Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/bmcl

[³⁵S]GTPγS binding studies of amphiphilic drugs-activated Gi proteins: A caveat

Dina Manetti ^{a,*}, Lorenzo Di Cesare Mannelli ^b, Silvia Dei ^a, Luca Guandalini ^a, Elisabetta Martini ^a, Martina Banchelli ^c, Carla Ghelardini ^b

^a Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi (HeteroBioLab), Dipartimento di Scienze Farmaceutiche, Università di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (FI), Italy

^b Dipartimento di Farmacologia Preclinica e Clinica, Università di Firenze, Viale G. Pieraccini 6, 50139 Firenze, Italy

^c Dipartimento di Chimica e CSGI, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy

ARTICLE INFO

Article history: Received 14 January 2009 Revised 24 February 2009 Accepted 25 February 2009 Available online 28 February 2009

Keywords: Amphiphilic drugs Gi protein Binding studies

ABSTRACT

This paper documents a serious problem met during the testing of Gi protein-activating properties of a new series of synthetic compounds by measuring the induced binding of [^{35}S]GTP γ S to different subtypes of Gi protein. The problem arose from the strong affinity between [^{35}S]GTP γ S and the tested compounds, that are characterized by several (2–4) positive charges and high lipophilicity. Apparently, such affinity yields insoluble, labelled complexes that, also in the absence of Gi protein, are retained on the filters and give rise to false positive results.

© 2009 Elsevier Ltd. All rights reserved.

A receptor-independent modulation of the heterotrimeric G proteins is an intriguing purpose. A selective, single-subunit modulator represents a suitable means to intervene in the complex intracellular pathways. Direct modulation could be useful in those pathological conditions where a G protein involvement is already demonstrated. Indeed, altered G proteins are involved in several pathologic conditions: mutations in the $G\alpha$ inhibitory subunit $(G\alpha_i)$ codifying genes have been associated with tumours¹⁻³ and there is increasing evidence for implications in infections, inflammations, neurological and cardiovascular diseases and endocrine disorders.^{4,5} Moreover, a hypofunctionality of $G\alpha_i$ in lymphocytes of cephalalgic and fibromialgic patients was demonstrated.^{6,7} Among drugs known to modulate G proteins in a receptor-independent manner,⁸⁻¹⁰ a novel series of low molecular weight derivatives were found to be able to stimulate the $G\alpha_i$ -protein signalling pathway in human lymphocytes and to activate isolated recombinant $G\alpha_i$ proteins.^{11,12} Among these derivatives, a 4-aminopiperidine derivative named BC5 is able to modulate cAMP levels in a recombinant system reconstituted with the isoform 1 of $G\alpha_i$ subunit $(G\alpha_{i1})$ and the intracellular fragments of adenylate cyclase.¹³ Moreover, to improve screening accuracy and enhance efficacy, and to reduce the toxicity of therapeutics, we proceeded with the reconstitution of the G protein molecules in a phospholipid bi-layer. For this purpose we chose liposomes as the best biodegradable or biocompatible drug carriers.¹⁴ Aiming to improve the potency and selectivity of previously studied compounds and to establish sounder structure–activity relationships, we have continued our research synthesizing and studying the compounds shown in Table 1.

4-Aminopiperidines 1–10 were prepared according to the procedure shown in Scheme 1. Commercially available 4-piperidone hydrochloride monohydrate was treated with di-tert-butyl dicarbonate and anhydrous NEt₃, then the intermediate **33** was transformed into **34–40** by reductive amination¹⁵ with the appropriate alkylamine. After deprotection with HCl or with trifluoroacetic acid (see experimental part in the Supplementary data^{**}) these compounds gave 1-7. 4-Pentadecilamine piperidine (BC5), prepared by the same method,¹¹ was alkylated with bromoethylamine hydrobromide to obtain 8. Compounds 9 and 10 were obtained from BC5 and 8, respectively, in a three-step procedure acylating with $N\alpha$ -Boc- $N\varepsilon$ -trifluoroacetyl-L-lysine to yield **41** and 42, and deprotecting the Boc- and trifluoroacetyl groups with trifluoroacetic acid and with K₂CO₃, respectively. Compound **11** was synthesized in a similar way (Scheme 2): 1-pentadecylpiperidin-4-ylamine¹¹ was acylated with $N\alpha$ -Boc- $N\varepsilon$ -trifluoroacetyl-L-lysine and then deprotected. 4,4'-Bipiperidines 12-23 were synthesized as shown in Scheme 3, starting from commercially available 4,4'bipiperidine dihydrochloride which was treated with 10% NaOH, reacted with BOC-ON [2-(tert-butoxycarbonyloxyimino)-2-phenylacetonitrile], then treated with the suitable bromoalkyl derivatives and NEt₃ as a scavenger, and finally deprotected to give

^{*} Corresponding author. Tel.: +39 055 4573688; fax: +39 055 4573780. *E-mail address:* dina.manetti@unifi.it (D. Manetti).

