SelectfluorTM: A novel and efficient reagent for the rapid α -thiocyanation of ketones

DEZHEN WU^a, XIAOJUAN YANG^b and LIQIANG WU^{c,*}

^aDepartment of Pharmacy, Xinxiang Central Hospital, Xinxiang, Henan 453000, China ^bCollege of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453003, China ^cSchool of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China e-mail: wliq870@163.com

MS received 1 August 2011; revised 16 October 2011; accepted 2 December 2011

Abstract. The direct α -thiocyanation of ketones with ammonium thiocyanate has been achieved using SelectfluorTM under mild and neutral conditions to produce α -ketothiocyanates, in excellent yields and with high selectivity.

Keywords. Thiocyanation; ketones; ammonium thiocyanate; SelectfluorTM; synthesis

1. Introduction

Molecules with thiocyanate functional group can be readily transformed into the other sulphur-bearing functionalities,¹ providing compounds with pharmaceutical properties.² In particular, α -ketothiocyanates are versatile intermediates in the synthesis of sulphur-containing heterocycles.³ Some of these compounds exhibit herbicidal and other important biological activities.⁴ Therefore, it is important to find new methods for the direct α -thiocyanation of ketones. Several methods have been developed for the direct α -thiocyanation of ketones using bromodimethylsulphonium bromide/ammonium thiocyanate,⁵ oxone/ammonium thiocyanate,⁶ heteropoly acid/ammonium thiocyanate,7 (dichloroiodo)- benzene/ lead(II) thiocyanate,⁸ potassium peroxydisulphate/ copper(II) complex,⁹ I₂/ammonium thiocyanate,¹⁰ FeCl₃/ ammonium thiocyanate,¹¹ and NBS/ammonium thiocyanate.¹² However, some of these methods suffer from disadvantages, such as low yields, the use of strongly acidic or oxidizing conditions, the use of special conditions (long reaction time and (or) high temperature), and also the use of toxic reagents. In this research, we have developed a new route for the direct α -thiocyanation of ketones.

SelectfluorTM (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2,2,2]octanebis(tetrafluoro-borate)) (figure 1) is a commercially available, stable, nonvolatile, nonhygroscopic and easy to handle solid and is more widely used for site-selective fluorination of a variety of carbonyl compounds. Besides its fluorinating ability, it is also recognized as a convenient mediator of several 'fluorine free' functionalization of organic compounds.¹³ These kinds of reactions are based on the fact that F-TEDA-BF4 has considerable oxidative power. In this article, we report a simple, convenient, and efficient protocol for the α -thiocyanation of ketones using SelectfluorTM in acetonitrile (scheme 1).

Figure 1. Structure of SelectfluorTM.

Scheme 1. α -Thiocyanation of ketones.

^{*}For correspondence

Table 1. α -Thiocyanation of ketones promoted by Selectfluor^{TM^a}.

Entry	Ketones (1) ^b	Product (3) ^b	Time/ min	Yield/ % ^b	m.p. (lit.)/ °C
a		O SCN	40	93	68–70 (67–69) ¹¹
b	CI	CI	50	89	133–135 (132–134) ⁵
с	0 ₂ N 0	O ₂ N SCN	50	90	118–120 (119–120) ⁵
d	H ₃ CO	H ₃ CO SCN	40	91	120–122 (121–125) ⁵
e	0	SCN O	40	86	104–107 (103–106) ⁵
f	CI		50	88	65–66 (68–70) ¹¹
g	CI	Cl	60	89	191–193 (190–192) ¹¹
h	OMe O		60	86	86–88 (85–87) ¹¹
i		SCN	25	94	Oil (oil) ¹¹

