 

DISCUSSION 

The results presented here lend strong support to a time 
averaged structure for 7 in which the ortho-fluorine on 
the phenyl ring is in close proximity to the 3-alkyl 
group. There are at least two posible explanations for 
this phenomenon : an intramolecular attraction between 
the ñuorine and alkyl group or an intramolecular repul- 
sion between the fluorine and N-l. Although examples 
of through-space hydrogen bonding between hydrogen 
and fluorine have been r e p ~ r t e d , ~ ' . ~ ~  we do not believe 
this is occurring here. Examination of the coupling con- 
stants from Table 2 shows a reduction in the average 
6J(H,F) value going from 7a to 7b and a reduction of 
6J(F,F) from 7c to 7b. This implies free rotation about 
the alkyl groupheterocycle C-C bond and absence of 
any significant intramolecular H-F or F-F bonding. 

An alternative explanation for the through-space 
coupling in 7 is the existance of a repulsion between the 
N-1 lone pair electrons of the heterocycle and those of 
the ortho-fluorine on the phenyl ring. The observed 
proximity of the ortho-fluorine to the 3-substituent of 
the heterocycle is the result of relieving this lone pair- 
lone pair repulsion. If this is true, a compound having a 
2,6-difluorophenyl substitution pattern would not be 
expected to show coupling between the 3-substituent 
and the ortho-fluorine atoms. In this case, the repulsion 
would be equal in both conformers resulting in a time- 
averaged perpendicular orientation of the two rings. We 
tested this hypothesis by preparing compound 10 from 
perfluorophenylhydrazine using the methodology for 
the synthesis of 7a. The high-resolution 'H NMR spec- 
trum for 10 showed no six-bond H-F coupling, and 
therefore supports the latter interpretation. 

F F  

10 

EXPERIMENTAL 

Melting points were determined on a Thomas-Hoover 
capillary melting point apparatus and are uncorrected. 
High-resolution mass spectra (HRMS) were recorded 
on a VG ZAB-T spectrometer at Rutgers University, 

New Brunswick, NJ. Elemental analyses were deter- 
mined at FMC, Analytical Services Department. 

'H and I3C data were recorded on a General Electric 
QE-300 spectrometer using a dual H/C probe. Samples 
were prepared by dissolving the appropriate amount of 
material in 0.5 ml of CDCI,. 'H data were taken at 
300.14 MHz using a sweep width of 6024 Hz, an acqui- 
sition time of 1.36 s, a pulse angle of 30", a recycle time 
of 500 ms, a 16K data size and using no apodization. 
13C data were taken at 75.478 MHz with MLEV 'H 
decoupling using a sweep width of 18 182 Hz, an acqui- 
sition time of 0.9 s, a pulse angle of 30", a recycle time of 
500 ms, a 32K data size and with exponential line 
broadening of 1 Hz. Chemical shifts were referenced to 
interna1 TMS for 'H data and CDCI, for 13C data 
[6,('3CDC13) = 77.01. 19F data were recorded on a 
Nicolet NT-300 spectrometer using a 19F{'H} probe. 
Routine I9F data were recorded at 282.312 MHz using 
a sweep width of 76 923 Hz, an acquisition time of 0.426 
s, a pulse angle of 30°, a recycle time of 575 ms, a 64K 
data size, MLEV 'H decoupling and with exponential 
line broadening of 1 Hz. 

19F('H} NOED spectra were generated using a pre- 
saturation experiment, { [D3,P2,AT,D5In D6} @ fre- 
quency list, where D3 = presaturation time of 2 s, 
P2 = pulse width of 4 ms (30"), AT = acquisition time 
of 1.64 s, D5 = 50 ms and D6 = 10 s separation 
between decoupler frequencies. The frequency list con- 
sisted of the target methyl protons plus an off-resonance 
frequency for a control. This experiment used a sweep 
width of 10000 Hz with a frequency selective CW 'H 
irradiation power (sufficient for 50% saturation of the 
methyl resonance) and interleaved collection of data. 
The data were also exponential line broadened by 2 Hz. 

