The Reaction of Cholest-4-en-3β-ol (Allocholesterol) with the Dichlorobis(triphenylphosphine)platinum(II)-Stannous Chloride Complex

Yoshiyuki ICHINOHE, Noriyuki KAMEDA and Masaharu KUJIRAI

Department of Chemistry, Faculty of Science and Engineering, Nihon University, Narashinodai, Funabashi, Chiba

(Received August 23, 1969)

Recently it has been reported that a noble metal complex acts as an efficient selective catalyst in the homogeneous hydrogenation of some steroids.¹⁾ We now wish to report a new fact observed in the hydrogenation of steroids containing an allylic alcohol system with a dichlorobis(triphenylphosphine)platinum(II)-stannous chloride hydrate complex.²⁾

Cholest-4-en-3 β -ol (allocholesterol) (I) gave 5 α -cholest-3-ene (II) and $\Delta^{2,4}$ -cholestadiene (III) upon treatment with the complex at room temperature under a hydrogen pressure of 30 kg/cm² in a benzene-methanol (vol. ratio 3:2) solution. 5 α -Cholestan-3 β -ol (IV) was found in a very poor yield after a prolonged reaction, and no 5 α cholestane (V) was isolated. The results of reactions under various conditions are summarized in Table 1.

II was obtained in the maximum yield of 46.6%when the co-catalyst was used in a molar ratio to the catalyst of ten to one; this agrees with the finding reported by Tayim and Bailar.³⁾ When the reaction was carried out without stannous chloride, only cholest-4-en-3-one (VI) was yielded in spite of the presence of molecular hydrogen. Also accompanied by a small amount of a hydrogenolysis product, cholest-4-ene (VII), VI was afforded through the reaction performed in benzene as the only solvent. It is worthy of note that I was converted to II and III, but not to VI, by the reaction carried out under a nitrogen instead of a hydrogen atmosphere.

These experimental data have a strong resemblance to the results of the formation of acrolein from allyl alcohol or of *cis*-2-butene, butadiene and methyl vinyl ketone from 3-hydroxy-1-butene in the reactions with the same complex system.⁴)

The consumption of methanol in the reaction course was confirmed by the identification of formaldehyde (characterized as the dimedone derivative). Accordingly, it may be considered that the above-mentioned complex system was reduced to a hydrido compound with methanol; the reduced complex then acts as the reducing agent in the course of reaction I to II. Attempts to cause a reaction using isopropyl alcohol and t-butyl alcohol as hydrogen sources were unsuccessful. It is of interest that the stereoisomer of I, cholest-4-en-3a-ol (epiallocholesterol) (VIII), was inert to the reaction with the platinum-tin complex. The structures of the above-mentioned compounds were confirmed by means of mp, $[\alpha]_D$, IR, NMR, TLC, VPC, etc.

A study of the hydrogenation with a dichlorobis (trialkylphosphine)platinum(II)-stannous chloride complex is in progress and will be reported on shortly.

Catalyst*	React. time (hr)	Gas pres. (kg/cm ²)	Product yields (%)				Recovered I (%)
			VI	III	II	IV	
Pt only	5	H ₂ 30	6.3	0	0	0	92.8
Pt:Sn=1:2	5	H_2 30	3.7	21.0	38.0	0	35.6
Pt:Sn=1:2	5	N ₂ 30	0	16.7	25.2	0	56.9
Pt:Sn=1:2	10	H_2 30	4.3	23.2	39.4	trace	32.5
Pt:Sn=1:3	5	H_2 30	6.5	20.0	38.6	0	33.8
Pt:Sn = 1:10	5	H_2 30	7.1	20.2	46.6	2.4	23.1
Pt:Sn = 1:10	10	N_{2} 30	0	17.6	40.8	0	41.3

TABLE 1

1) E.g. a) C. Djerassi and J. Gutzwiller, J. Am. Chem. Soc., 88, 4537 (1966). b) A. J. Birch and K. A. M. Walker, *Tetrahedron Letters*, 1966, 4939. c) S. Nishimura and K. Tsuneda, This Bulletin, 42, 852 (1969).

* Pt indicates $PtCl_2[P(C_6H_5)_3]_2$, and Sn indicates $SnCl_2 \cdot 2H_2O$.

2) E. N. Frankel, E. A. Emken, H. Itatani and J. C. Bailar, Jr., J. Org. Chem., **32**, 1447 (1967).

3) H. A. Tayim and J. C. Bailar, Jr., J. Am. Chem. Soc., 89, 3420 (1967).

4) Y. Ichinohe and N. Kameda, unpublished observations.