Entry	Ketones (1) ^b	Product (3) ^b	Time/ min	Yield/ % ^b	m.p. (lit.)/ °C
	o	O SCN			
j			25	91	Oil (oil) ¹¹
k		SCN	40	92	90–92 (92–93) ¹⁴
	O C	O SCN			()
1	0	0	40	88	Oil (oil) ¹¹
m			75	84	Oil (oil) ¹¹
n	\bigtriangledown	\bigtriangledown	60	87	Oil

 Table 1. (continued)

^aReaction conditions: ketones (1.0 mmol); NH_4SCN (2.0 mmol); $Selectfluor^{TM}$ (1 mmol); rt; CH_3CN . ^bIsolated yield

2. Experimental

2.1 Materials, methods and instruments

NMR spectra were recorded on a Bruker AV-400 spectrometer at room temperature using TMS as internal standard, coupling constants (J) were measured in Hz. Elemental analysis were performed by a Vario-III elemental analyzer. Melting points were determined on a XT-4 binocular microscope and were uncorrected. Commercially available reagents were used throughout without further purification unless otherwise stated.

2.2 General procedure for α -thiocyanation of ketones

To a solution of ammonium thiocyanate (2 mmol) and ketones (1 mmol) in acetonitrile (10 mL), SelectfluorTM (1 mmol) was added and the resulting mixture was stirred at room temperature for an appropriate time period. After complete conversion as indicated by TLC, the reaction mixture was successively extracted with water. The reaction mixture was successively extracted with ethyl acetate, and dried over anhydrous Na₂SO₄. The solvent was then removed under reduced pressure. The resulting product was purified by column chromatography on

silica gel (200–300 mesh, ethyl acetate:hexane = 1:20) to afford pure **3**.

2.3 Spectroscopic data

2.3a *1-phenyl-2-thiocyanatoethanone* (**3***a*): Solid, mp 68–70°C; IR (KBr): v 2946, 2150 (-SCN),

Scheme 2. A plausible mechanism for this reaction.

Entry	Catalyst and conditions	Solvent	Time/ min	Yield/ %	Ref.
1	FeCl ₃ (100 mol%); rt	CH ₂ Cl ₂	30	75	11
2	Oxone (100 mol%); rt	MeOH	360	86	6
3	Heteropoly acid (25 mol%); rt	ClCH ₂ CH ₂ Cl	20	86	7
4	NBS (100 mol%); rt	CH ₃ CN	240	85	12
5	Selectfluor TM (100 mol%); rt	CH ₃ CN	40	93	The work

Table 2. SelectfluorTM-promoted α -thiocyanation of acetophenone in comparison with other literatures.

1672 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ : 8.02–7.80 (m, 2H), 7.66–7.25 (m, 3H), 4.78 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 191.2, 135.0, 133.6, 128.8, 128.0, 112.1, 43.1; Anal. calcd for C₉H₇NOS: C 60.99, H 3.98, N 7.90, S 18.09; found: C 70.06, H 3.92, N 7.95, S 18.00.

2.3b 2-*Thiocyanatocyclohexanone* (**3***j*): Oil; IR (KBr): v 2925, 2154 (-SCN), 1702; ¹H NMR (CDCl₃, 400 MHz) δ : 4.35–4.20 (m, 1H), 2.85–2.38 (m, 3H), 2.20–1.73 (m, 5 H); ¹³C NMR (CDCl₃, 100 MHz) δ : 204.2, 111.8, 60.2, 39.8, 34.6, 24.9, 23.2; Anal. calcd for C₇H₉NOS: C 54.17, H 5.84, N 9.02, S 20.66; found: C 54.11, H 5.92, N 9.12, S 20.60.

2.3c *1-Cyclopropyl-2-thiocyanatoethanone* (*3n*): Oil; IR (KBr): *v* 2927, 2152 (-SCN), 1700; ¹H NMR (CDCl₃, 400 MHz) δ : 4.20 (s, 2H), 2.15–2.00 (m, 1H), 1.35–0.98 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ : 204.3, 111.3, 44.7, 120.5, 12.8; Anal. calcd for C₆H₇NOS: C 51.04, H 5.00, N 9.92, S 22.71; found: C 51.12, H 4.94, N 10.01, S 22.65.