Molecular modeling studies were conducted using 
SYBYL molecular modeling software, purchased from 
TRIPOS, Inc., St Louis, MO. The TRIPOS force field 
was employed t h r o u g h o ~ t . ~ ~  A model of structure 1 
(R = CH,, X = F) was constructed, and atomic point 
charges were added using the Gasteiger-Hückel 
method. The structure was minimized using the 
MAXIMIN2 algorithm. A global conformational search 
on 1 was conducted by independently rotating the 
N-2-C-1' and C-%R(CH,) bonds in 1" increments 
and calculating the energy associated with each con- 
former. A dynamic annealing simulation was conducted 
on 1 by calculating 1 ps of molecular dynamics at 100 
K, 1 ps at 200 K, 1 ps at 400 K, 4 ps at 600 K, 1 ps at 
400 K and 1 ps at 200 K. This temperature profile was 
repeated for a total of three cycles before cooling the 
system for 1 ps at 100 K, 2 ps at 50 K and 2 ps at O K. 
A solvated dynamic annealing calculation was done by 
surrounding 1 with a solvent shell of 207 CHCl, mol- 
ecules and calculating 2 ps of molecular dynamics at 
100 K, 2 ps at 200 K, 2 ps at 300 K, 2 ps at 400 K, 6 ps 
at 500 K, 2 ps at 400 K, 2 ps at 300 K, 2 ps at 200 K, 2 
ps at 100 K and 2 ps at O K. Time steps of 1 fs were 
used in the dynamics calculations, along with a tem- 
perature coupling factor of 10 fs, a non-bonded reset 
frequency of 25 fs and a momentum removal frequency 
of 25 fs. In both the dynamics and the conformational 
search calculations, the distance between the fluorine 
and methyl carbon and the torsion angle C-2- 
C-l ' -N-24-3 were monitored. Mean values for each 
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were calculated at each temperature interval in the 
dynamic simuiations. 

Syntheses 

2-Difluoroacetylcyclohexanone (6b). To a stirred suspen- 
sion of 4.4 g (0.08 mol) of sodium methoxide in 100 mi 
of diethyl ether at 10°C was added 10 g (0.08 mol) of 
ethyl difluoroacetate foiiowed by the dropwise addition 
of 7.8 g (0.08 mol) of cyciohexanone in 10 ml of diethyl 
ether. After warming to room temperature the mixture 
was stirred for 18 h, then quenched by the slow addition 
of 6 ml of acetic acid. The mixture was fiitered through 
a 5 cm bed of silica gel, eiuted with 200 ml of diethyl 
ether, rotary evaporated, then distiiied at reduced pres- 
sure to yield 7.1 g (50%) of a clear liquid, b.p. 60-62°C 
(7 Torr); 'H NMR, 6 1.68 (m, 4H, H-43, 2.41 (m, 4H, 

OH). Anaiysis: calculated for C8HloFz0, . 0.25 H,O, 
C 53.18, H 5.86; found, C 53.23, H 6.09%. 

H-3,6), 6.04 [t, lH, CFZH, J(H,F) = 53 Hz], 15.2 (s, lH, 

2-Trifluoroacetylcyclohexanone (6c). Prepared as above 
using 14.2 g (0.1 mol) of ethyi trifluoroacetate to yield 
9.8 g (51%) of a clear liquid, b.p. 49-51 "C (7 Torr); 'H 
NMR, 6 1.70 (m, 4H, H-4,5), 2.46 (m, 4H, H-3,6), 15.1 (s, 
lH, OH). Analysis: Calculated for C8HgF,0,, C 49.49, 
H 4.67; found, C 49.56, H 4.90%. 

2~2',4'-Difluorophenyl~~ifluoromethyl-~hydroxy-3,3a,4,5,6, 
7-hexahydroindazole (h). To a solution of 1.7 g (0.01 moi) 
of 2-difluoroacetyicyclohexanone (6b) in 10 ml of THF 
at 0°C was added 0.8 mi (0.01 moi) of pyrroiidine foi- 
iowed by l g of 3 A molecular sieve. After stirring at 
0°C for 30 min, a solution of 1.4 g (0.01 mol) of 2,4- 
difluorophenylhydrazine (5) in 5 ml of THF was added 
and the mixture was aliowed to warm siowiy to room 
temperature overnight. The reaction mixture was con- 
centrated to 5 ml then flash chromatographed using 4 : 1 
heptane-ethyl acetate to afford 1.4 g (47%) of 9a as an 
oil: 'H NMR, 6 1.43 (m, 2H, H-6), 1.71, 2.20 (m, 2H, 
H-4), 1.97 (m, 2H, H-5), 2.73 (m, 2H, H-7), 3.10 (m, lH, 
H-3a), 5.96 (t, lH, CF,H), 6.86, 7.33 (m, 3H, Ph). 
Anaiysis: calculated for C14H,4F4N20, C 55.63, H 4.67, 
N 9.27; found, C 55.39, H 4.50, N 9.15%. 

2(2',4'-Difluorophenyl~~~fluoromethyl-3hydroxy-3,3a,4,5,6, 
7-hexahydroindazole (9b). Prepared as above with 13.6 g 
(0.07 mol) of 6c, 5.0 g (0.07 mol) of pyrrolidine and 9.8 g 
(0.07 mol) of 5 to yield 15.4 g (69%) of a white soiid 
after chromatography (4 : 1 heptane-ethyi acetate), m.p. 
155-156°C; 'H NMR, 6 1.43 (m, 2H, H-6), 1.72, 2.19 
(m, 2H, H-4), 1.98 (m, 2H, H-5), 2.72 (m, 2H, H-7), 3.17 
(4, lH, H-3a), 6.87, 7.33 (m, 3H, Ph); MS, m/z (%) 320 
(M+)(29), 302 (MC - H20)(12), 251 (M' - CF,)(lOO), 

113 (M' - heterocycieX21); HRMS, calculated for 
C14H1,FsNZ0, 320.0948; found, 320.0948. 