Table 1

Chemical and physical characteristics of final derivatives 1-32

N	Structure	R ¹	R ²	Salt (mp °C) ^a	Analysis (salt)
1	А	$(CH_2)_4CH_3$	Н	2HCl (309-310)	$C_{10}H_{24}Cl_2N_2$
2	А	$(CH_2)_6CH_3$	Н	2HCl (307-308)	C12H28Cl2N2
3	А	$(CH_2)_8CH_3$	Н	2HCl (295-297)	C14H32Cl2N2
4	А	(CH ₂) ₄ Ph	Н	2HCl (277-281)	C15H26Cl2N2
5	А	$(CH_2CH_2O)_3CH_2CH_3$	Н	2HCl (low melting)	C13H30Cl2N2O3
6	А	$(CH_2CH_2O)_4CH_2CH_3$	Н	2HCl (196-200)	C ₁₅ H ₃₄ Cl ₂ N ₂ O ₄
7	А	$(CH_2CH_2O)_5CH_2CH_3$	Н	2HCl (220-225)	C17H38Cl2N2O2
8	А	$CH_2(CH_2)_{13}CH_3$	CH ₂ CH ₂ NH ₂	3HCl (201–205)	C22H50Cl3N3
9	А	$CH_2(CH_2)_{13}CH_3$	L-Lysine	3HCl (196-200)	C26H57Cl3N4O
10	А	$CH_2(CH_2)_{13}CH_3$	CH ₂ CH ₂ NH-L-lysine	4HCl (202–206)	C28H63Cl4N5O
11	А	L-Lysine	$CH_2(CH_2)_{13}CH_3$	3HCl (246-249)	C26H57Cl3N4O
12	В	$(CH_2)_4CH_3$	Н	2HCl (269–273)	C15H32Cl2N2
13	В	$(CH_2)_6CH_3$	Н	2HCl (270–271)	C17H36Cl2N2
14	В	$(CH_2)_8CH_3$	Н	2HCl (280–285)	C19H40Cl2N2
15	В	(CH ₂) ₄ Ph	Н	2HCl (275–285)	C20H34Cl2N2
16	В	$(CH_2CH_2O)_3CH_2CH_3$	Н	2HCl (low melting)	C18H38Cl2N2O3
17	В	$(CH_2CH_2O)_4CH_2CH_3$	Н	2HCl (214–218)	C20H42Cl2N2O4
18	В	(CH ₂ CH ₂ O) ₅ CH ₂ CH ₃	Н	2HCl (220-224)	C22H46Cl2N2O5
19	В	$CH_2(CH_2)_{13}CH_3$	CH ₂ CH ₂ NH ₂	3HCl (276–280)	C ₂₇ H ₅₈ Cl ₃ N ₃
20	В	$CO(CH_2)_{13}CH_3$	CH ₂ CH ₂ NH ₂	2HCl (223–225)	C27H55Cl2N3O
21	В	$CH_2(CH_2)_{13}CH_3$	L-Lysine	3HCl (189–192)	C31H65Cl3N4O
22	В	$CH_2(CH_2)_{13}CH_3$	CH ₂ CH ₂ NH-L-lysine	4HCl (215-218)	C33H71Cl4N50
23	В	$CO(CH_2)_{13}CH_3$	L-Lysine	2HCl (237-240)	$C_{31}H_{62}Cl_2N_4O_2$
24	С	$(CH_2)_4CH_3$	_	3HCl (low melting)	$C_9H_{24}Cl_3N_3$
25	C	$(CH_2)_6CH_3$	-	3HCl (238–242)	C11H28Cl3N3
26	С	$(CH_2)_8CH_3$	_	3HCl (236-240)	C13H32Cl3N3
27	С	(CH ₂) ₄ Ph	_	3HCl (225–230)	C14H26Cl3N3
28	С	(CH ₂ CH ₂ O) ₃ CH ₂ CH ₃	_	3HCl (low melting)	C12H30Cl3N3O3
29	D	$(CH_2)_4CH_3$	Н	2HCl (low melting)	C11H26Cl2N2
30	D	$(CH_2)_4Ph$	Н	2HCl (220-222)	C16H28Cl2N2
31	D	(CH ₂ CH ₂ O) ₃ CH ₂ CH ₃	Н	2HCl (low melting)	C14H32Cl2N2O3
32	D	$(CH_2)_{14}CH_3$	CH ₂ CH ₂ NHCHO	2HCl (218–220)	$C_{24}H_{51}Cl_2N_3O$

^a From absolute ethanol/anhydrous diethyl ether.