3. Results and discussion

When a mixture of ammonium thiocyanate (2 mmol), ketone (1 mmol), and a stoichiometric amount of SelectfluorTM was stirred at room temperature in CH₃CN corresponding α -ketothiocyanates (**3a–n**) were obtained in excellent yield (table 1). The reactions were completed smoothly within 25 to 75 min, and the products were isolated by a simple workup procedure. Various ketones such as acetophenones, cyclic ketones, and aliphatic ketones all gave regioselective products in good to excellent yields. No fluoride products were observed under the reaction conditions. All the products were characterized by ¹H NMR, ¹³C NMR, IR, element analysis, and by comparison with known samples, IR spectrum showed the characteristic peak of -SCN at 2122–2168 cm⁻¹.

A plausible mechanism for this reaction is proposed in scheme 2, the reaction may proceed *via* the electrophilic substitution of ketones by *in situ* generated thiocyanogen (⁺SCN) from Selectfluor and ammonium thiocyanate (scheme 2).

To illustrate the efficiency of the proposed method, table 2 compares some of our results with some of those reported for relevant reagents in the literature, which demonstrates its significant superiority. Compared with some of the reported methods in table 2, the present method has a short reaction time, good yield, and solvent-free conditions.

4. Conclusion

In summary, SelectfluorTM can effectively promote the reaction of ammonium thiocyanate with ketones to afford α -ketothiocyanates. The reactions are conducted under mild conditions and afford regioselective thiocyanated products in good to excellent yields.

Acknowledgement

We acknowledge the financial support from Xinxiang Central Hospital and Xinxiang Medical University.

References

- (a) Nguyen T, Rubinstein M and Wakselman C 1981 J. Org. Chem. 46 1938; (b) Zhang Z H and Liebeskind L S 2006 Org. Lett. 8, 433; (c) Riemschneider R, Wojahn F and Orlick G 1951 J. Am. Chem. Soc. 73 5905; (d) Lee Y T, Choi S Y and Chung Y K 2007 Tetrahedron Lett. 48 5673
- Yadav J S, Reddy B V S, Shubashree S and Sadashiv K 2004 Tetrahedron Lett. 45 2951
- (a) Kodomari M, Aoyama T and Suzuki Y 2002 *Tetrahedron Lett.* 43 1717; (b) Aoyama T, Murata S, Arai I, Araki N, Takido T, Suzuki Y and Kodomari M 2006 *Tetrahedron* 62 3201
- 4. LeBlanc B W and Jursic B S 1998 Synth. Commun. 28 3591
- Bhalerao D S and Akamanchi K G 2010 Synth. Commun. 40 799

- Kumar M A, Reddy K R K K, Reddy M V, Reddy C S and Reddy C D 2008 Synth. Commun. 38 2089
- 7. Chaskar A C, Yadav A A, Langi B P, Murugappan A and Shah C 2010 *Synth. Commun.* **40** 2850
- 8. Prakash O, Kaur H, Batra H, Rani N, Singh S P, Moriarty R M 2001 J. Org. Chem. 66 2019
- 9. Maurya R A, Kumar A and Ahamd P 2007 *Tetrahedron Lett.* **48** 1399
- 10. Yadav J S, Reddy B V S, Reddy U V S and Krishna A D 2007 Tetrahedron Lett. **48** 5243
- 11. Yadav J S, Reddy B V S, Reddy U V S and Chary D N 2008 Synthesis 1283
- 12. Reddy B V S, Reddy S M S and Madan C 2011 Tetrahedron Lett. **52** 1432
- 13. Yadav J S, Reddy B V S and Reddy Ch S 2004 *Tetrahedron Lett.* **45** 1291
- 14. Padilla A G 1977 J. Org. Chem. 42 1833