233 (M+ - CHF,O)(ll), 127 (M+ - CsHloNF30)(34), 

2-(2',4'-Difluorophenyl)-3-methyl-4,5,6,7-tetrahydroindazole 
(7a). A mixture of 5.0 g (27.7 mmol) of the HCl sait of 5 
and 3.8 g (27.7 mmol) of 6a in 100 ml of toluene was 

treated dropwise with 9.7 ml (55.4 mmoi) of tri- 
ethylamine then heated at reflux with azeotropic 
removal of water. After 3 h, the mixture was cooled, 
filtered to remove solids, then concentrated at reduced 
pressure to afford 6.9 g of a crude oil. The residue was 
flash chromatographed (4 : 1 heptane-ethyl acetate) to 
afford 5.7 g (83%) of an oii, b.p. 135-140°C (0.75 Torr), 
which solidified on standing. Recrystallization from 
iight petroieum afforded an analyticai sample, m.p. 60- 
61 "C; 'H NMR, 6 1.81 (m, 4, H-5,6), 2.07 [d, 3, CH,, 
6J(H,F) = 1.8 Hz], 2.48 (t, 2, H-4), 2.71 (t, 2, H-7), 7.04, 
7.45 (m, 3, Ph); "F NMR, 6 -109.44 [d, F-4, 4J(F,F) 
= 7.3 Hz], -117.24 [d, F-2, ,J(F,F')= 7.3 Hz]. 

Analysis: caiculated for C14H14F4NZ, C 67.73, H 5.68, 
N 11.28; found, C 67.52, H 5.39, N 11.35. 

2 4  2',4'-Difluorophenyl)-3-difluoromethyl-4,5,6,7-te~ahydro- 
indazole (7b). A solution of 1.4 g (4.6 mmoi) of 9a in 50 
ml of CH,Cl, was treated with 3 drops of concentrated 
HCi and then stirred at room temperature. After 1 h, 
the solution was dried over MgSO,, fiitered, and then 
concentrated at reduced pressure to afford an oii. Trit- 
uration with light petroleum afforded a white soiid (1.2 
g, 92%), m.p. 63-64°C; 'H NMR, 6 1.82 (m, 4, CH,), 
2.72 (m, 4, CH,), 6.51 [t, 1, CF,H, J(H,F) = 54 Hz], 
6.97, 7.42 (m, 3, Ar); "F NMR, 6 - 107.33 [d, F-4, 

F-2', 4J(F,F) = 8 Hz, 6J(F,F) = 3.3 Hz]. Analysis calcu- 
lated for C14H12F4N2, C 59.16, H 4.26, N 9.86; found, 
C 59.58, H 4.42, N 9.42. 

J(F,F) = 8 Hz], - 113.50 (bs, CFZH), - 117.96 [dt, 4 

24 2',4'- Difluorophenyl)-3- trifluoromethyl-4,5,6,7- tetrahydro- 
indazole (7c). Prepared as above with 14.8 g (0.048 moi) 
of 9b to afford 13.2 g (92%) of an oil: 'H NMR, 6 1.82 
(m, 4, CH,), 2.71 (m, 4, CH,), 6.95, 7.38 (m, 3, Ar); "F 
NMR, 6 -58.57 [d, CF,, 6J(F,F) = 4.4 Hz], -106.64 
[d, F-4, ,J(F,F) = 8.5 Hz], -117.03 [dq, F-2', 4J(F,F) 
= 8.6 Hz, 6J(F,F) = 4.3 Hz]. Analysis: calculated for 

Cl4HllFSN2, C 55.63, H 3.67, N 9.27; found, C 55.74, 
H 3.67, N 9.00%. 

2-(2',3',4',5',6'-Pentafluorophenyl)-3-methyl-4,5,6,7-te~ahydr~ 
indazole (10). A solution of 3.1 g (15.6 mmol) of per- 
fluorophenylhydrazine in 50 ml of toiuene was treated 
dropwise with 2 mi (15.6 mmol) of 2- 
acetyicyciohexanone then heated at reflux with azeo- 
tropic removal of water. After 3 h, the mixture was 
cooled then concentrated at reduced pressure to afford 
4.5 g of a crude oii. The residue was flash chromato- 
graphed (9:l heptane-ethyi acetate) to afford 2.1 g 
(44%) of a solid. Recrystailization from light petroleum 
afforded an anaiytical sample, m.p. 120-121 "C; 'H 
NMR, 6 1.79 (m, 4, H-5,6), 2.04 (s, 3, CH,), 2.47 (t, 2, 
H-4), 2.69 (t, 2, H-7). Analysis: calculated for 
C14HllFSN2, C 55.64, H 3.67, N 9.27; found, C 55.65, 
H 3.80, N 9.22%. 
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