12–18. In the same manner the already described *N*-pentadecylbipiperidine 55^{11} or *N*-pentadecanovlbipiperidine 56^{11} were obtained: alkylation of these intermediates with bromoethylamine hydrobromide yielded 19 and 20, while acylation of 55, 19 and **56** with $N\alpha$ -Boc- $N\varepsilon$ -trifluoroacetyl-L-lysine and subsequent deprotections yielded compounds 21-23, respectively. Piperazines 24-28 were synthesized as shown in Scheme 4. 1-Amino-4-benzylpiperazine **63**¹⁶ was alkylated with the appropriate bromoalkane or bromoethoxyethane and then debenzylated with HCOONH₄ and 10% Pd/C in MeOH to give compounds 24-28. 4-Methylalkylaminopiperidines 29-32 were prepared as reported in Scheme 5. N-benzyl isonipecotic acid 69¹¹ was transformed into the corresponding amides 70-72 using ethyl chloroformate, NEt₃ and the appropriate amine. After reduction with borane dimethyl sulphide complex, compounds 73-75 were reduced with HCOONH₄ and 10% Pd/C in MeOH to give derivatives 29-31. N-(Piperidin-4-ylmethyl)pentadecan-1-amine **76**,¹¹ was alkylated with bromoethylamine hydrobromide to obtain compound 32.

According to previously reported protocols,^{11–13} we evaluated the G-protein activation activity of our compounds by measuring the influence of these latter on [^{35}S]GTP γ S binding to the different subtypes of Gi protein. These compounds, being lipophilic and positively charged molecules, belong to the class of surface-active drugs. Understandably, the formulation and the screening of surface-active drugs represents a critical issue. It is well known that amphiphilic drugs can self-associate and bind to plasma membrane, causing disruption and solubilization of the lipid bi-layer, similarly to common detergents. As a matter of fact, we were prepared to face the problems related to their tendency to self-assembly that could induce aspecific effects and therefore compromise the reliability of the functional tests of GTP γ S binding. However, the cause that eventually aborted our efforts to evaluate the Gi-activating activity of these compounds was unexpected and apparently independent from their tendency to self-aggregate. After a few confusing results, we soon realized that in most cases radioactivity was present on the filters even in the absence of Gi protein, indicating that the molecules tested were able to bind with $[^{35}S]GTP\gamma S$ forming insoluble complexes that were retained on the filters. Of course, this fact rendered the results of the test largely unreliable. In Table 2 some illustrative data obtained both in the presence and absence of Gi protein of selected compounds of the series are reported, in comparison with our standard derivative BC5 (data are reported also for the alphao subunit). Other compounds of the

Scheme 1. Reagents and conditions: (a) (*t*BuOCO)₂O, NEt₃ anhyd; (b) NH₂X, (*i*PrO)₄Ti, NaBH₃CN, 25–81% yields; (c) HCl 6 M or CF₃COOH (see experimental part), 67–100% yields; (d) BrCH₂CH₂NH₂ HBr, K₂CO₃, 40% yield; (e) Nα-Boc-Nε-trifluoroacetyl-L-lysine, 1,1′-carbonyldiimidazole, 42% yields; (f) CF₃COOH, 83–93% yields; (g) K₂CO₃, 78–96% yields.

series either gave binding values close to basal (no Gi activation; compounds **1–7**, **12–18**, **24–31**) or they behaved like the compounds reported in Table 2 (compounds **8–10**, **21**, **23**).

A reasonable explanation for this result is that the positively multi-charged, hydrophobic molecules of our set combine with the negatively charged [35 S]GTP γ S to give salts that are insoluble in the medium of the assay. The positive correlation between the concentration of the compounds and the radioactivity found on the filter supports this explanation (see for instance compound

Scheme 2. Reagents and conditions: (a) $N\alpha$ -Boc- $N\epsilon$ -trifluoroacetyl-L-lysine, 1,1'-carbonyldiimidazole, 76% yield; (b) CF₃COOH, 95% yield; (c) K₂CO₃, 58% yield.

32). On the other hand, the solubility of the salts in the test medium can change according to the structure and dose of tested compounds; this may explain why in many cases (BC5 in Table 2 and all the compounds reported previously)^{11,12} we either did not notice the problem or were able to overcome it at suitable doses.

It must be emphasized that this case is somehow different from the micelle aggregation proposed in the recent literature^{17,18} to explain 'frequent hits' and 'promiscuous inhibitors' during high throughput screening, that is, the formation of micelle aggregates that interact unselectively with biologically active molecules inhibiting them. However, micelle aggregates could play a role even in this case, contributing to the poor solubility of the salt between the tested compound and $[^{35}S]GTP\gamma S$. To clarify this point, we checked the tendency of reference compound BC5, and 8 and 22 to give micelle aggregates by monitoring the changes produced on air/water surface tension. As can be seen in Figure 1, the compounds show a critical micelle concentration (cmc) around $1\times 10^{-4}\,M$ (1.0 $\times 10^{-4},~1.41\times 10^{-4}$ and $1.44\times10^{-4},$ respectively). These values suggest that, at lower concentrations, self-aggregation does not critically contribute to the insolubility of the complex with $[^{35}S]GTP\gamma S$ allowing, in the absence of other interferences, a reliable evaluation of their binding to the protein. It was expected that, at cmc or higher concentrations, the micelle formation would aggravate the problem contributing to the failure of the assay: this indeed proved to be the case, as verified experimentally for BC5 (see Table 2). Therefore, the anomalous behaviour found for the compounds reported in Table 2 seems to be due exclusively to the formation of insoluble salts between [³⁵S]GTP_YS and some of the compounds tested.

Scheme 3. Reagents and conditions: (a) 10% NaOH, BOC-ON; (b) bromoalkane or bromo-ethoxyethane, NEt₃, 10–47% yields; (c) HCl 6 M or CF₃COOH (see experimental part), 71–100% yields; (d) BrCH₂CH₂NH₂ HBr, K₂CO₃, 32–34% yields; (e) Nα-Boc-Nε-trifluoroacetyl-L-lysine, 1,1'-carbonyldiimidazole, 16–93% yields; (f) CF₃COOH, 76–93% yields; (g) K₂CO₃, 60–70% yields.

trifluoroacetyl-L-lysine

Scheme 4. Reagents and conditions: (a) BrX, NEt₃, 36–85% yields; (b) Pd/C/ HCOONH₄, 54–75% yields.

Obviously, as far as Gi activation properties of our compounds are concerned, we can only say that the compounds showing [^{35}S]GTP γS binding close to basal are inactive (see the list reported above). Nothing can be inferred about the activating properties of the compounds listed in Table 2 and of those that behave similarly. A more reliable assay is necessary to evaluate their activity. Our results suggest that much care should be taken when performing binding studies with charged, highly lipophilic molecules.

Table 2

GTPγS binding on the alphai1 subunit of G proteins (fmol bound in 15 min at 30 °C)

Basal		Basal αo 82.8 ± 4.75 αi1 8.9 ± 0.9	$1\times 10^{-4}M$	$5 \times 10^{-5} \text{M}$	$1\times 10^{-5}M$	$5\times 10^{-6}M$	$1\times 10^{-6}M$	Variation ^a (%)
11	With Gi protein Without protein			184.8 ± 20.2* 301.9 ± 35.2	157.0 ± 14.7* 234.4 ± 22.2	102.8 ± 9.8 [*] 176.6 ± 19.8	23.7 ± 5.6 [*] 34.6 ± 4.8	1664
19	With Gi protein Without protein			2304.0 ± 235.9 [*] 567.4 ± 79.1	234.4 ± 19.0 [*] 149.4 ± 22.8	78.7 ± 13.5*	11.6 ± 1.2	2553
20	With Gi protein Without protein			$102.9 \pm 10.9^{*}$ 145.8 ± 9.4	87.0 ± 9.8 [*] 119.8 ± 10.8	$76.2 \pm 13.7^{*}$ 107.2 ± 16.5	30.3 ± 11.1 [*] 58.3 ± 12.5	877
22	With Gi protein Without protein			781.0 ± 97.9* 835.8 ± 101.7	275.1 ± 22.1* 192.8 ± 13.2	33.3 ± 9.7* 111.7 ± 9.2	19.9 ± 9.6	2991
32	With Gi protein Without protein			$980.0 \pm 90.1^{*}$ 901.2 ± 78.8	$112.8 \pm 16.8^{*}$ 321.4 ± 24.6	$69.1 \pm 6.9^{*}$ 133.4 ± 12.2	8.9 ± 2.5	1167
BC5	With Gi protein Without protein		194.8 ± 14.1 178.0 ± 10.1	195.5 ± 10.2 [*] 46.7 ± 12.7	70.6 ± 5.2* 28.6 ± 3.7	$49.5 \pm 5.6^{*}$ 8.9 ± 2.1	$15.4 \pm 2.6^{*}$ 1.2 ± 0.4	693
BC5 ^b	With Gi protein Without protein		1422.5 ± 152 1387.0 ± 178	1395.0 ± 94.7* 319.0 ± 18.1	636.3 ± 78.6* 248.8 ± 20.1	$362.8 \pm 58^{*}$ 68.8 ± 8.1	102.3 ± 10.3 9.2 ± 2.3	668

 $^a\,$ Variation % in respect to basal at $1\times 10^{-5}\,M.$

 $^{\rm b}\,$ GTP γS binding on the alphao subunit of G proteins, with and without protein.

* P < 0.05.

Figure 1. Air/water surface tension measurements.

Acknowledgement

We are grateful to Professor Fulvio Gualtieri for helpful discussion.

Supplementary data

Supplementary data relative to the pharmacological method, chemistry, yield and chromatographic eluent of intermediates, chemical characterization of intermediates and final derivatives and elemental analysis of compounds **1–32**. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2009.02.097.

References and notes

1. Lyons, J.; Landis, C. A.; Harsh, G.; Vallar, L.; Grunewald, K., et al *Science* **1990**, 249, 655.

- Williamson, E. A.; Ince, P. G.; Harrison, D.; Kendall Taylor, P.; Harris, P. E. Eur. J. Clin. Invest. 1995, 25, 128.
- 3. Spiegel, A. M.; Weinstein, L. S. Annu. Rev. Med. 2004, 55, 27.
- Lerman, B. B.; Dong, B.; Stein, K. M.; Markowitz, S. M.; Linden, J.; Catanzaro, D. F. J. Clin. Invest. **1998**, 101, 2862.
- 5. Melien, O. Methods Mol. Biol. 2007, 361, 119.
- Galeotti, N.; Ghelardini, C.; Zoppi, M.; Del Bene, E.; Raimondi, L.; Beneforti, E.; Bartolini, A. Cephalalgia 2001, 21, 38.
- Galeotti, N.; Ghelardini, C.; Zoppi, M.; Del Bene, E.; Raimondi, L.; Beneforti, E.; Bartolini, A. J. Rheumatol. 2001, 28, 2298.
- Leschke, C.; Storm, R.; Breitweg-Lehmann, E.; Exner, T.; Nurnberg, B.; Schunack, W. J. Med. Chem. **1997**, 40, 3130.
- Breitweg-Lehmann, E.; Czupalla, C.; Storm, R.; Kudlacek, O.; Schunack, W.; Freissmuth, M.; Nurnberg, B. Mol. Pharmacol. 2002, 61, 628.
- Melchiorre, C.; Bolognesi, M. L.; Budriesi, R.; Ghelardini, C.; Chiarini, A.; Minarini, A.; Rosini, M.; Tumiatti, V.; Wade, E. J. *J. Med. Chem.* 2001, 44, 4035.
- Manetti, D.; Di Cesare Mannelli, L.; Dei, S.; Galeotti, N.; Ghelardini, C.; Romanelli, M. N.; Scapecchi, S.; Teodori, E.; Pacini, A.; Bartolini, A.; Gualtieri, F. J. Med. Chem. 2005, 48, 6491.
- Di Cesare Mannelli, L.; Pacini, A.; Toscano, A.; Fortini, M.; Berti, D.; Ghelardini, C.; Galeotti, N.; Baglioni, P.; Bartolini, A. Protein Exp. Purif. 2006, 47, 303.

- Di Cesare Mannelli, L.; Pacini, A.; Toscano, A.; Ghelardini, C.; Manetti, D.; Gualtieri, F.; Patel, T. B.; Bartolini, A. Arch. Biochem. Biophys. 2006, 453, 151.
 Luciani, P.; Berti, D.; Fortini, M.; Baglioni, P.; Ghelardini, C.; Pacini, A.; Manetti,
- D.; Gualtieri, F.; Bartolini, A.; Di Cesare Mannelli, L. Mol. Biosyst., 2009, doi:10.1039/b815042g.
- 15. Mattson, R. J.; Pham, H. M.; Leuck, D. J.; Cowen, K. A. J. Org. Chem. 1990, 55, 2552.
- Z552.
 Thunus, L.; Lapiere, C. L.; Ghys, A. Ann. Pharm. Fr. **1979**, 37, 451.
 Keseru, G. M.; Makara, G. M. Drug Discov. Today **2006**, *11*, 741.
 Shoichet, B. K. Drug Discov. Today **2006**, *11*, 607.